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Universidad de Costa Rica, San José, Costa Rica

Abstract. The work of Hausel proves that the Bia lynicki-Birula stratifica-
tion of the moduli space of rank two Higgs bundles coincides with its Shatz
stratification. He uses that to estimate some homotopy groups of the moduli
spaces of k-Higgs bundles of rank two. Unfortunately, those two stratifications
do not coincide in general. Here, the objective is to present a different proof
of the stabilization of the homotopy groups of Mk(2, d), and generalize it to
Mk(3, d), the moduli spaces of k-Higgs bundles of degree d, and ranks two
and three respectively, over a compact Riemann surface X, using the results
from the works of Hausel and Thaddeus, among other tools.
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Resumen. El trabajo de Hausel prueba que la estratificación de Bia lynicki-
Birula del espacio moduli de fibrados de Higgs de rango dos coincide con
su estratificación de Shatz. Él usa este hecho para calcular algunos grupos
de homotoṕıa del espacio moduli de k-fibrados de Higgs de rango dos. De-
safortunadamente, estas dos estratificaciones no coinciden en general. Aqúı, el
objetivo es presentar una prueba diferente de la estabilización de los grupos
de homotoṕıa de Mk(2, d), y generalizarla a Mk(3, d), los espacios moduli de
k-fibrados de Higgs de grado d, y rangos dos y tres respectivamente, sobre una
superficie de Riemann compacta X, usando los resultados de los trabajos de
Hausel y Thaddeus, entre otras herramientas.

Palabras y frases clave. Moduli de Fibrados de Higgs, Variaciones de Estructuras
de Hodge, Fibrados Vectoriales.
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10 RONALD A. ZÚÑIGA-ROJAS

1. Introduction

In this work, we estimate some homotopy groups of the moduli spaces of k-
Higgs bundles Mk(r, d) over a compact Riemann surface X of genus g > 2.
This space was first introduced by Hitchin [17]; and then, it was worked by
Hausel [14], where he estimated some of the homotopy groups working the
particular case of rank two, and denoting M∞ = lim

k→∞
Mk as the direct limit

of the sequence.

The co-prime condition GCD(r, d) = 1 implies thatMk(r, d) is smooth. We
shall do the estimate with Higgs bundles of fixed determinant det(E) = Λ ∈ J d,
where J d is the Jacobian of degree d line bundles on X, to ensure that N (r, d)
andM(r, d) are simply connected. DenoteMk

Λ as the moduli space of k-Higgs
bundles with determinant Λ, and M∞Λ = lim

k→∞
Mk

Λ as the direct limit of these

moduli spaces, as before. Hence, the group action π1(Mk
Λ) �πn(M∞Λ ,Mk

Λ) will
be trivial.

Hausel [14] estimates the homotopy groups πn(Mk(2, 1)) using two main
tools: first the coincidence mentioned before between the Bia lynicki-Birula
stratification and the Shatz stratification; and second, the well-behaved em-
beddings Mk(2, 1) ↪→ Mk+1(2, 1). These inclusions are also well-behaved in
general for GCD(r, d) = 1; nevertheless, those two stratifications above men-
tioned do not coincide in general (see for instance [11]).

In this paper, our estimate is based on the embeddings

Mk(r, d) ↪→Mk+1(r, d)

and their good behavior, notwithstanding the non-coincidence between strati-
fications when the rank is r = 3. The paper is organized as follows: in section 2
we recall some facts about vector bundles and Higgs bundles; in section 3, we
present the cohomology ring Hn(Mk); in section 4, we discuss the most rel-
evant results about the cohomology and the homotopy of the moduli spaces
Mk; finally, in section 5, subsection 5.1, we estimate the homotopy groups of
Mk under the assumption that π1(Mk) acts trivially on πn(M∞,Mk), and
hence, in subsection 5.2, we present and prove the main result:

Theorem 1.1. (Corollary 5.14) Suppose the rank is either r = 2 or r = 3, and
GCD(r, d) = 1. Then, for all n exists k0, depending on n, such that

πj
(
Mk

Λ(r, d)
) ∼=−−−−−→ πj (M∞Λ (r, d))

for all k > k0 and for all j 6 n− 1.

2. Preliminary definitions

Let X be a compact Riemann surface of genus g > 2 and let K = T ∗X be the
canonical line bundle of X. Note that, algebraically, X is also a nonsingular
complex projective algebraic curve.
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HOMOTOPY OF M.S. OF K-HIGGS BUNDLES 11

Definition 2.1. A Higgs bundle over X is a pair (E,Φ) where E → X is
a holomorphic vector bundle and Φ: E → E ⊗ K is an endomorphism of E
twisted by K, which is called a Higgs field. Note that Φ ∈ H0(X; End(E)⊗K).

Definition 2.2. For a vector bundle E → X, we denote the rank of E by
rk(E) = r and the degree of E by deg(E) = d. Then, for any smooth bundle
E → X, the slope is defined to be

µ(E) :=
deg(E)

rk(E)
=
d

r
. (1)

A vector bundle E → X is called semistable if µ(F ) 6 µ(E) for any F such that
0 ( F ⊆ E. Similarly, a vector bundle E → X is called stable if µ(F ) < µ(E)
for any nonzero proper subbundle 0 ( F ( E. Finally, E is called polystable if
it is the direct sum of stable subbundles, all of the same slope.

Definition 2.3. A subbundle F ⊂ E is said to be Φ-invariant if Φ(F ) ⊂ F⊗K.
A Higgs bundle is said to be semistable [respectively, stable] if µ(F ) 6 µ(E)
[resp., µ(F ) < µ(E)] for any nonzero Φ-invariant subbundle F ⊆ E [resp.,
F ( E]. Finally, (E,Φ) is called polystable if it is the direct sum of stable
Φ-invariant subbundles, all of the same slope.

