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Hilbert spaces with generic predicates

Espacios de Hilbert con predicados genéricos

Alexander Berenstein1, Tapani Hyttinen2,
Andrés Villaveces3,B

1Universidad de Los Andes, Bogotá, Colombia
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Abstract. We study the model theory of expansions of Hilbert spaces by
generic predicates. We first prove the existence of model companions for
generic expansions of Hilbert spaces in the form of a distance function to
a random substructure, then a distance to a random subset. The theory ob-
tained with the random substructure is ω-stable, while the one obtained with
the distance to a random subset is TP2 and NSOP1. That example is the first
continuous structure in that class.
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Resumen. Estudiamos la teoŕıa de modelos de expansiones de espacios de
Hilbert mediante predicados genéricos. Primero demostramos la existencia de
modelo-compañeras de expansiones genéricas de espacios de Hilbert mediante
una función-distancia a una estructura aleatoria, y luego una distancia a un
subconjunto aleatorio. La teoŕıa obtenida con la subestructura aleatoria es
ω-estable; la obtenida mediante la distancia a subconjunto aleatorio es TP2 y
NSOP1. Este ejemplo es la primera estructura de esta clase de complejidad
en lógica continua.

Palabras y frases clave. Lógica continua, Predicados aleatorios, TP2, Estabili-
dad.
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1. Introduction

This paper deals with Hilbert spaces expanded with random predicates in the
framework of continuous logic as developed in [2]. The model theory of Hilbert
spaces is very well understood, see [2, Chapter 15] or [5]. However, we briefly
review some of its properties at the end of this section.

In this paper we build several new expansions, by various kinds of ran-
dom predicates (random substructure and the distance to a random subset)
of Hilbert spaces, and study them within the framework of continuous logic.
While our constructions are not exactly metric Fräıssé (failing the hereditary
property), some of them are indeed amalgamation classes and we study the
model theory of their limits.

Several papers deal with generic expansions of Hilbert spaces. Ben Yaacov,
Usvyatsov and Zadka [3] studied the expansion of a Hilbert space with a generic
automorphism. The models of this theory are expansions of Hilbert spaces with
a unitary map whose spectrum is S1. A model of this theory can be constructed
by amalgamating together the collection of n-dimensional Hilbert spaces with
a unitary map whose eigenvalues are the n-th roots of unity as n varies in the
positive integers. More work on generic automorphisms can be found in [4],
where the first author of this paper studied Hilbert spaces expanded with a
random group of automorphisms G.

There are also several papers about expansions of Hilbert spaces with ran-
dom subspaces. In [5] the first author and Buechler identified the saturated
models of the theory of beautiful pairs of a Hilbert space. An analysis of lovely
pairs (the generalization of beautiful pairs (belles paires) to simple theories)
in the setting of compact abstract theories is carried out in [1]. In the (very
short) second section of this paper we build the beautiful pairs of Hilbert spaces
as the model companion of the theory of Hilbert spaces with an orthonormal
projection. We provide an axiomatization for this class and we show that the
projection operator into the subspace is interdefinable with a predicate for the
distance to the subspace. We also prove that the theory of beautiful pairs of
Hilbert spaces is ω-stable. Many of the properties of beautiful pairs of Hilbert
spaces are known from the literature or folklore, so this section is mostly a
compilation of results.

In the third section we add a predicate for the distance to a random subset.
This construction was inspired by the idea of finding an analogue to the first
order generic predicates studied by Chatzidakis and Pillay in [6]. The axiom-
atization we found for the model companion was inspired in the ideas of [6]
together with the following observation: in Hilbert spaces there is a definable
function that measures the distance between a point and a model. We prove
that the theory of Hilbert spaces with a generic predicate is unstable. We also
study a natural notion of independence in a monster model of this theory and
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establish some of its properties. In particular, we show that natural indepen-
dence notions associated with our expansions of Hilbert spaces have various
desirable properties but not enough to guarantee simplicity, or even the NTP2

properties. However, the theory ends up having the NSOP1 property.

We wish to thank our two (anonymous) referees for helpful comments and
clarifications.

This work was partially supported by Colciencias grant Métodos de Estabi-
lidad en Clases No Estables. The second and third author were also sponsored
by Catalonia’s Centre de Recerca Matemàtica (Intensive Research Program in
Strong Logics) and by the University of Helsinki in 2016 for part of this work.
The third author was also partially sponsored by Colciencias (Proy. 1101-05-
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1.1. Model theory of Hilbert spaces (quick review)

1.1.1. Hilbert spaces

We follow [2] in our study of the model theory of a real Hilbert space and
its expansions. We assume the reader is familiar with the basic concepts of
continuous logic as presented in [2]. A Hilbert space H can be seen as a multi-
sorted structure (Bn(H), 0,+, 〈, 〉, {λr : r ∈ R})0<n<ω, where Bn(H) is the ball
of radius n, + stands for addition of vectors (defined from Bn(H)×Bn(H) into
B2n(H)), 〈, 〉 : Bn(H)×Bn(H)→ [−n2, n2] is the inner product, 0 is a constant
for the zero vector and λr : Bn(H)→ Bn(d|r|e)(H) is multiplication by r ∈ R.

We denote by L the language of Hilbert spaces and by T the theory of
Hilbert spaces.

By a universal domain H of T we mean a Hilbert space H which is κ-
saturated and κ-strongly homogeneous with respect to types in the language
L, where κ is a regular cardinal larger than 2ℵ0 . Constructing such a structure
is straightforward –just consider a Hilbert space with an orthonormal basis of
cardinality at least κ.

We will assume that the reader is familiar with the metric versions of defin-
able closure and non-dividing. The reader can check [2, 5] for the definitions.

Notation 1. Let dcl stand for the definable closure and acl stand for the
algebraic closure in the language L.

Fact Let A ⊂ H be small. Then dcl(A) = acl(A) = the smallest Hilbert
subspace of H containing A.

Proof. See Lemma 3 in [5, p. 80]. �X

Recall a characterization of non-dividing in pure Hilbert spaces (that will
be useful in the more sophisticated constructions in forthcoming sections):
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Proposition 1.1. Let B,C ⊂ H be small, let (a1, . . . , an) ∈ Hn and assume
that C = dcl(C), so C is a Hilbert subspace of H. Denote by PC the projection
on C. Then tp(a1, . . . , an/C ∪ B) does not divide over C if and only if for all
i ≤ n and all b ∈ B, ai − PC(ai) ⊥ b− PC(b).

Proof. Proved as Corollary 2 and Lemma 8 of [5, pp. 81–82]. �X

For A,B,C ⊂ H small, we say that A is independent from B over C if for
all n ≥ 1 and ā ∈ An, tp(ā/C ∪ B) does not divide over C and we write is as
A |̂

C
B.

Under non-dividing independence, types over sets are stationary. In particu-
lar, the independence theorem holds over sets, and we may refer to this property
as 3-existence. It is also important to point out that non-dividing is trivial, that
is, for all sets B,C and tuples (a1, . . . , an) from H, tp(a1, . . . , an/C ∪B) does
not divide over C if and only if tp(ai/B ∪C) does not divide over C for i ≤ n.

2. Random subspaces and beautiful pairs

We now deal with the easiest situation: a Hilbert space with an orthonormal
projection operator onto a subspace. Let Lp = L∪{P} where P is a new unary
function and we consider structures of the form (H, P ), where P : H → H is
a projection into a subspace. Note that P : Bn(H) → Bn(H) and that P is
determined by its action on B1(H). Recall that projections are bounded linear
operators, characterized by two properties:

(1) P 2 = P ,

(2) P ∗ = P .

The second condition means that for any u, v ∈ H, 〈P (u), v〉 = 〈u, P (v)〉. A
projection also satisfies, for any u, v ∈ H, the condition ‖P (u)−P (v)‖ ≤ ‖u−v‖.
In particular, it is a uniformly continuous map and its modulus of uniform
continuity is the function ∆P (ε) = ε (the modulus of uniform continuity is a
function providing, for each ε, the “corresponding δ” in the usual definition of
uniform continuity).