Fixing the rank rk(E) = r and the degree deg(E) = d of a Higgs bundle
(E,Φ), the isomorphism classes of polystable bundles are parametrized by a
quasi-projective variety: the moduli spaceM(r, d). Constructions of this space
can be found in the work of Hitchin [17], using gauge theory, or in the work of
Nitsure [23], using algebraic geometry methods.

An important feature ofM(r, d) is that it carries an action of C∗: z·(E,Φ) =
(E, z · Φ). According to Hitchin [17], (M, I, Ω) is a Kähler manifold, where I
is its complex structure and Ω its corresponding Kähler form. Furthermore,
C∗ acts on M biholomorphically with respect to the complex structure I by
the action mentioned above, where the Kähler form Ω is invariant under the
induced action eiθ · (E,Φ) = (E, eiθ · Φ) of the circle S1 ⊂ C∗. Besides, this
circle action is Hamiltonian, with proper momentum map f : M→ R defined
by:

f(E,Φ) =
1

2π
‖Φ‖2L2 =

i

2π

∫
X

tr(ΦΦ∗), (2)

where Φ∗ is the adjoint of Φ with respect to the hermitian metric on E which
provides the Hitchin-Kobayashi correspondence (see Hitchin [17]), and f has
finitely many critical values.

There is another important fact mentioned by Hitchin (see the original
version in Frankel [8], and its application to Higgs bundles in Hitchin [17]): the
critical points of f are exactly the fixed points of the circle action on M.
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12 RONALD A. ZÚÑIGA-ROJAS

If (E,Φ) = (E, eiθΦ) then Φ = 0 with critical value c0 = 0. The correspond-
ing critical submanifold is F0 = f−1(c0) = f−1(0) = N , the moduli space of
semistable bundles. On the other hand, when Φ 6= 0, there is a type of algebraic
structure for Higgs bundles introduced by Simpson [24]: a variation of Hodge
structure, or simply a VHS, for a Higgs bundle (E,Φ) is a decomposition:

E =

n⊕
j=1

Ej such that Φ: Ej → Ej+1 ⊗K for j 6 n− 1 and Φ(En) = 0.

(3)
It has been proved by Simpson [25] that the fixed points of the circle action on
M(r, d), and so, the critical points of f , are these VHS, where the critical values
cλ = f(E,Φ) will depend on the degrees dj of the components Ej ⊂ E. By
Morse theory, we can stratify M in such a way that there is a nonzero critical
submanifold Fλ := f−1(cλ) for each nonzero critical value 0 6= cλ = f(E,Φ)
where (E,Φ) represents a fixed point of the circle action, or equivalently, a
VHS. We then say that (E,Φ) is an (r1, . . . , rn)-VHS, where ∀j, rj = rk(Ej).

Definition 2.4. A holomorphic triple on X is a triple T = (E1, E2, φ) consist-
ing of two holomorphic vector bundles E1 → X and E2 → X and a homomor-
phism φ : E2 → E1, i.e., an element φ ∈ H0(Hom(E2, E1)).

There are certain notions of σ-degree:

degσ(T ) := deg(E1) + deg(E2) + σ · rk(E2),

and σ-slope:

µσ(T ) :=
degσ(T )

rk(E1) + rk(E2)

which give rise to notions of σ-stability of triples. The reader may consult the
works of Bradlow and Garćıa-Prada [5]; Bradlow, Garćıa-Prada and Gothen [6];
and Muñoz, Ortega and Vázquez-Gallo [22] for the details.

With this notions, one can construct:

Nσ = Nσ(r,d) = Nσ(r1, r2, d1, d2),

the moduli space of σ-polystable triples T = (E1, E2, φ) such that rk(Ej) = rj

and deg(Ej) = dj , and

N s
σ = N s

σ(r,d),

the moduli space of σ-stable triples, where (r,d) = (r1, r2, d1, d2) is the type
of the triple T = (E1, E2, φ).

We mention the moduli space Nσ(r1, r2, d1, d2) of σ-stable triples because
they are closely related to some of the critical submanifolds Fλ.
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Definition 2.5. Fix a point p ∈ X, and let OX(p) be the associated line
bundle to the divisor p ∈ Sym1(X) = X. A k-Higgs bundle (or Higgs bundle
with poles of order k) is a pair (E,Φk) where:

E
Φk

−−−→ E ⊗K ⊗OX(kp) = E ⊗K(kp)

and the morphism Φk ∈ H0
(
X,End(E) ⊗ K(kp)

)
is what we call a Higgs

field with poles of order k. The moduli space of k-Higgs bundles of rank r
and degree d is denoted by Mk(r, d). For simplicity, we will suppose that
GCD(r, d) = 1, and so, Mk(r, d) will be smooth.

There is an embedding

ik : Mk(r, d)→Mk+1(r, d)[
(E,Φk)

]
7−→

[
(E,Φk ⊗ sp)

]
where 0 6= sp ∈ H0(X,OX(p)) is a nonzero fixed section of OX(p).

All the results mentioned for M(r, d) hold also for Mk(r, d).

3. Generators for the Cohomology Ring

According to Hausel and Thaddeus [16, (4.4)], there is a universal family
(Ek,Φk) over X ×Mk where{

Ek → X ×Mk(r, d)

Φk ∈ H0
(
End(Ek)⊗ π∗2(K(kp))

)
and from now on, we will refer (Ek,Φk) as a universal k-Higgs bundle. Note that
(Ek,Φk) satisfies the Universal Property : in general, for any family (Fk,Ψk)
over X×M , there is a morphism η : M →Mk such that (IdX ×η)∗(Ek,Φk) =
(Fk,Ψk). It means that, for M =Mk whenever exists (Fk,Ψk) such that

(Ek,Φk)P ∼= (Fk,Ψk)P ∀P = (E,Φk) ∈Mk(r, d),

then, there exists a unique bundle morphism ξ : Fk → Ek such that

Fk Ek

X ×Mk(r, d)

∃!ξ

p1p2

(4)

commutes: p2 = p1 ◦ ξ.
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14 RONALD A. ZÚÑIGA-ROJAS

The universal bundle extends then to the following: if (Ek,Φk) and (Fk,Ψk)
are families of stable k-Higgs bundles parametrized by Mk(r, d), such that
(Ek,Φk)P ∼= (Fk,Ψk)P for all P = (E,Φk) ∈ Mk(r, d), then there is a line
bundle L →Mk(r, d) such that

(Ek,Φk) ∼= (Fk ⊗ π∗2(L),Ψk ⊗ π2),

where π2 : X×Mk(r, d)→Mk(r, d) is the natural projection and the endomor-
phisms satisfy Φk ∼= Ψk⊗π2(σP ) ∼= Ψk,where σP is a section ofX×Mk →Mk.
For more details, see Hausel and Thaddeus [16, (4.2)].

Remark 3.1. Do not confuse π2 with p2 (neither π1 with p1); πj are the
natural projections of the cartesian product, while pj are the bundle surjective
maps:

Ek Fk

X ×Mk(r, d)

p2p1

X Mk(r, d)

π2π1

(5)

If we consider the embedding ik : Mk(r, d)→Mk+1(r, d) for general rank,
we get that:

Proposition 3.2. Let (Ek,Φk) be a universal Higgs bundle. Then:

(IdX × ik)∗(Ek+1) ∼= Ek.

Proof. Note that (
Ek,Φk ⊗ π∗1(sp)

)
→ X ×Mk

is a family of (k + 1)-Higgs bundles on X, where π1 : X ×Mk → X is the
natural projection. So, by the universal property:(

Ek,Φk ⊗ π∗1(sp)
)

= (IdX × ik)∗
(
Ek+1,Φk+1

)
.

�X

Volumen 52, Número 1, Año 2018



HOMOTOPY OF M.S. OF K-HIGGS BUNDLES 15

Consider

Vect(X) :=
{
V → X : V is a top. vector bundle

}/
∼=

the set of equivalence classes of topological vector bundles taken by isomor-
phism between them. Define the operation

[V ]⊕ [W ] : = [V ⊕W ]

and consider the abelian semi-group
(
Vect(X),⊕

)
. Denote by

K0(X) = K
(
Vect(X)

)
:=
{

[V ]− [W ]
}/
∼

the abelian K-group of topological vector bundles on X, where

[V ]− [W ] ∼ [V ⊕ U ]− [W ⊕ U ]

for every topological vector bundle U → X.

Let K1(X) be the odd K-group of X and let

K∗(X) = K0(X)⊕K1(X)

be the K-ring described by Atiyah [2, Chapter II].

In this case, K∗(X) is torsion free since the Riemann surface X is also a
projective algebraic variety. Then, as a consequence of the Künneth Theorem
(see for instance Atiyah [2, Corollary 2.7.15.] or [1, Main Theorem]), there is
an isomorphism: (

K0(X)⊗K0(Mk)
)
⊕
(
K1(X)⊗K1(Mk)

)
∼=

K0(X ×Mk) .
(6)

The reader may see Markman [21] for the details. Furthermore, Markman [21]
chooses bases {x1, ..., x2g} ⊂ K1(X), and {x2g+1, x2g+2} ⊂ K0(X) to get a
total basis

{x1, ..., x2g, x2g+1, x2g+2} ⊂ K∗(X) = K0(X)⊕K1(X)

and, since there is a universal bundle Ek → X ×Mk, we get the Künneth
decomposition:

[Ek] =

2g∑
j=0

xj ⊗ ekj

Revista Colombiana de Matemáticas



16 RONALD A. ZÚÑIGA-ROJAS

where x0 ∈ K0(X) = span{x2g+1, x2g+2}, ek0 ∈ K0(Mk), xj ∈ K1(X), and
ekj ∈ K1(Mk) for j = 1, . . . , 2g. Finally, Markman [21] considers the Chern

classes cj(e
k
i ) ∈ H2j(Mk,Z) for eki ∈ K∗(Mk) and proves the following result:

Theorem 3.3 (Markman [21, Th. 3]). The cohomology ring H∗
(
Mk(r, d),Z

)
is generated by the Chern classes of the Künneth factors of the universal vector
bundle.

4. Preliminary Results

Let ik : Mk ↪→Mk+1 be the embedding given by the tensorization map of the
k-Higgs field (E,Φk) 7−→ (E,Φk ⊗ sp), where sp is a fixed nonzero section of
Lp. We want to prove that the map

πj(ik) : πj
(
Mk(r, d)

)
→ πj

(
Mk+1(r, d)

)
stabilizes as k →∞. But first, we need to present some preliminary results.

Proposition 4.1. Let ik : Mk ↪→ Mk+1 be the embedding above mentioned.
Consider the K-classes eki ∈ K(Mk). Then i∗k

(
cj(e

k+1
i )

)
= cj(e

k
i ).

Proof. By Proposition 3.2, and by the naturality of the Chern classes:

2g∑
j=0

xj ⊗ ekj = [Ek] = [(IdX × ik)∗(Ek+1)] =

2g∑
j=0

xj ⊗ i∗k(ek+1
j ).

We deduce that i∗k
(
ek+1
i

)
= eki and hence i∗k

(
cj(e

k+1
i )

)
= cj(e

k
i ). �X

Corollary 4.2. Let ik : Mk ↪→ Mk+1 be the embedding above mentioned.
Then, the induced cohomology homomorphism i∗k : H∗(Mk+1,Z)� H∗(Mk,Z)
is surjective.