We start by showing that the class of Hilbert spaces with projections has
the free amalgamation property:

Lemma 2.1. Let (H0, P0) ⊂ (Hi, Pi) where i = 1, 2 and H1 |̂ H0
H2 be (possi-

bly finite dimensional) Hilbert spaces with projections. Then H3 = span{H1, H2}
is a Hilbert space and P3(v3) = P0(v0) +P1(v1) +P2(v2) is a projection, where
v3 = v0 + v1 + v2 and v0 is the projection of v3 in H0, v1 is the projection of
v3 in H1 ∩H⊥0 , and v2 is the projection of v3 in H2 ∩H⊥0 .
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Proof. It is clear that H3 = span{H1 ∪H2} is a Hilbert space containing H1

and H2. It remains to prove that P3 is a linear map and a projection. Let
u3, v3 ∈ H3 and write u3 = u0 + u1 + u2, v3 = v0 + v1 + v2 where u0, v0, u1, v1,
u2, v2 are the projections of u3 and v3 in H0, H1∩H⊥0 and H2∩H⊥0 respectively.
Then u0 + v0, u1 + v1, u2 + v2 are the projections of u3 + v3 into those spaces
and P3(u3 + v3) = P0(u0 + v0) + P1(u1 + v1) + P2(u2 + v2) = P3(u3) + P3(v3).
A similar computation shows that P3(λu3) = λP3(u3) for any λ ∈ R.

To show it is a projection, note that P3(P3(u3)) = P3(P0(v0) + P1(v1) +
P2(v2)) = P 2

0 (v0) +P 2
1 (v1) +P 2

2 (v2) = P0(v0) +P1(v1) +P2(v2) = P3(u3). And
since P ∗0 (v0) + P ∗1 (v1) + P ∗2 (v2) = P0(v0) + P1(v1) + P2(v2) we get also that
P ∗3 = P3. �X

Let TP be the theory of Hilbert spaces with a linear projection. It is ax-
iomatized by the theory of Hilbert spaces together with axioms stating that P
is linear and the axioms (1) and (2) that say that P is a projection.

Consider first the finite dimensional models. Given an n-dimensional Hilbert
space Hn, there are only n + 1 many pairs (Hn, P ), where P is a projection,
modulo isomorphism. They are classified by the dimension of P (H), which
ranges from 0 to n.

In order to characterize the existentially closed models of TP , note the
following facts:

(1) Let (H, P ) be existentially closed, and (Hn, Pn) be an n-dimensional
Hilbert space with an orthonormal projection with the property that
Pn(Hn) = Hn. Then (H, P ) ⊕ (Hn, Pn) is an extension of (H, P ) with
dim([P ⊕ Pn](H ⊕ Hn)) ≥ n. Since n can be chosen as big as we want
and (H, P ) is existentially closed, dim(P (H)) =∞.

(2) Let (H, P ) be existentially closed, and (Hn, P0) be an n-dimensional
Hilbert space with an orthonormal projection such that P0(Hn) = {0}.
Then (H, P ) ⊕ (Hn, P0) is an extension of (H,P ) such that dim(([P ⊕
P0](H⊕Hn))⊥) ≥ n. Since n can be chosen as big as we want and (H, P )
is existentially closed, dim(P (H)⊥) =∞.

Definition 2.2. Let TPω be the theory TP (stating that P is a linear map
and a projection) together with axioms stating that there are infinitely many
pairwise orthonormal vectors v satisfying P (v) = v and also infinitely many
pairwise orthonormal vectors u satisfying P (u) = 0.

Note that the theory TPω has a unique separable model and thus is complete.
It corresponds to the theory of beautiful pairs of Hilbert spaces (see [5]). Note
that any model (H,P ) of TP can be embedded (after increasing the dimension
of P (H) and P (H)⊥ so that they are infinite) into a model of TPω . We will prove
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bellow that TPω has quantifier elimination and thus is the model companion of
TP . We will know study the theory TPω .

Let (H, P ) |= TPω and for any v ∈ H let dP (v) = ‖v − P (v)‖. Then dP (v)
measures the distance between v and the subspace P (H). The distance function
dP (x) is definable in (H, P ). We will now prove the converse, that is, that we
can definably recover P from dP .

Lemma 2.3. Let (H, P ) |= TPω . For any v ∈ H let dP (v) = ‖v − P (v)‖. Then
P (v) ∈ dcl(v) in the structure (H, dP ).

Proof. Note that P (v) is the unique element x in P (H) satisfying ‖v − x‖ =
dP (v). Thus P (v) is the unique realization of the condition

ϕ(x) = max{dP (x), |‖v − x‖ − dP (v)|} = 0.

�X

Proposition 2.4. Let (H, P ) |= TPω . For any v ∈ Hω let dP (v) = ‖v − P (v)‖.
Then the projection function P (x) is definable in the structure (H, dP ).

Proof. Let (H, P ) |= TPω be κ-saturated for κ > ℵ0 and let dP (v) = ‖v−P (v)‖.
Since dP is definable in the structure (H, P ), the new structure (H, dP ) is still
κ-saturated. Let GP be the graph of the function P . Then by the previous
lemma GP is type-definable in (H, dP ) and thus by [2, Proposition 9.24] P is
definable in the structure (H, dP ). �X

Notation 2. We write tp for L-types, tpP for LP -types and qftpP for quantifier
free LP -types. We write aclP for the algebraic closure in the language LP . We
follow a similar convention for dclP .

Lemma 2.5. TPω has quantifier elimination.

Proof. It suffices to show that quantifier free LP -types determine the LP -
types. Let (H, P ) |= TPω and let ā = (a1, . . . , an), b̄ = (b1, . . . , bn) ∈ Hn. Assume
that qftpP (ā) = qftpP (b̄). Then

tp(P (a1), . . . , P (an)) = tp(P (b1), . . . , P (bn))

and

tp(a1 − P (a1), . . . , an − P (an)) = tp(b1 − P (b1), . . . , bn − P (bn)).

Let H0 = P (H) and let H1 = H⊥0 , both are then infinite dimensional Hilbert
spaces and H = H0 ⊕ H1. Let f0 ∈ Aut(H0) satisfy f0(P (a1), . . . , P (an)) =
(P (b1), . . . , P (bn)) and let f1 ∈ Aut(H1) be such that f1(a1 − P (a1), . . . , an −
P (an)) = (b1−P (b1), . . . , bn−P (bn)). Let f be the automorphism of H induced
by f0 and f1, that is, f = f0 ⊕ f1. Then f ∈ Aut(H, P ) and f(a1, . . . , an) =
(b1, . . . , bn), so tpP (ā) = tpP (b̄). �X
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Characterization of types: By the previous lemma, the LP -type of an n-
tuple ā = (a1, . . . , an) inside a structure (H, P ) |= TPω is determined by the
L-type tp(P (a1), . . . , P (an), a1−P (a1), . . . , an−P (an)) of its projections onto
P (H) and P (H)⊥. In particular, we may regard (H, P ) as the direct sum of the
two independent pure Hilbert spaces (P (H),+, 0, 〈, 〉) and (P (H)⊥,+, 0, 〈, 〉).

We may therefore characterize definable and algebraic closure, as follows.

Proposition 2.6. Let (H, P ) |= TPω and let A ⊂ H. Then dclP (A) = aclP (A) =
dcl(A ∪ P (A)).

We leave the proof to the reader. Another consequence of the description
of types is:

Proposition 2.7. The theory TPω is ω-stable.

Proof. Let (H, P ) |= TPω be separable and let A ⊂ H be countable. Replacing
(H, P ) for (H, P )⊕ (H, P ) if necessary, we may assume that P (H)∩ dclP (A)⊥

is infinite dimensional and that P (H)⊥∩dclP (A)⊥ is infinite dimensional. Thus
every Lp-type over A is realized in the structure (H, P ) and (S1(A), d) is sep-
arable. �X

Proposition 2.8. Let (H, P ) |= TPω be a κ-saturated domain and let A,B,C ⊂
H be small. Then the type tpP (A/B ∪ C) does not fork over C if and only if
tp(A ∪ P (A)/B ∪ P (B) ∪ C ∪ P (C)) does not fork over C ∪ P (C).

Proof. For A,B,C ⊂ H, let A |̂ ∗
C
B be defined as tp(A ∪ P (A)/B ∪ P (B) ∪

C ∪P (C)) does not fork over C ∪P (C). We check that |̂ ∗ is an independence
notion:

(1) Invariance under automorphisms of (H, P ). Clear.

(2) Symmetry: A |∗^C
B ⇐⇒ B |∗^C

A. It follows from the fact that indepen-
dence in Hilbert spaces has the same property.

(3) Transitivity: A |∗^C
BD if and only if A |∗^C

B and A |∗^BC
D. It follows

from the corresponding property for Hilbert spaces.

(4) Finite Character: A |∗^C
B if and only ā |∗^C

B for all ā ∈ A finite. It
follows from finite character for independence in Hilbert spaces.

(5) Local Character: If ā is any finite tuple, then there is countable B0 ⊆ B
such that ā |∗^B0

B. It follows from local character for Hilbert spaces

regarding (H, P ) as a direct sum of P (H) and P (H)⊥.
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(6) Stationarity. Let A,A′, B,C ⊂ H be small sets satifying tpP (A/C) =
tpP (A′/C) and A |∗^C

B, A′ |∗^C
B. Then tp(A ∪ P (A)/C ∪ P (C)) =

tpP (A′∪P (A′)/C∪P (C)). On the other hand the independence condition
implies A∪P (A) |̂

C∪P (C)
B∪P (B) and A′∪P (A′) |̂

C∪P (C)
B∪P (B), so

tp(A∪P (A)/B∪P (B)∪C∪P (C)) = tpP (A′∪P (A′)/B∪P (B)∪C∪P (C))
and thus tpP (A/B ∪ C) = tpP (A′/B ∪ C).

(7) Extension. It is easy to prove decomposing H into P (H) and P (H)⊥ and
then using the extension property for Hilbert spaces in each subspace.

Since forking is stable theories characterized by these properties (see [2, Theo-
rem 14.14]) we get the desired result. �X

3. Continuous random predicates

We now come to our main theory and to our first set of results. We study the
expansion of a Hilbert space with a distance function to a subset of H. Let dN
be a new unary predicate and let LN be the language of Hilbert spaces together
with dN . We denote the LN structures by (H, dN ), where dN : H → [0, 1] and
we want to consider the structures where dN is a distance to a subset of H.
Instead of measuring the actual distance to the subset, we truncate the distance
at one. We start by characterizing the functions dN corresponding to distances.

3.1. The basic theory T0

We denote by T0 the theory of Hilbert spaces together with the next two axioms
(compare with Theorem 9.11 in [2]):

(1) supx min{1−· dN (x), infy max{|dN (x)− ‖x− y‖|, dN (y)}} = 0;

(2) supx supy[dN (y)− ‖x− y‖ − dN (x)] ≤ 0.

We say a point is black if dN (x) = 0 and white if dN (x) = 1. All other points
are gray, darker if d(x) is close to zero and whiter if dN (x) is close to one. This
terminology follows [9]. From the second axiom we get that dN is uniformly
continuous (with modulus of uniform continuity ∆(ε) = ε). Thus we can apply
the tools of continuous model theory to analyze these structures.

Lemma 3.1. Let (H, d) |= T0 be ℵ0-saturated and let N = {x ∈ H : dN (x) =
0}. Then for any x ∈ H, dN (x) = dist(x,N) (here, dist denotes the actual
distance as computed in the Hilbert space).

Proof. Let v ∈ H and let w ∈ N . Then by the second axiom dN (v) ≤ ‖v−w‖
and thus dN (v) ≤ dist(v,N).

Now let v ∈ H. If dN (v) = 1, then dist(v,N) ≥ 1 by the previous paragraph,
but since we are truncating the computation of distances at 1, this means that
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dist(v,N) = 1. Let us now assume that dN (v) < 1. Consider now the set of
statements p(x) given by dN (x) = 0, ‖x− v‖ = dN (v).

Claim. The type p(x) is approximately satisfiable.

Let ε > 0. We want to show that there is a realization of the statements
dN (x) ≤ ε, dN (v) ≤ ‖x − v‖ + ε. By the first axiom there is w such that
dN (w) ≤ ε and dN (v) ≤ ‖v − w‖+ ε.

Since (H, d) is ℵ0-saturated, there is w ∈ N such that ‖v − w‖ = dN (v) as
we wanted. �X

There are several ages that need to be considered. We fix r ∈ [0, 1) and we
consider the class Kr of all models of T0 such that dN (0) = r. Note that in all
finite dimensional spaces in Kr we have at least a point v with dN (v) = 0.

Notation 3. If (Hi, diN ) |= T0 for i ∈ {0, 1}, we write (H0, d
0
N ) ⊂ (H1, d

1
N ) if

H0 ⊂ H1 and d0
N = d1

N �H0
(for each sort).

We will work in Kr. We start with constructing free amalgamations:

Lemma 3.2. Let (H0, d
0
N ) ⊂ (Hi, diN ) where i = 1, 2 and H1 |̂ H0

H2 be

Hilbert spaces with distance functions, all of them in Kr. Let H3 = span{H1, H2}
and let

d3
N (v) = min

{√
d1
N (PH1

(v))2 + ‖PH2∩H⊥0 (v)‖2,√
d2
N (PH2

(v))2 + ‖PH1∩H⊥0 (v)‖2
}
.

Then (Hi, diN ) ⊂ (H3, d
3
N ) for i = 1, 2, and (H3, d

3
N ) ∈ Kr.

Proof. For arbitrary v ∈ H1,
√
d1
N (PH1

(v))2 + ‖PH2∩H⊥0 (v)‖2 = d1
N (v). Since

(H0, d
0
N ) ⊂ (Hi, diN ) we also have

√
d2
N (PH2

(v))2 + ‖PH1∩H⊥0 (v)‖2 =√
d0
N (PH0(v))2 + ‖PH1∩H⊥0 (v)‖2 ≥ d1

N (v). Similarly, for any v ∈ H2, we have

d3
N (v) = d2

N (v).

Therefore (H3, d
3
N ) ⊃ (Hi, diN ) for i ∈ {1, 2}. Now we have to prove that

the function d3
N that we defined is indeed a distance function.

Geometrically, d3
N (v) takes the minimum of the distances of v to the selected

black subsets of H1 and H2. That is, the random subset of the amalgamation
of (H1, d

1
N ) and (H2, d

2
N ) is the union of the two random subsets. It is easy to

check that (H3, d
3
N ) |= T0. Since each of (H1, d

1
N ), (H2, d

2
N ) belongs to Kr, we

have d1
N (0) = r = d2

N (0) and thus d3
N (0) = r. �X

The class K0 also has the JEP: let (H1, d
1
N ), (H2, d

2
N ) belong to K0 and

assume that H1 ⊥ H2. Let N1 = {v ∈ H1 : d1
N (v) = 0} and let N2 = {v ∈ H2 :
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d2
N (v) = 0}. Let H3 = span(H1 ∪H2) and let N3 = N1 ∪N2 ⊂ H3 and finally,

let d3
N (v) = dist(v,N3). Then (H3, d

3
N ) is a witnesses of the JEP in K0.

Lemma 3.3. There is a model (H, dN ) |= T0 with (H, dN ) ∈ K0 such that H is
a 2n-dimensional Hilbert space and there are orthonormal vectors v1, . . . , vn ∈
H, u1, . . . , un ∈ H such that dN ((ui + vj)/2) =

√
2/2 for i ≤ j, dN (0) = 0 and

dN ((ui + vj)/2) = 0 for i > j.