Proof. The result is an immediate consequence of Theorem 3.3 and Proposi-
tion 4.1. �X

Definition 4.3. A gauge transformation is an automorphism of E. Locally, a
gauge transformation g ∈ Aut(E) is a C∞(E)-function with values in GLr(C).
A gauge transformation g is called unitary if g preserves a hermitian inner
product on E. We will denote G as the group of unitary gauge transformations.
Atiyah and Bott [3] denote Ḡ as the quotient of G by its constant central U(1)-
subgroup. We will follow this notation too. Moreover, denote BG and BḠ as
the classifying spaces of G and Ḡ, respectively.

We get the fibration

BU(1)→ BG → BḠ

Volumen 52, Número 1, Año 2018
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of classifying spaces, which splits actually as the product

BG ∼= BU(1)×BḠ.

Then, the generators ofH∗(BG) give generators forH∗(BḠ) and so, BḠ is a free
graded commutative algebra on those generators, since BG is, and consequently,
BḠ is free of torsion. The reader may see Atiyah and Bott [3, Sec. 9.] and Hausel
[14, Chap. 3] for the details.

Let M∞ := lim
k→∞

Mk =

∞⋃
k=0

Mk be the direct limit of the spaces Mk(r, d).

Hausel and Thaddeus [16] prove that:

Theorem 4.4 (Hausel and Thaddeus [16, (9.7)]). The classifying space of Ḡ
is homotopically equivalent to the direct limit of the spaces Mk(r, d):

BḠ ' M∞ = lim
k→∞

Mk.

Assumption 4.5. Unless otherwise stated, from now on, we will assume that
the rank is either r = 2 or r = 3.

Theorem 4.5. H∗
(
Mk(r, d)

)
is torsion free for all k.

Proof. The proof uses the following result of Frankel [8, Corollary 1]:

∀λ F kλ is torsion free ⇔Mk is torsion free.

In fact, the result of Frankel is more general. The specific case of moduli
spaces of Higgs bundles holds because the proper momentum Hitchin map
f(E,Φ) described in (2) is a perfect Morse-Bott function, since we are taking
GCD(r, d) = 1.

In both cases, r = 2 and r = 3, the moduli space of stable vector bundles
corresponds to the first critical submanifold: F0 = f−1(c0) = f−1(0) = N ,
which is indeed torsion free (see Atiyah and Bott [3, Theorem 9.9.]).

When rk(E) = 2, Hitchin notes that the nontrivial critical submanifolds, or
(1, 1)-VHS, are of the form

Fk
d1

=

{
(E,Φk) = (E1 ⊕ E2,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 1,

ϕk
21 : E1 → E2 ⊗K(kp)

}

and F kd1 is isomorphic to the moduli space of σH -stable triples NσH
(1, 1, d̄, d1),

where σH is giving by σH = deg
(
K(kp)

)
= 2g− 2 + k and d̄ = d2 + 2g− 2 + k,

by the map:

(E1 ⊗ E2,Φ
k) 7→ (E2 ⊗K(kp), E1, ϕ

k
21).
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18 RONALD A. ZÚÑIGA-ROJAS

Furthermore, by Hitchin [17], NσH
(1, 1, d̄, d1) is isomorphic to the cartesian

product J d1(X)× Symd̄−d1(X). Hence:

F kd1
∼= J d1(X)× Symd̄−d1(X)

which, by Macdonald [20, (12.3)], is indeed torsion free. When rk(E) = 3, there
are three kinds of nontrivial critical submanifolds:

• (1, 2)-VHS of the form

Fk
d1

=

{
(E,Φk) = (E1 ⊕ E2,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 2,

ϕk
21 : E1 → E2 ⊗K(kp)

}
.

In this case, there are isomorphisms between the (1, 2)-VHS and the moduli
spaces of triples F kd1

∼= NσH(k)(2, 1, d̃1, d̃2), where d̃1 = d2 + 2(2g − 2 + k) and

d̃2 = d1, and where the isomorphism is given by a map similar to the above
mentioned.

By Muñoz, Ortega, Vázquez-Gallo [22, Theorem 4.8. and Lemma 6.1.], when
working with Nσ(2, 1, d̃1, d̃2), they find that either the flip loci S+

σc
is the pro-

jectivization of a bundle of rank r+ = d̃1 − dM − d̃2 over

J dM (X)× J d̃2(X)× Symr+(X)

where dM =
σc + d̃1 + d̃2

3
∈ Z, or the flip loci S−σc

is the projectivization of a

bundle of rank r− = 2dM − d̃1 + g − 1 over

J dM (X)× J d̃2(X)× Symr+(X)

with dM ∈ Z as above. Hence, by Macdonald [20, (12.3)], the flip loci S+
σc

and

S−σc
are free of torsion for σc ∈ I. Therefore, NσH(k)(2, 1, d̃1, d̃2) is also torsion

free, and so is F kd1 .

The fact that NσH(k)(2, 1, d̃1, d̃2) is torsion free since the flip loci are, follows
from the next lemma:

Lemma 4.6. Let M be a complex manifold, and let Σ ⊂ M be a complex
submanifold. Let M̃ be the blow-up of M along Σ. Then

H∗(M̃,Z) ∼= H∗(M,Z)⊕H∗+2(Σ,Z)⊕ · · · ⊕H∗+2n−2(Σ,Z)

where n is the rank of NΣ/M , the normal bundle of Σ in M .