Proof. Let H be a Hilbert space of dimension 2n, and fix some orthonormal
basis 〈v1, . . . , vn, u1, . . . , un〉 for H. Let N = {(ui + vj)/2 : i > j} ∪ {0} and let
dN (x) = dist(x,N). Then dN (0) = 0 and dN ((ui + vj)/2) = 0 for i > j. Since
‖(ui + vj)/2 − (uk + vj)/2‖ =

√
2/2 for i 6= k and ‖(ui + vj)/2 − 0‖ =

√
2/2,

we get that dN (ui + vj) =
√

2/2 for i ≤ j. �X

Thus, existentially closed models of T0 ∪ {dN (0) = 0} will not be stable.

3.2. The model companion

3.2.1. Basic notations

We now provide the axioms of the model companion of T0 ∪ {dN (0) = 0}.
Call TN the theory of the structure built out of amalgamating all separa-

ble Hilbert spaces together with a distance function belonging to the age K0.
Informally speaking, TN = Th(lim−→(K0)). We show how to axiomatize TN .

The idea for the axiomatization of this part follows the lines of Theorem
2.4 of [6]. There are however important differences in the behavior of algebraic
closures and independence, due to the metric character of our examples.

3.2.2. An informal description of the axioms

We give a general description of the situation.

Let (M,dN ) in K0 be an existentially closed structure and take some ex-
tension (M1, dN ) ⊃ (M,dN ). Let x̄ = (x1, . . . , xn+k) be elements in M1 \M
and let z1, . . . , zn+k be their projections on M . Assume that for i ≤ n there
are ȳ = (y1, . . . , yn) in M1 \M that satisfy dN (xi) = ‖xi− yi‖ and dN (yi) = 0.
Also assume that for i > n, the witnesses for the distances to the black points
belong to M , that is, d2

N (xi) = ‖xi − zi‖2 + d2
N (zi) for i > n. Also, let us

assume that all points in x̄, ȳ live in a ball of radius L around the origin. Let
ū = (u1, . . . , un) be the projection of ȳ = (y1, . . . , yn) over M .

Let ϕ(x̄, ȳ, z̄, ū) be a formula such that ϕ(x̄, ȳ, z̄, ū) = 0 describes the val-
ues of the inner products between all the elements of the tuples, that is, it
determines the (Hilbert space) geometric locus of the tuple (x̄, ȳ, z̄, ū). The
statement ϕ(x̄, ȳ, z̄, ū) = 0 expresses the position of the potentially new points
x̄, ȳ with respect to their projections into a model. Since dN (xi) = ‖xi − yi‖
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and dN (yi) = 0, we have ‖xi− yj‖ ≥ ‖xi− yi‖ for j ≤ n, i ≤ n. Also, for i > n,
d2
N (xi) = ‖xi − zi‖2 + d2

N (zi), and get ‖xi − yj‖2 ≥ ‖xi − zi‖2 + d2
N (zi) for

j ≤ n.

Note that as (M1, dN ) ⊃ (M,dN ), for all z ∈ M , d2
N (z) ≤ ‖z − yi‖2 =

‖z − ui‖2 + ‖yi − ui‖2 for i ≤ n. We may also assume that there is a positive
real ηϕ such that ‖xi − zi‖ ≥ ηϕ for i ≤ n+ k and ‖yi − ui‖ ≥ ηϕ for i ≤ n.

We want to express that for any parameters z̄, ū in the structure if we
can find realizations x̄, ȳ of ϕ(x̄, ȳ, z̄, ū) = 0 such that for all w and i ≤ n,
d2
N (w) ≤ ‖w − ui‖2 + ‖ui − yi‖2, ‖xi − yi‖2 ≤ ‖xi − zi‖2 + d2

N (zi) for i ≤ n,
‖xi − yj‖2 ≥ ‖xi − zj‖2 + d2

N (zj) for i > n and j ≤ n, then there are tuples x̄′,
ȳ′ such that ϕ(x̄′, ȳ′, z̄, ū) = 0, dN (y′i) = 0, dN (x′i) = ‖x′i − y′i‖ for i ≤ n and
d2
N (xj) = ‖xj − zj‖2 + d2

N (zj) for j > n.

That is, for any z̄, ū in the structure, if we can find realizations x̄, ȳ of the
Hilbert space locus given by ϕ, and we prescribe “distances” dN that do not
clash with the dN information we already had, in such a way that for i ≤ n,
the yi’s are black and are witnesses for the distance to the black set for the
xi’s, and for i > n the xi’s do not require new witnesses, then we can actually
find arbitrarily close realizations, with the prescribed distances.

The only problem with this idea is that we do not have an implication in
continuous logic. We replace the expression “p→ q” by a sequence of approxi-
mations indexed by ε.

3.2.3. The axioms of TN

Notation 4. Let z̄, ū be tuples in M and let x ∈M1. By Pspan(z̄ū)(x) we mean
the projection of x in the space spanned by (z̄, ū).

For fixed ε ∈ (0, 1), let f : [0, 1]→ [0, 1] be a continuous function such that
whenever ϕ(t̄) < f(ε) and ϕ(t̄′) = 0 (t̄ and t̄′ tuples in our models), then

(a) ‖Pspan(z̄ū)(xi)− zi‖ < ε,

(b) ‖Pspan(z̄ū)(yi)− ui‖ < ε,

(c) |‖ti − tj‖ − ‖t′i − t′j‖| < ε where t̄ is the concatenation of x̄, ȳ, z̄, ū.

Choosing ε small enough, we may assume that

(d) ‖xi − Pspan(z̄ū)(xi)‖ ≥ ηϕ/2 for i ≤ n+ k,

(e) ‖yi − Pspan(z̄ū)(yi)‖ ≥ ηϕ/2 for i ≤ n.
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Let δ = 2
√
ε(L+ 2) and consider the following axiom ψϕ,ε (which we write

as a positive bounded formula for clarity) where the quantifiers range over a
ball of radius L+ 1:

∀z̄∀ū
(
∃x̄∃ȳ

[
ψ1(z̄, ū, x̄, ȳ) ∧ ∃wψ2(w, ū, ȳ) ∧ ψ3(z̄, x̄, ȳ) ∧ ψ4(x̄, ȳ) ∧ ψ5(z̄, x̄, ȳ)

]
=⇒c

∃x̄′∃ȳ′
[
θ1(z̄, ū, x̄′, ȳ′) ∧ θ2(ȳ′) ∧ θ3(x̄′, ȳ′) ∧ θ4(x̄′, z̄)

])
,

where the components are:

• ψ1(z̄, ū, x̄, ȳ) : ϕ(x̄, ȳ, z̄, ū) ≥ f(ε),

• ψ2(w, ū, ȳ) :
∨
i≤n(d2

N (w) ≥ ‖w − ui‖2 + ‖yi − ui‖2 + ε2),

• ψ3(z̄, x̄, ȳ) :
∨
i>n,j≤n(‖xi − yj‖2 ≤ ‖xi − zi‖2 + d2

N (zi) + ε2),

• ψ4(x̄, ȳ) :
∨
i,j≤n,j 6=i(‖xi − yj‖ ≤ ‖xi − yi‖ − ε),

• ψ5(z̄, x̄, ȳ) :
∨
i≤n(‖xi − zi‖2 + d2

N (zi) ≤ ‖xi − yi‖2 − ε2),

• θ1(z̄, ū, x̄′, ȳ′) : ϕ(x̄′, ȳ′, z̄, ū) ≤ f(ε),

• θ2(ȳ′) :
∧
i≤n dN (y′i) ≤ δ),

• θ3(x̄′, ȳ′) :
∧
i≤n |dN (x′i)− ‖x′i − y′i‖| ≤ 2δ),

• θ4(x̄′, z̄) :
∧
i>n |d2

N (xi)− ‖xi − zi‖2 − d2
N (zi)| ≤ 4δL, and

• =⇒c abbreviates implication in continuous logic1.

The axiom then has the usual form of “existential closure” but in the sense
described above. This is exactly what we need for the model companion we are
looking for.

Let TN be the theory T0 together with this scheme of axioms ψϕ,ε in-
dexed by all Hilbert space geometric locus formulas ϕ(x̄, ȳ, z̄, ū) = 0 and
ε ∈ (0, 1) ∩ Q. The radius of the ball that contains all elements, L, as well
as n and k are determined from the configuration of points described by the
formula ϕ(x̄, ȳ, z̄, ū) = 0.

1The exact formula would be almost unparseable: ∀z̄∀ū
(
∀x̄∀ȳϕ(x̄, ȳ, z̄, ū) ≥ f(ε) ∨

∃w
∨

i≤n(d2N (w) ≥ ‖w − ui‖2 + ‖yi − ui‖2 + ε2) ∨
∨

i>n,j≤n(‖xi − yj‖2 ≤ ‖xi − zi‖2 +

d2N (zi) + ε2) ∨∨
i,j≤n,j 6=i(‖xi − yj‖ ≤ ‖xi − yi‖ − ε) ∨

∨
i≤n(‖xi − zi‖2 + d2N (zi) ≤ ‖xi − yi‖2 − ε2)

∨
∨∃x̄∃ȳ

[
(ϕ(x̄, ȳ, z̄, ū) ≤ f(ε) ∧

∧
i≤n dN (yi) ≤ δ) ∧

∧
i≤n |dN (xi) − ‖xi − yi‖| ≤ 2δ) ∧∧

i>n |d2N (xi)− ‖xi − zi‖2 − d2N (zi)| ≤ 4δL
])
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3.2.4. Existentially closed models of T0

Theorem 3.4. Assume that (M,dN ) |= T0 is existentially closed. Then we
also have (M,dN ) |= TN .

Proof. Fix ε > 0 and ϕ as above. Let z̄ ∈ Mn+k, ū ∈ Mn and assume that
there are x̄, ȳ with ϕ(x̄, ȳ, z̄, ū) < f(ε) and d2

N (w) < ‖w−ui‖2+‖yi−ui‖2+ε2 for
all w ∈M , ‖xi−yi‖2 < ‖xi−zi‖2+d2

N (zi)+ε2 for i ≤ n, ‖xi−yj‖ > ‖xi−yi‖−ε
for i, j ≤ n, i 6= j, ‖xi − yj‖2 > ‖xi − zi‖2 + d2

N (zj) + ε2 for i > n, j ≤ n. Let
ε′ < ε be such that ϕ(x̄, ȳ, z̄, ū) < f(ε′) and

(f) d2
N (w) < ‖w − ui‖2 + ‖yi − ui‖2 + ε′2 for all w ∈M ,

(g1) ‖xi − yi‖2 > ‖xi − zi‖2 + dN (zi) + ε′2 for i ≤ n,

(g2) ‖xi − yj‖ > ‖xi − yi‖ − ε′ for i, j ≤ n, i 6= j,

(h) ‖xi − yj‖2 ≥ ‖xi − zi‖2 + d2
N (zi) + ε′2 for i > n, j ≤ n.

We construct an extension (H, dN ) ⊃ (M,dN ) where the conclusion of the
axiom indexed by ε′ holds. Since (M,dN ) is existentially closed and the conclu-
sion of the axiom is true for (H, dN ) replacing ε for ε′ < ε, then the conclusion
of the axiom indexed by ε will hold for (M,dN ).

So let H ⊃ M be such that dim(H ∩ M⊥) = ∞. Let a1, . . . , an+k and
c1, . . . , cn ∈ H be such that tp(ā, c̄/z̄ū) = tp(x̄, ȳ/z̄ū) and āc̄ |̂

z̄ū
M . We can

write ai = a′i + z′i and ci = c′i + u′i for some z′i, u
′
i ∈ M and a′i, c

′
i ∈ M⊥.

By (d) and (e) ‖a′i‖ ≥ η/2 for i ≤ n + k and ‖c′i‖ ≥ η/2 for i ≤ n. Now let
ĉi = c′i + u′i + δ′c′i/‖c′i‖, where δ′ =

√
2ε′(L+ 2).

Let the black points in H be the ones from M plus the points ĉ1, . . . , ĉn.
Now we check that the conclusion of the axiom ψϕ,ε′ holds.

(1) ϕ(ā, c̄, z̄, ū) ≤ f(ε′) since tp(ā, c̄/z̄ū) = tp(x̄, ȳ/z̄ū).

(2) Since ‖ci − ĉi‖ ≤ δ′ and ĉi is black we have dN (ci) ≤ δ′.

(3) We check that the distance from ai to the black set is as prescribed for
i ≤ n. dN (ai) ≤ ‖ai − ĉi‖ ≤ ‖ai − ci‖+ δ′ for i ≤ n.

Also, for i 6= j, i, j ≤ n, using (g2) we prove ‖ai − ĉj‖ ≥ ‖ai − cj‖ − δ′ ≥
‖ai − ci‖ − ε′ − δ′ ≥ ‖ai − ci‖ − 2δ′. Finally by (a) ‖ai − PM (ai)‖2 +
d2
N (PM (ai)) ≥ (‖ai−zi‖−ε′)2 +(dN (zi)−ε′)2 ≥ ‖ai−zi‖2−2Lε′+ε′2 +
d2
N (zi)− 2ε′ + ε′2 and by (g1), we get ‖ai − zi‖2 − 2Lε′ + ε′2 + d2

N (zi)−
2ε′ + ε′2 ≥ ‖ai − ci‖2 − 2Lε′ − 2ε′ ≥ ‖ai − ci‖2 − 4δ′2.

(4) We check that dN (ai) is as desired for i > n. Clearly ‖aj − ĉi‖ ≥ ‖aj −
ci‖ − δ′, so ‖aj − ĉi‖2 ≥ ‖aj − ci‖2 + δ′2 − 2δ′2L and by (h) we get
‖aj − ci‖2 + δ′2 − 4δ′L ≥ ‖aj − zj‖2 + d2

N (zj)− 4δ′L− ε′2 + δ′2 ≥ ‖aj −
zj‖2 + d2

N (zj)− 4δ′L.
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It remains to show that (M,dN ) ⊂ (H, dN ), i.e., the function dN on H
extends the function dN on M . Since we added the black points in the ball of
radius L + 1, we only have to check that for any w ∈ M in the ball of radius
L+ 2, d2

N (w) ≤ ‖w − ĉi‖2 = ‖w − u′i‖2 + ‖c′i + δ′(c′i/‖c′i‖)‖2.

But by (f) d2
N (w) ≤ ‖w− ui‖2 + ‖ci− ui‖2 + ε′2, so it suffices to show that

‖w − ui‖2 + ‖ci − ui‖2 + ε′2 ≤ ‖w − u′i‖2 + ‖c′i‖2 + 2δ′‖c′i‖+ δ′2

By (a) ‖w − u′i‖2 ≥ (‖w − ui‖ − ε′)2 and it is enough to prove that

‖w − ui‖2 + ‖ci − ui‖2 + ε′2 ≤ (‖w − ui‖ − ε′)2 + ‖c′i‖2 + 2δ′‖c′i‖+ δ′2.

But (‖w−ui‖−ε′)2+‖c′i‖2+2δ′‖c′i‖+δ′2 = ‖w−ui‖2−2ε′‖w−ui‖+ε′2+‖c′i‖2+
2δ′‖c′i‖+δ′2 and ‖ci−ui‖2 ≤ ‖ci−u′i‖2+2ε′‖ci−u′i‖+ε′2 = ‖c′i‖2+2ε′‖c′i‖+ε′2.
Thus, after simplifying, we only need to check 2ε′‖w− ui‖+ ε′2 ≤ δ′2 which is
true since 2ε′‖w − ui‖+ ε′2 ≤ 2ε′(2L+ 2) + ε′2 ≤ 4ε′(L+ 2). �X

Theorem 3.5. Assume that (M,dN ) |= TN . Then (M,dN ) is existentially
closed.