Proof. (Lemma 4.6)
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Let E = P(NΣ/M ) be the projectivized normal bundle of Σ in M , sometimes
called exceptional divisor. The result follows from the fact that the additive
cohomology of the blow-up H∗(M̃,Z), can be expressed as:

H∗(M̃) ∼= π∗H∗(M)⊕H∗(E)/π∗H∗(Σ)

(see for instance Griffiths and Harris [12, Chapter 4.,Section 6.]), and the fact
that H∗(E) is a free module over H∗(Σ) via the injective map π∗ : H∗(Σ) →
H∗(E) with basis

1, c, . . . , cn−1,

where c ∈ H2(E) is the first Chern class of the tautological line bundle along
the fibres of the projective bundle E → Σ (see the general version at Husemoller
[18, Chapter 17.,Theorem 2.5.]). �X

• (2, 1)-VHS of the form

Fk
d2

=

{
(E,Φk) = (E2 ⊕ E1,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(E2) = d2, deg(E1) = d1,

rk(E2) = 2, rk(E1) = 1,

ϕk
21 : E2 → E1 ⊗K(kp)

}
.

By symmetry, similar results can be obtained using the isomorphisms between
the (2, 1)-VHS and the moduli spaces of triples:

F kd2
∼= NσH(k)(1, 2, d̃1, d̃2),

and the dual isomorphisms

NσH(k)(2, 1, d̃1, d̃2) ∼= NσH(k)(1, 2,−d̃2,−d̃1)

between moduli spaces of triples.

• (1, 1, 1)-VHS of the form

Fk
d1d2d3

=

{
(E,Φk) = (E1 ⊕ E2 ⊕ E3,

 0 0 0

ϕk
21 0 0

0 ϕk
32 0

)

∣∣∣∣∣
deg(Ej) = dj ,

rk(Ej) = 1,

ϕij : Ej → Ei ⊗K

}
.

Finally, we know that

F kd1d2d3
∼=−−−−−→ Symm1(X)× Symm2(X)× J d3(X)

(E,Φk) 7→ (div(ϕk21),div(ϕk32), E3),

where mi = di+1 − di + σH , and so, by Macdonald [20, (12.3)] there is nothing
to worry about torsion. �X

Corollary 4.7. There is an isomorphism

lim←−H
∗(Mk,Z) ∼= H∗(M∞,Z) ∼= H∗(BḠ,Z).
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Corollary 4.8. For each n > 0 there is a k0, depending on n, such that

i∗k : Hj(Mk+1,Z)
∼=−−−−−→ Hj(Mk,Z)

is an isomorphism for all k > k0 and for all j 6 n.

By the Universal Coefficient Theorem for Cohomology (see for instance
Hatcher [13, Theorem 3.2. and Corollary 3.3.]), we get

Lemma 4.9. For each n > 0 there is a k0, depending on n, such that

Hj(M∞,Mk;Z) = 0

for all k > k0 and for all j 6 n.

Proof. The embedding ik : Mk(r, d)→Mk+1(r, d) is injective, and by Corol-
lary 4.2 we know that i∗k : Hj(Mk,Z) ← Hj(Mk+1,Z) is surjective for all k.
Hence, by the Universal Coefficient Theorem, we get that the following diagram

Ext
(
Hj−1(Mk),Z

)

Ext
(
Hj−1(Mk+1),Z

)

0 0 0

0 0

(ik∗)∗

0 0

Hj(Mk,Z) Hom
(
Hj(Mk),Z

)

Hj(Mk+1,Z) Hom
(
Hj(Mk+1),Z

)
(ik∗)∗ i∗k

(7)
commutes. By Theorem 4.5 H∗(Mk,Z) is torsion free, and so, by Corollary 4.8,
for all n > 0, there is k0, depending on n, such that

Hj

(
Mk(r, d),Z

) ∼=−−−−−→ Hj

(
Mk+1(r, d),Z

) ∼=−−−−−→ Hj

(
M∞(r, d),Z

)
for all k > k0 and for all j 6 n. Hence

Hj(M∞,Mk;Z) = 0

for all k > k0 and for all j 6 n. �X

Proposition 4.10. For general rank r, denoting Mk =Mk(r, d) for simplic-
ity, and N = N (r, d) as the moduli of stable bundles, the following diagram
commutes

π1(Mk) π1(Mk+1)

π1(N ) π1(N )

∼= ∼=

∼=

=
(8)
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Proof. It is an immediate consequence of the result proved by Bradlow, Garćıa-
Prada and Gothen [7, Proposition 3.2.] using Morse theory. �X

Proposition 4.11. For all k ∈ N, there is an isomorphism between the funda-
mental group ofMk and the fundamental group of the direct limit of the spaces{
Mk(r, d)

}∞
k=0

:

π1(Mk)
∼=−−−−−→ π1(M∞).

Proof. Using the generalization of Van Kampen’s Theorem presented by Ful-
ton [9], and using the fact that Mk ↪→ Mk+1 are embeddings of Defor-
mation Neighborhood Retracts (DNR), i.e. every Mk(r, d) is the image of a
map defined on some open neighborhood of itself and homotopic to the iden-
tity (see for instance Hausel and Thaddeus [16, (9.1)]), we can conclude that
π1

(
lim
k→∞

Mk
)

= lim
k→∞

π1

(
Mk

)
. �X

Remark 4.12. By Atiyah and Bott [3] we have:

π1(N ) ∼= H1(X,Z) ∼= Z2g,

and hence, by Proposition 4.10 and Proposition 4.11,

π1(Mk) ∼= π1(M∞) ∼= Z2g.

We will need the following version of Hurewicz Theorem, presented by
Hatcher [13, Theorem 4.37] (see also James [19]). Hatcher first mentions that,
in the relative case when (X,A) is an (n−1)-connected pair of path-connected
spaces, the kernel of the Hurewicz map

h : πn(X,A)→ Hn(X,A;Z)

contains the elements of the form [γ][f ] − [f ] for [γ] ∈ π1(A). Hatcher defines
π′n(X,A) to be the quotient group of πn(X,A) obtained by factoring out the
subgroup generated by the elements of the form [γ][f ] − [f ], or the normal
subgroup generated by such elements in the case n = 2 when π2(X,A) may
not be abelian, then h induces a homomorphism h′ : π′n(X,A)→ Hn(X,A;Z).
The general form of Hurewicz Theorem presented by Hatcher deals with this
homomorphism.