Proof. Let (H, dN ) ⊃ (M,dN ) and assume that (H, dN ) is ℵ0-saturated. Let
ψ(x̄, v̄) be a quantifier free LN -formula, where x̄ = (x1, . . . xn+k) and v̄ =
(v1, . . . vl). Suppose that there are a1, . . . , an+k ∈ H \M and e1, . . . el ∈ M
such that (H, dN ) |= ψ(ā, ē) = 0. After enlarging the formula ψ if necessary,
we may assume that ψ(x̄, v̄) = 0 describes the values of dN (xi) for i ≤ n + k,
the values of dN (vj) for j ≤ l and the inner products between those elements.
We may assume that for i ≤ n there is ρ > 0 such that dN (ai) − d(ai, z) ≥
2ρ for all z ∈ M with dN (z) ≤ ρ. Since (H, dN ) is ℵ0-saturated, there are
c1, . . . cn ∈ H such that dN (ai) = ‖ai− ci‖ and dN (ci) = 0. Then d(ci,M) ≥ ρ.
Fix ε > 0, ε < ρ, 1. We may also assume that for i > n, |d2

N (ai) − ‖ai −
PM (ai)‖2 − d2

N (PM (ai))| ≤ ε/2. Also, assume that all points mentioned so
far live in a ball of radius L around the origin. Let b1, . . . , bn+k ∈ M be the
projections of a1, . . . , an+k onto M and let d1, . . . , dn ∈ M be the projections
of c1, . . . , cn onto M . Let ϕ(x̄, ȳ, z̄, ū) = 0 be an L-statement that describes the
inner products between the elements listed and such that ϕ(ā, c̄, b̄, d̄) = 0. Using
the axioms we can find ā′, c̄′ in M such that ϕ(ā′, c̄′, b̄, d̄) ≤ f(ε), dN (c′i) ≤ δ
for i ≤ n, |dN (a′i)−‖a′i− c′i‖| ≤ δ for i ≤ n and |d2

N (ai)−‖ai− bi‖2−d2
N (bi)| ≤

4Lδ, where δ =
√

2ε(L+ 2). Since ε > 0 was arbitrary we get (M,dN ) |=
infx1

. . . infxn+k
ψ(x̄, v̄) = 0. �X

4. Model theoretic analysis of TN

We prove two theorems in this section about the theory TN :

• TN is not NTP2 (so TN is not simple).
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• TN is NSOP1. Therefore, in spite of having a tree property, our theory is
still “close to being simple” in the precise sense of not having the SOP1

tree property.

These results place TN in a very interesting situation in the stability hier-
archy for continuous logic.

Notation 5. We write tp for types of elements in the language L and tpN
for types of elements in the language LN . Similarly we denote by aclN the
algebraic closure in the language LN and by acl the algebraic closure for pure
Hilbert spaces. Recall that for a set A, acl(A) = dcl(A), and this corresponds
to the closure of the space spanned by A (Fact 1.1.1).

Observation 4.1. The theory TN does not have elimination of quantifiers. We
use the characterization of quantifier elimination given in Theorem 8.4.1 from
[8]. Let H1 be a two dimensional Hilbert space, let {u1, u2} be an orthonormal
basis for H1 and let N1 = {0, u0 + 1

4u1} and let d1
N (x) = min{1,dist(x,N1)}.

Then (H1, d
1
N ) |= T0. Let a = u0, b = u0 − 1

4u1 and c = u0 + 1
4u1. Note

that d1
N (b) = 1

2 . Let (H ′1, d
1
N ) ⊃ (H1, d

1
N ) be existentially closed. Now let

H2 be an infinite dimensional separable Hilbert space and let {vi : i ∈ ω}
be an orthonormal basis. Let N2 = {x ∈ H : ‖x − v1‖ = 1

4 , Pspan(v1)(x) =
v1} ∪ {0} and let d2

N (x) = min{1,dist(x,N2)}. Let (H ′2, d
2
N ) ⊃ (H2, d

2
N ) be

existentially closed. Then (span(a), d1
N �span(a)) ∼= (span(v1), d2

N �span(v1)) and
they can be identified say by a function F . But (H ′1, d

1
N ) and (H ′2, d

2
N ) cannot

be amalgamated over this common substructure: if they could, then we would
have dist(F (b), v1 + 1

4vi) = dist(b, v1 + 1
4vi) < 1

2 for some i > 1 and thus
d1
N (b) < 1

2 , a contradiction.

In this case, the main reason for this failure of amalgamation resides in
the fact that (span(a), d1

N �span(a)) ∼= (span(v1), d2
N �span(v1)) is not a model

of T0: informally, the distance values around v1 are determined by an “exter-
nal attractor” (the black point u0 + 1

4u1 or the black ring orthogonal to v1 at
distance 1

4 ) that the subspace (span(a), d1
N �span(a)) simply cannot see. This

violates Axiom (1) in the description of T0. This “noise external to the sub-
structure” accounts for the failure of amalgamation, and ultimately for the lack
of quantifier elimination.

In [6, Corollary 2.6], the authors show that the algebraic closure of the
expansion of a simple structure with a generic subset corresponds to the al-
gebraic in the original language. However, in our setting, the new algebraic
closure aclN (X) does not agree with the old algebraic closure acl(X).

Observation 4.2. The previous construction shows that aclN does not coin-
cide with acl. Indeed, c ∈ aclN (a) \ acl(a) - the set of solutions of the type
tpN (c/a) is {c}, but c /∈ dcl(a) as c /∈ span(a).
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However, models of the basic theory T0 are LN -algebraically closed. The
proof is similar to [6, Proposition 2.6(3)].

Lemma 4.3. Let (M,dN ) |= TN and let A ⊂M be such that A = dcl(A) and
(A, dN �A) |= T0. Let a ∈M . Then a ∈ aclN (A) if and only if a ∈ A.

Proof. Assume a /∈ A. We will show that a /∈ aclN (A). Let a′ |= tp(a/A)
be such that a′ |̂

A
M . Let (M ′, dN ) be an isomorphic copy of (M,dN ) over

A through f : M →A M
′ such that f(a) = a′. We may assume that M ′ |̂

A
M .

Since (A, dN �A) is an amalgamation base (i.e. for any two extensions (Ai, dN �Ai

) of (A, dN �A) (i = 1, 2) there exists an amalgam over (A, dN �A)), (N, dN ) =
(M ⊕AM ′, dN ) |= T0. Let (N ′, dN ) ⊃ (N, dN ) be an existentially closed struc-
ture. Then tpN (a/A) = tpN (a′/A) and therefore a /∈ aclN (A). �X

As TN is model complete, the types in the extended language are determined
by their existential formulas, i.e. formulas of the form inf ȳ ϕ(ȳ, x̄) = 0.

Another difference with the work of Chatzidakis and Pillay is that the
analogue to [6, Proposition 2.5] no longer holds. Let a, b, c be as in Observa-
tion 4.2; notice that (span(a), dN �span(a)) ∼= (span(v1), dN �span(v1)). However,
(H ′1, dN , a) 6≡ (H ′2, dN , v1). Instead, we can show the following weaker version
of that proposition.

Proposition 4.4. Let (M,dN ) and (N, dN ) be models of TN and let A be a
common subset of M and N such that (span(A), dN �span(A)) |= T0. Then

(M,dN ) ≡A (N, dN ).

Proof. Assume that M ∩ N = span(A). Since (span(A), dN �span(A)) |= T0,
it is an amalgamation base and therefore we may consider the free amalgam
(M ⊕span(A) N, dN ) of (M,dN ) and (N, dN ) over (span(A), dN �span(A)). Let
now (E, dN ) be a model of TN extending (M ⊕span(A) N, dN ). By the model
completeness of TN , we have that (M,dN ) ≺ (E, dN ) and (N, dN ) ≺ (E, dN )
and thus (M,dN ) ≡A (N, dN ). �X

4.1. Generic independence

In this section we define an abstract notion of independence and study its
properties.

Fix (U , dN ) |= TN be a κ-universal domain.

Definition 4.5. Let A,B,C ⊂ U be small sets. We say that A is ∗-independent
from B over C and write A |∗^C

B if aclN (A ∪ C) is independent (in the sense
of Hilbert spaces) from aclN (C ∪ B) over aclN (C). That is, A |∗^C

B if for

all a ∈ aclN (A ∪ C), PB∪C(a) = PC(a), where B ∪ C = aclN (C ∪ B) and
C = aclN (C).
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Proposition 4.6. The relation |∗^ satisfies the following properties (here A,
B, etc., are any small subsets of U):

(1) Invariance under automorphisms of U .

(2) Symmetry: A |∗^C
B ⇐⇒ B |∗^C

A.

(3) Transitivity: A |∗^C
BD if and only if A |∗^C

B and A |∗^BC
D.

(4) Countable Character: A |∗^C
B if and onlyA0 |∗^C

B for all A0 ⊂ A count-
able.

(5) Local Character: If ā is any finite tuple, then there is countable B0 ⊆ B
such that ā |∗^B0

B.

(6) Extension property over models of T0. If (C, dN �C) |= T0, then we can
find A′ such that tpN (A/C) = tpN (A′/C) and A′ |∗^C

B.

(7) Existence over models: ā |∗^M
M for any ā.

(8) Monotonicity: āā′ |∗^M
b̄b̄′ implies ā |̂

M
b̄.

Proof. (1) This is clear.

(2) This follows from the fact that independence in Hilbert spaces satisfies
Symmetry (see Proposition 1.1).

(3) This follows from the fact that independence in Hilbert spaces satisfies
Transitivity (see Proposition 1.1).

(4) Clearly A |∗^C
B implies that A0 |∗^C

B for all A0 ⊂ A countable. On
the other hand, assume A0 |∗^C

B for all A0 ⊂ A countable. Let a ∈
aclN (AC), then a ∈ aclN (A0C) for some A0 countable. Since A0 |∗^C

B
we have PB∪C(a) = PC(a). Thus A |∗^C

B.

(5) Local Character: let ā be a finite tuple. Since independence in Hilbert
spaces satisfies local character, there is B1 ⊆ aclN (B) countable such
that ā |∗^B1

B. Now let B0 ⊆ B be countable such that aclN (B0) ⊃ B1.

Then ā |∗^B0
B.

(6) Let C be such that (C, dN �C) |= T0. Let D ⊃ A ∪ C be such that
(D, dN �D) |= T0 and let E ⊃ B ∪ C be such that (E, dN �E) |= T0.
Changing D for another set D′ with tpN (D′/C) = tpN (D/C), we may
assume that the space generated by D′∪E is the free amalgamation of D′

and E over C. By lemma 4.3 D′, E are algebraically closed and D′ |∗^C
B.

(7) This follows from the definition of ∗-independence.
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(8) This follows from the definition of ∗-independence and transitivity for
independence in Hilbert spaces.

�X

Therefore we have a natural independence notion that satisfies many good
properties, but not enough to guarantee the simplicity of TN .

We will show below that the theory TN has both TP2 and NSOP1. This
places it in an interesting area of the stability hierarchy for continuous model
theory: while having the tree property TP2 and therefore lacking the good
properties of NTP2 theories, it still has a quite well-behaved independence
notion |∗^, good enough to guarantee that it does not have the SOP1 tree
property. Therefore, although the theory is not simple, it is reasonably close to
this family of theories.

4.2. TN has the tree property TP2

Theorem 4.7. The theory TN has the tree property TP2.

Proof. We will construct a complete submodel M |= T0 of the monster model,
of density character 2ℵ0 , and a quantifier free formula ϕ(x; y, z) that witnesses
TP2 inside M . Since this model can be embedded in the monster model of TN
preserving the distance to black points, this will show that TN has TP2.

We fix some orthonormal basis of M , listed as

{bi|i < ω} ∪ {cn,i|n, i < ω} ∪ {af |f : ω → ω}.

Also let the “black points” of M consist of the set

N = {af + bn + (1/2)cn,f(n) | n < ω, f : ω → ω} ∪ {0}

and, as usual, define dN (x) as the distance from x to N . This is a model of T0

and thus a submodel of the monster.

Let ϕ(x, y, z) = max{1− dN (x+ y + (1/2)z), dN (x+ y − (1/2)z)}.
Claim 1. For each i, the conditions {ϕ(x, bi, ci,j) = 0 : j ∈ ω} are 2-

inconsistent.

Assume otherwise, so we can find a (in an extension of M) such that dN (a+
bi + (1/2)ci,j) = 0 and dN (a + bi − (1/2)ci,l) = 1 for some j < l. But then
d(a + bi + (1/2)ci,j , a + bi − (1/2)ci,l) = d((1/2)ci,j ,−(1/2)ci,l) =

√
2/2 < 1.

Since a+bi+(1/2)ci,j is a black point, we get that dN (a+bi−(1/2)ci,l) ≤
√

2/2
a contradiction.

Claim 2. For each f the conditions {ϕ(x, bi, ci,f(i)) = 0 : i ∈ ω} are
consistent.
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Indeed fix f and consider af , then by construction dN (af+bn+(1/2)cn,f(n)) =
0 and d(af + bn − (1/2)cn,f(n), af + bn + (1/2)cn,f(n)) = 1, so dN (af + bn −
(1/2)cn,f(n)) ≤ 1.

Now we check the distance to the other points in N . It is easy to see that
d(af + bn − (1/2)cn,f(n), af + bm + (1/2)cm,f(m)) > 1 for m 6= n, d(af + bn −
(1/2)cn,f(n), ag + bk + (1/2)ck,g(k)) > 1 for g 6= f and all indexes k. Finally,

d(af+bn−(1/2)cn,f(n), 0) > 1. This shows that af is a witness for the claim. �X

This stands in sharp contrast with respect to the result by Chatzidakis
and Pillay in the (discrete) first order case. The existence of these incompati-
ble types is rendered possible here by the presence of “euclidean” interactions
between the elements of the basis chosen.

So far we have two kinds of expansions of Hilbert spaces by predicates:
either they remain stable (as in the case of the distance to a Hilbert subspace
as in the previous section) or they are not even TP2.

4.3. TN and the property NSOP1

Chernikov and Ramsey have proved that whenever a first order discrete theory
has an (abstract) independence relation that satisfies the following properties
(for arbitrary models and tuples), then the theory satisfies the NSOP1 property
(see [7, Prop. 5.3]).

• Strong finite character: whenever ā depends on b̄ over M , there is a for-
mula ϕ(x, b̄, m̄) ∈ tp(ā/b̄M) such that every ā′ |= ϕ(x̄, b̄, m̄) depends on
b̄ over M .

• Existence over models: ā |̂
M
M for any ā.

• Monotonicity: āā′ |̂
M
b̄b̄′ implies ā |̂

M
b̄.

• Symmetry: ā |̂
M
b̄ ⇐⇒ b̄ |̂

M
ā.

• Independent amalgamation: c̄0 |̂ M c̄1, b̄0 |̂ M c̄0, b̄1 |̂ M c̄1, b̄0 ≡M b̄1
implies there exists b̄ with b̄ ≡c̄0M b̄0, b̄ ≡c̄1M b̄1.

We prove next that in TN , |̂ ∗ satisfies analogues of these five properties, we
may thereby conclude that TN can be regarded (following an analogy that has
been fruitful for other, lower, levels of the stability hierarchy in the literature)
as a NSOP1 continuous theory.

In what remains of the paper, we prove that TN satisfies these properties.

We focus our efforts in strong finite character and independent amalgama-
tion, the other properties were proved in Proposition 4.6.

We need the following setting:
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Let M be the monster model of TN and A ⊂ M . Fix A with A ⊂ A ⊂ M
be such that A |= T0 and let ā = (a0, . . . , an) ∈ M . We say that (ā, A,B) is
minimal if tp(B/A) = tp(A/A) and for all b̄ ∈M, if tp(b̄/A) = tp(ā/A) then

‖PB(b0)‖+ · · ·+ ‖PB(bn)‖ ≥ ‖PB(a0)‖+ · · ·+ ‖PB(an)‖.