Theorem 4.13. (Hurewicz Theorem) If (X,A) is an (n−1)-connected pair of
path-connected spaces, with n > 2 and A 6= ∅, then h′ : π′n(X,A)→ Hn(X,A;Z)
is an isomorphism and Hj(X,A;Z) = 0 for j 6 n− 1.

Definition 4.14. The determinant of a vector bundle E → X of rank r is a
line bundle given by the exterior power of the vector bundle. It gives a natural
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map of the form:

det : N −−−−−−−−→ J d

E 7−→ det(E) =

r∧
E

where N = N (r, d) is the moduli space of stable bundles E → X of rank r and
degree d, and J d is the Jacobian of X. Fixing a line bundle Λ → X, Λ ∈ J d,
the fibre NΛ = NΛ(r, d) := det−1(Λ) is the moduli space of stable bundles with
fixed determinant.

Together with the trace, the determinant allows us to define the map

ζ :Mk(r, d) −−−−−−−−→ J d ×H0(X,K(kp))

(E,Φ) 7−→
(
det(E), tr(Φ)

)
and to consider the fibre Mk

Λ(r, d) := ζ−1(Λ, 0) which is the moduli space of
k-Higgs bundles with fixed determinant and trace zero.

There is an important result of Atiyah and Bott [3] that is relevant to
mention here:

Theorem 4.15 (Atiyah and Bott [3, (9.12)]). The moduli space NΛ(r, d) of
stable bundles of fixed determinant Λ, with GCD(r, d) = 1, is simply connected.

Remark 4.16. Some of the results mentioned for the moduli space Mk(r, d)
in this section remain valid for the fixed determinant moduli space Mk

Λ(r, d).
For instance, Theorem 4.7 holds true also for fixed determinant:

M∞Λ (r, d) ' BḠ

(see Hausel and Thaddeus [16]). Nevertheless, Corollary 4.2 does not adapt in
a straightforward way, as we shall see in subsection 5.2.

The moduli space Mk
Λ(r, d) is simply connected because Proposition 4.10

holds also for fixed determinant k-Higgs bundles. So, π1(Mk
Λ) acts trivially on

πn(M∞Λ ,Mk
Λ).

5. Main Results

5.1. General Results

Here, we will concern the moduli spaces Mk(r, d) of k-Higgs bundles, where
the results are true under the condition that π1(Mk) acts trivially on all the
higher relative homotopy groups of the pair

(
M∞,Mk

)
. However, we do not

know if this condition is true or not.

Lemma 5.1. If π1(Mk) acts trivially on πn(M∞,Mk), then for all n > 0
exists k0, depending on n, such that πj(M∞,Mk) = 0 for all k > k0 and for
all j 6 n.
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Proof. The proof proceeds by induction on m ∈ N for 2 6 m 6 n. The first
induction step is trivial because

π1(N ) = π1(M) = π1(Mk) = π1(M∞)

by Proposition 4.10. For m = 2 we need π2(M∞,Mk) to be abelian. Consider
the sequence

π2(M∞)→ π2(M∞,Mk)→ π1(Mk)→ π1(M∞)→ π1(M∞,Mk)→ 0

where π2(M∞) � π2(M∞,Mk) is surjective, π1(Mk)
∼=−−→ π1(M∞) are iso-

morphic, and hence π1(M∞,Mk) = 0. So, π2(M∞,Mk) is a quotient of the
abelian group π2(M∞), and so it is also abelian.

Finally, suppose that the statement is true for all j 6 m− 1 for 2 6 m 6 n.
So, (M∞,Mk) is (m− 1)-connected, i.e.

πj(M∞,Mk) = 0 ∀j 6 m− 1.

For m > 2, by Hurewicz Theorem 4.13,

h′ : π′m(M∞,Mk)
∼=−−−−−→ Hm(M∞,Mk;Z)

is an isomorphism. By Lemma 4.9, there is an integer k0, depending on m, such
that Hm(M∞,Mk;Z) = 0 for all k > k0. Hence, if π1(Mk) acts trivially on
πn(M∞,Mk) for all n ∈ N and for all k ∈ N, then

πm(M∞,Mk) = π′m(M∞,Mk) = 0

finishing the induction process. �X

Corollary 5.2. If π1(Mk) acts trivially on πn(M∞,Mk), then for all n > 0
exists k0,depending on n, such that

πj(Mk)
∼=−−−−−→ πj(M∞)

for all k > k0 and for all j 6 n− 1.

5.2. Fixed determinant case

The main goal here, is to avoid the hypothesis of the trivial action of the
fundamental group on the relative homotopy group: π1(Mk) �πn(M∞,Mk).
So, we want to get the analogue of Lemma 5.1 for Mk

Λ, the moduli space of
k-Higgs bundles with fixed determinant, since Mk

Λ is simply connected. To
do that, we will need the analogue of Corollary 4.2, and then the analogue of
Lemma 4.9 also for Mk

Λ.
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The analogue of Corollary 4.2 forMk
Λ is not immediate. Note that the group

of r-torsion points in the Jacobian:

Γ = Jac(r) :=
{
L→ X line bundle : Lr ∼= OX

}
acts on Mk

Λ(r, d) by tensorization:

(E,Φk) 7→ (E ⊗ L,Φk ⊗ idL).

Hence, Γ acts on H∗(Mk
Λ,Z) for all k. This cohomology splits in a Γ-invariant

part and in a complement which is called by Hausel and Thaddeus [15] the
“variant part”:

H∗(Mk
Λ,Z) = H∗(Mk

Λ,Z)Γ ⊕H∗(Mk
Λ,Z)var. (9)

This decomposition appears in various cohomology calculations, see e.g., Hitchin
[17] for rank two, Gothen [10] for rank three, Hausel [14] also for rank two, Bento
[4] for the explicit calculations for rank two and rank three, and Hausel and
Thaddeus [15] for general rank.

The analogue of Corollary 4.2 forMk
Λ will be obtained for each of the pieces

in the last direct sum (9) separately:

• For H∗(Mk
Λ,Z)Γ:

It follows from the corresponding result for H∗(Mk,Z) because there is a sur-
jection H∗(Mk,Z)� H∗(Mk

Λ,Z)Γ.

Recall that, for general rank r, the moduli space of stable vector bundles
corresponds to the first critical submanifold: F0 = f−1(c0) = f−1(0) = N (r, d).
The group Γ acts trivially on H∗(N ,Z), and there is a surjection

H∗(N ,Z)� H∗(NΛ,Z).

The reader may see Atiyah and Bott [3, Prop. 9.7.] for details.

For the rank r = 2 case, a nontrivial critical submanifold of Mk
Λ(2, 1) is a

so-called (1, 1)-VHS:

Fk
d1

(Λ) =

{
(E,Φk) = (E1 ⊕ E2,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(Ej) = dj , rk(Ej) = 1,

ϕk
21 : E1 → E2 ⊗K(kp),

E1E2 = Λ

}
,

which is a 22g-covering with covering group the 2-torsion points in the Jaco-
bian Γ ∼= (Z2)2g. Hence, the results of Betti numbers presented by Bento [4,
Prop. 2.2.3.] let us conclude the following:

Proposition 5.3. The cohomology map

H∗
(
Symm(X),Z

)
→ H∗

(
F kd1(Λ),Z

)
induced by the Γ-covering F kd1(Λ)→ Symm(X) where m = d2−d1 + 2g−2 +k,

is injective, and its image is the Γ-invariant subgroup H∗
(
F kd1(Λ),Z

)Γ
.
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Corollary 5.4. There exists a surjection

H∗
(
Mk(2, 1),Z

)
� H∗

(
Mk

Λ(2, 1),Z
)Γ
.

When r = 3, the group of 3-torsion points in the Jacobian looks like Γ ∼=
(Z3)2g, and the nontrivial critical submanifolds of Mk

Λ(3, d) are VHS either of
type (1, 2), (2, 1) or (1, 1, 1), where the cohomology of the (1, 2) and (2, 1) VHS
is invariant under the action of Γ, and the (1, 1, 1)-VHS is a 32g-covering of
Symm1(X)× Symm2(X) with covering group Γ ∼= (Z3)2g. Hence:

Proposition 5.5. There is an equality for cohomology rings

H∗
(
F kd1(Λ),Z

)
= H∗

(
F kd1(Λ),Z

)Γ
and H∗

(
F kd2(Λ),Z

)
= H∗

(
F kd2(Λ),Z

)Γ
here

Fk
d1

(Λ) =

{
(E,Φk) = (E1 ⊕ E2,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 2,

ϕk
21 : E1 → E2 ⊗K(kp)

E1E2 = Λ

}

and

Fk
d2

(Λ) =

{
(E,Φk) = (E2 ⊕ E1,

(
0 0

ϕk
21 0

)
)

∣∣∣∣∣
deg(E2) = d2, deg(E1) = d1,

rk(E2) = 2, rk(E1) = 1,

ϕk
21 : E2 → E1 ⊗K(kp)

E2E1 = Λ

}

are the (1, 2) and (2, 1)-VHS of Mk
Λ(3, d) respectively, with

d

3
6 d1 6

d

3
+

2g − 2 + k

2
and

2d

3
6 d2 6

2d

3
+

2g − 2 + k

2
.

Furthermore:

H∗
(
F km1m2

(Λ),Z
)

= H∗
(
F km1m2

(Λ),Z
)Γ ⊕H∗(F km1m2

(Λ),Z
)var

and the cohomology map

H∗
(
Symm1(X)× Symm2(X),Z

)
→ H∗

(
F km1m2

(Λ),Z
)

induced by the Γ-covering F km1m2
(Λ)→ Symm1(X)× Symm2(X) where

Fk
m1m2

(Λ) =

{
(E,Φk) = (E1⊕E2⊕E3,

( 0 0 0

ϕk
21 0 0

0 ϕk
32 0

)
)

∣∣∣∣∣
deg(Ej) = dj , rk(Ej) = 1,

ϕij : Ej → Ei ⊗K(kp)

E1E2E3 = Λ

}

is the (1, 1, 1)-VHS of Mk
Λ(3, d) with mj = dj+1 − dj + 2g− 2 + k, is injective,

and its image is the Γ-invariant subgroup H∗
(
F km1m2

(Λ)
)Γ

.
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Corollary 5.6. There exists a surjection

H∗
(
Mk(3, d),Z

)
� H∗

(
Mk

Λ(3, d),Z
)Γ
.

The reader may see Bento [4], Gothen [10] and also Hausel and Thaddeus
[15] for details. Using the results above, we get:

Lemma 5.7. The induced cohomology homomorphism restricted to the Γ-
invariant cohomology of the moduli spaces of k-Higgs bundles with fixed de-
terminant Λ

i∗k : H∗(Mk+1
Λ (r, d),Z)Γ � H∗(Mk

Λ(r, d),Z)Γ

is surjective.