By compactness, for all p ∈ S(A) there is a minimal (ā, A,B) such that ā |= p.

Now let cl0(A) be the set of all x such that for some minimal (ā, A,B),
x = PB(a0) (the first coordinate of ā).

Lemma 4.8. If tp(B/A) = tp(A/A) and x ∈ cl0(A) then x ∈ B.

Proof. Toward a contradiction, assume that x /∈ B. Let C and ā = (a1, . . . , an)
witness x ∈ cl0(A), i.e. (ā, A,C) is minimal and x = PC(a1). We may choose
the previous so that ā |̂

C
B. Then each ai is orthogonal to B over C, so

ai − PC(ai) ⊥ B,

then 0 = PB(ai − PC(ai)) = PB(ai)− PB(PC(ai)), thereby

PB(ai) = PB(PC(ai)).

Thus
‖PB(ai)‖ ≤ ‖PC(ai)‖ for every i. (1)

And since x = PC(a1) /∈ B, we have

‖PB(a1)‖ = ‖PB(PC(a1))‖ = ‖PB(x)‖ < ‖x‖. (2)

Now choose b̄ = (b1, . . . , bn) such that tp(b̄/B) = tp(ā/B) and b̄ |̂
B
C. Then

we also have
tp(b̄/A) = tp(ā/A)

and each bi is orthogonal to C over B. So as above,

‖PC(bi)‖ = ‖PC(PB(bi))‖ = ‖PC(PB(ai))‖ ≤ ‖PC(ai)‖,

by (1). And by (a reasoning analogous to) (2),

‖PC(b1)‖ = ‖PC(PB(b1))‖ = ‖PC(PB(a1))‖ ≤ ‖PB(ai)‖ < ‖x‖ = ‖PC(a1)‖.

Thus
‖PC(b1)‖+ · · ·+ ‖PC(bn)‖ < ‖PC(a1)‖+ · · ·+ ‖PC(an)‖.

This contradicts the choice of ā and C. �X

A direct consequence of the previous lemma is that cl0(A) ⊂ bclN (A) =
∩A⊂B|=TN

B, as cl0(A) belongs to every model of the theory TN .

We now define the essential closure ecl. Let clα+1(A) = cl0(clα(A)) for all
ordinals α, clδ(A) =

⋃
α<δ(clα(A)), and ecl(A) =

⋃
α∈On clα(A).
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Lemma 4.9. For all ā, B,A, if ecl(A) = A then there is b̄ such that tp(b̄/A) =
tp(ā/A) and b̄ |̂

A
B.

Proof. Choose A |= T0 such that A ⊂ A and c̄ such that tp(c̄/A) = tp(ā/A)
and (c̄, A,A) is minimal. Since cl0(A) = A, PA(ci) ∈ A for all i ≤ n (c̄ =
(c0, . . . , cn)), i.e. c̄ |̂

A
A. Now choose b̄ such that tp(b̄/A) = tp(c̄/A) and

b̄ |̂
A
B. Then b̄ is as needed. �X

Corollary 4.10. ecl(A) = aclN (A).

Proof. Clearly aclN (A) ⊂ bclN (A). On the other hand, assume that x /∈
aclN (A). Let B be a model of TN such that A ⊂ B. By Lemma 4.9, we may
assume that x |̂

A
B. Then x /∈ B, so x /∈ bcl(A), so x /∈ ecl(A). �X

Proposition 4.11. Suppose b̄ 6 |∗^A
C, A ⊂ B∩C and (wlog) C = bcl(C). Then

there exists a formula χ ∈ tpN (b̄/C) such that for all ā |= χ, ā 6 |∗^A
C.

Proof. By compactness, we can find ε > 0 such that (letting b̄ = (b0, . . . , bn),
(ā = (a0, . . . , an)),

∀ā |= tpN (b̄/B), ‖PC(a0)‖+ · · ·+ ‖PC(an)‖ ≥ ε+ ‖Pbcl(A)(a0)‖+ · · ·+ ‖Pbcl(A)(an)‖.
(3)

Again by compactness we can find χ ∈ tpN (b̄/B) such that (3) holds when we
replace tpN (b̄/B) by χ and ε by ε/2, that is:

∀ā |= χ, ‖PC(a0)‖+ · · ·+‖PC(an)‖ ≥ ε/2 +‖Pbcl(A)(a0)‖+ · · ·+‖Pbcl(A)(an)‖.
(4)

and in particular ā 6 |∗^A
C, as we wanted. �X

Theorem 4.12. Suppose ecl(A)=A,A ⊂ B,C,B |∗^A
C (i.e. ecl(B) |̂

A
ecl(C)),

ā |∗^A
B, b̄ |∗^A

C and tpN (ā/A)=tpN (b̄/A). Then there is c̄ such that tpN (c̄/B)

= tpN (ā/B), tpN (c̄/C) = tpN (b̄/C) and c̄ |∗^A
BC.

Proof. Wlog ecl(B) = B and ecl(C) = C. By Lemma 4.9 we can find models
A0, A1, B∗ and C∗ of T0 such that Aā ⊂ A0, Ab̄ ⊂ A1, B ⊂ B∗ and C ⊂ C∗,
such that B∗ |∗^A

C∗, A0 |∗^A
B∗ and A1 |∗^A

C∗. We can also find models of
T0, A∗0, A∗1 and D∗ such that A0B

∗ ⊂ A∗0, A1C
∗ ⊂ A∗1 and B∗C∗ ⊂ D∗ and

wlog we may assume that ā and b̄ are chosen so that A∗0 |̂ B∗ D
∗, A∗1 |̂ C∗ D

∗,
and that there is an automorphism F of the monster model fixing A pointwise
such that F (ā) = b̄, F (A0) = A1 and F (A∗0) |̂

A1
A∗1. Notice that now

A0 |̂
A

D∗ and A1 |̂
A

D∗.

We can now find Hilbert spaces A∗, A∗∗0 , A
∗∗
1 and E such that
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(i) E is generated by D∗A∗∗0 A
∗∗
1 ,

(ii) A ⊂ A∗ ⊂ A∗∗0 ∩A∗∗1 , B∗ ⊂ A∗∗0 , C∗ ⊂ A∗∗1 ,

(iii) There are Hilbert space isomorphisms G : A∗∗0 → A∗0 and H : A∗∗1 → A∗1
such that

a) F ◦G � A∗ = H � A∗,

b) G � B∗ = idB∗ , H � C∗ = idC∗ ,

c) G ∪ idD∗ generate an isomorphism

〈A∗∗0 D∗〉 → 〈A∗0D∗〉,

d) H ∪ idD∗ generate an isomorphism

〈A∗∗1 D∗〉 → 〈A∗1D∗〉,

e) F ∪G ∪H generate an isomorphism

〈A∗∗0 A∗∗1 〉 → 〈F (A∗0)A∗1〉.

We can find these because non-dividing independence in Hilbert spaces has
3-existence (the independence theorem holds for types over sets).

Now we choose the “black points” of our model: a ∈ E is black if one of the
following holds:

(i) a ∈ A∗∗0 and G(a) is black,

(ii) a ∈ A∗∗0 and H(a) is black,

(iii) a ∈ D∗ and is black.

Then in E we define the “distance to black” function simply as the real distance.
Then in D∗ there is no change and G and H remain isomorphisms after adding
this structure; D∗, A∗0, A∗1 and F (A∗0) witness this.

So we can assume that E is a submodel of the monster, and letting c̄ =
G−1(a),G witnesses that tpN (c̄/B) = tpN (ā/B) andH witnesses that tpN (c̄/C) =
tpN (b̄/C). We have already seen that A∗ |̂

A
D∗ and thus c̄ |∗^A

BC. �X

We can now conclude: Proposition 4.11 provides the strong finite character
property, and Theorem 4.12 gives independent amalgamation: the tuple c̄ wit-
nesses the property. The other properties are immediate. Therefore, the theory
TN has the NSOP1 property.
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