Proof. It is enough to note that the following diagram

H∗(Mk+1,Z) H∗(Mk,Z)

H∗(Mk+1
Λ ,Z)Γ H∗(Mk

Λ,Z)Γ

i∗k

i∗k (10)

commutes, where the top arrow is surjective by Corollary 4.2, and the descend-
ing arrows are surjective because of Corollary 5.4 and Corollary 5.6. �X

• For H∗(MΛ,Z)var:

First, note that with fixed determinant Λ the critical submanifolds of type (1, 1)
and (1, 1, 1) are r2g-coverings with covering group Γ ∼= (Zr)2g, with r = 2 or
r = 3 (see Bento [4] Prop. 2.2.1. and Lemma 2.4.4.). Furthermore, when r = 3
the cohomology of (1, 2) and (2, 1) critical submanifolds is Γ-invariant. Then,
only the cohomology of (1, 1)-VHS and (1, 1, 1)-VHS split in the Γ-invariant
part and the variant complement, for rank r = 2 and r = 3, respectively.
Hence:

H∗
(
Mk

Λ(2, 1),Z
)var

=

1+dk
2⊕

d1>
1
2

H∗
(
F kd1(Λ)

)var
and

H∗
(
Mk

Λ(3, d),Z
)var

=
⊕

(m1,m2)∈Ωdk

H∗
(
F km1m2

(Λ),Z
)var
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where dk = deg
(
K ⊗ OX(kp)

)
= deg

(
K(kp)

)
= 2g − 2 + k, 1

2 < d1 <
1+dk

2
according to Hitchin [17] for (1, 1)-VHS in rank two, and (m1,m2) ∈ Ωdk where
Mj := E∗jEj+1K(kp), mj := deg(Mj) = dj+1 − dj + dk, and the set of indexes

Ωdk =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dk
m1 + 2m2 < 3dk
m1 + 2m2 ≡ d(3)

}

for (1, 1, 1)-VHS in rank three is described by Bento [4, Prop. 2.3.9.], Gothen
[10, Sec. 3.], Gothen and Zúñiga-Rojas [11, Subsec. 5.1], among others.

There are some results appearing in the work of Bento [4] (Lemma 2.2.4.
and Prop. 2.2.5 forMk

Λ(2, 1) and F kd1(Λ) its (1, 1)-VHS, and Lemma 2.4.4. and

Prop. 2.4.5. for Mk
Λ(3, d) and F km1m2

(Λ) its (1, 1, 1)-VHS) where Bento works
with Hitchin pairs twisted by a general line bundle L of degree deg(L) = dL,
and the following results below correspond to the particular case of k-Higgs
bundles with L = K(kp), and hence dL = dk = 2g − 2 + k.

Lemma 5.8. Let F kd1(Λ) be a (1, 1)-VHS of Mk
Λ(2, 1) and let m = d2 − d1 +

2g − 2 + k. Then

Hj(F kd1(Λ),Z)var 6= 0⇐⇒ j = m.

Proof. See Bento [4, Prop. 2.2.4.]. �X

Lemma 5.9. Let F km1m2
(Λ) be a (1, 1, 1)-VHS of Mk

Λ(3, d). Then

Hi
(
F km1m2

(Λ),Z
)var 6= 0⇐⇒ i = m1 +m2,

where mj = dj+1 − dj + dk.

Proof. See Bento [4, Prop. 2.4.4.]. �X

Then, in both cases, when r = 2 and when r = 3, the cohomology groups
with integer coefficients are torsion free:

• If r = 2, we have just one nonzero component, Hm(F kd1(Λ),Z)var which

is the sum of 22g copies of Hm(Symm(X),Z), since F kd1(Λ)→ Symm(X)
is a (Z2)2g-covering.

• Similarly, if r = 3, the nonzero component is Hm1+m2
(
F km1m2

(Λ),Z
)var

which is the sum of 32g copies of Hm1+m2
(
Symm1(X) × Symm2(X),Z

)
,

since

F km1m2
(Λ)→ Symm1(X)× Symm2(X)

is a (Z3)2g-covering.
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28 RONALD A. ZÚÑIGA-ROJAS

They are torsion free by Macdonald [20, (12.3)]. The reader may consult Bento
[4, Chap. 2] for the details. Hence, we get

Lemma 5.10. Let ik : Mk
Λ ↪→Mk+1

Λ be the embedding given by the tensoriza-
tion map (E,Φk) 7→ (E,Φk ⊗ sp) as above mentioned. Then, the induced coho-
mology homomorphism

i∗k : H∗(Mk+1
Λ ,Z)var � H∗(Mk

Λ,Z)var

is surjective, restricted to the variant complement.

This latter method only works with rank r = 2 or r = 3, but not in general.
The difficulty in calculating H∗(MΛ,Z)var for general rank is explained also
in Hausel and Thaddeus [15].

Finally, we may conclude the following:

Corollary 5.11. Let ik : Mk
Λ ↪→ Mk+1

Λ be the embedding above mentioned.
Then, the induced cohomology homomorphism

i∗k : H∗(Mk+1
Λ ,Z)� H∗(Mk

Λ,Z)

is surjective.

Proof. It is enough to see that the cohomology ofMk
Λ splits in the Γ-invariant

part and the variant complement:

H∗(Mk
Λ,Z) = H∗(Mk

Λ,Z)Γ ⊕H∗(Mk
Λ,Z)var

and so, the result follows from Lemma 5.7 and Lemma 5.10. �X

Lemma 5.12. For all n exists k0, depending on n, such that

Hj(M∞Λ ,Mk
Λ;Z) = 0

for all k > k0 and for all j 6 n.

Theorem 5.13. For all n exists k0, depending on n, such that

πj(M∞Λ ,Mk
Λ) = 0

for all k > k0 and for all j 6 n.

Proof. The proof is quite similar to the proof of Lemma 5.1, using now Corol-
lary 5.11 and Lemma 5.12, and so, we have a new advantage: Mk

Λ is simply
connected, hence the action π1(Mk

Λ) �πn(M∞Λ ,Mk
Λ) is trivial. �X
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Corollary 5.14. For all n there exists k0, depending on n, such that

πj(Mk
Λ)

∼=−−−−−→ πj(M∞Λ )

for all k > k0 and for all j 6 n− 1.
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