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Abstract. This article is devoted to study the existence of weak solutions for
the strongly nonlinear p(x)-elliptic problem{

−∆p(x)(u) = λ|u|q(x)−2u+ f(x, u,∇u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Our technical approach is based on the recent Berkovits topological degree.
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Resumen. Este art́ıculo está dedicado a estudiar la existencia de soluciones
débiles para el problema p(x)-eĺıptico fuertemente no lineal{

−∆p(x)(u) = λ|u|q(x)−2u+ f(x, u,∇u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Nuestro enfoque técnico se basa en el reciente grado topológico de Berkovits.

Palabras y frases clave. Problema eĺıptico fuertemente no lineal, espacios gen-
eralizados de Lebesgue y Sobolev, p(x)-Laplaciano, grado topológico.
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1. Introduction

The study of differential equations and variational problems with nonstandard
p(x)-growth conditions is a new and interesting topic. The specific attention
accorded to such kind of problems is due to their applications in mathematical
physics. More precisely, such equations are used to model phenomenon which
arise in elastic mechanics or electrorheological fluids (sometimes referred to as
”smart fluids”)(see [14, 19]). Many results have been obtained for this kind of
problems, for instance we here cite [3, 4, 5, 8, 9, 10].

We consider the following nonlinear p(x)-elliptic problem{
−∆p(x)(u) = λ|u|q(x)−2u+ f(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(1)

where −∆p(x)(u) = −div(|∇u|p(x)−2∇u), Ω ⊂ RN is a bounded domain,
p(·), q(·) ∈ C(Ω̄) and λ is a real parameter. We assume also that p(·) is log-
Hölder continuous function (in a sense to be precised in section 3 below) and
2 < q− ≤ q(x) ≤ q+ < p− ≤ p(x) ≤ p+ <∞.

For λ = 0 and f independent of ∇u, Fan and Zhang (in [10]) present
several sufficient conditions for the existence of solutions for the problem. Their

discussion is based on the theory of the spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). The

same problem is studied by P.S. Iliaş (in [12]) who discusses sufficient conditions
which allow to use variational and topological methods to prove the existence
of weak solutions.

For f ≡ 0 and p(·) = q(·), X. Fan and et. al. (in [18]) study the eigenvalues
of the problem. The present some sufficient conditions for inf Λ = 0 and for
inf Λ > 0, respectively where Λ is the set of eigenvalues.

R. Alsaedi (in [1]) establishes sufficient conditions for the existence of non-
trivial weak solutions for the following problem:{

−∆p(x)u = λ|u|p(x)−2u+ µ|u|q(x)−2u in Ω,

u = 0 on ∂Ω.

The proofs combine the Ekeland variational principle, the mountain pass the-
orem and energy arguments.

In this paper, we will generalize these works, by proving, under conditions
on the functions p and q and a suitable growth condition of f , the existence
of weak solutions for the problem (1). Our technical approach is based on the
recent Berkovits topological degree.

The paper is divided into four sections. In the second section, we introduce
some classes of mappings of generalized (S+) type and the recent Berkovits
degree. In the third section, some basic properties of variable Lebesgue and
Sobolev spaces and several important properties of p(x)-Laplacian operator
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are presented. Finally, in the fourth section, we give the assumptions and our
main results concerning the weak solutions of problem (1).

2. Classes of mappings and topological degree

Let X be a real separable reflexive Banach space with dual X∗ and with con-
tinuous pairing 〈· , ·〉 and let Ω be a nonempty subset of X. The symbol→ (⇀)
stands for strong (weak) convergence.

Let Y be a real Banach space. We recall that a mapping F : Ω ⊂ X → Y
is bounded, if it takes any bounded set into a bounded set. F is said to be
demicontinuous, if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u). F is said
to be compact if it is continuous and the image of any bounded set is relatively
compact.

A mapping F : Ω ⊂ X → X∗ is said to be of class (S+), if for any (un) ⊂ Ω
with un ⇀ u and limsup〈Fun, un − u〉 ≤ 0, it follows that un → u. F is
said to be quasimonotone , if for any (un) ⊂ Ω with un ⇀ u, it follows that
limsup〈Fun, un − u〉 ≥ 0.

For any operator F : Ω ⊂ X → X and any bounded operator
T : Ω1 ⊂ X → X∗ such that Ω ⊂ Ω1, we say that F satisfies condition (S+)T ,
if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and limsup〈Fun, yn−y〉 ≤ 0,
we have un → u. We say that F has the property (QM)T , if for any (un) ⊂ Ω
with un ⇀ u, yn := Tun ⇀ y, we have limsup〈Fun, y − yn〉 ≥ 0.

Let O be the collection of all bounded open set in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω):={F : Ω→ X∗ |F is bounded, demicontinuous and satifies condition (S+)},
FT,B(Ω):={F : Ω→ X |F is bounded, demicontinuous and satifies condition (S+)T },
FT (Ω):={F : Ω→ X |F is demicontinuous and satifies condition (S+)T },
FB(X) :={F ∈ FT,B(Ḡ) |G ∈ O,T ∈ F1(Ḡ)}.

Here, T ∈ F1(Ḡ) is called an essential inner map to F .

Lemma 2.1. [2, Lemmas 2.2 and 2.4] Suppose that T ∈ F1(Ḡ) is continuous
and S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ Ds, where G
is a bounded open set in a real reflexive Banach space X. Then the following
statements are true:

(i) If S is quasimonotone, then I + SoT ∈ FT (Ḡ), where I denotes the
identity operator.

(ii) If S is of class (S+), then SoT ∈ FT (Ḡ).

Definition 2.2. Let G be a bounded open subset of a real reflexive Banach
space X, T ∈ F1(Ḡ) be continuous and let F, S ∈ FT (Ḡ). The affine homotopy
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H : [0, 1]× Ḡ→ X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]× Ḡ

is called an admissible affine homotopy with the common continuous essential
inner map T .

Remark 2.3. [2] The above affine homotopy satisfies condition (S+)T .

We introduce the topological degree for the class FB(X) due to Berkovits
[2].

Theorem 2.4. There exists a unique degree function

d : {(F,G, h)|G ∈ O, T ∈ F1(Ḡ), F ∈ FT,B(Ḡ), h /∈ F (∂G)} → Z

that satisfies the following properties:

(1) (Existence) if d(F,G, h) 6= 0 , then the equation Fu = h has a solution
in G.

(2) (Additivity) Let F ∈ FT,B(Ḡ). If G1 and G2 are two disjoint open subsets
of G such that h 6∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

(3) (Homotopy invariance) If H : [0, 1] × Ḡ → X is a bounded admissible
affine homotopy with a common continuous essential inner map and h :
[0, 1] → X is a continuous path in X such that h(t) /∈ H(t, ∂G) for all
t ∈ [0, 1], then the value of d(H(t, .), G, h(t)) is constant for all t ∈ [0, 1].

(4) (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

3. Variable Lebesgue and Sobolev spaces and Properties of
p(x)−Laplacian operator

In the sequel, we consider a natural number N and a bounded domain Ω ⊂ RN
with a Lipschitz boundary ∂Ω.

We introduce the setting of our problem with some auxiliary results of the

variable exponent Lebesgue and Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For

convenience, we only recall some basic facts with will be used later, we refer to
[11, 7, 13] for more details.

Denote
C+(Ω̄) = {h ∈ C(Ω̄)| inf

x∈Ω̄
h(x) > 1}.

For any h ∈ C+(Ω̄), we define

h+ := max{h(x), x ∈ Ω̄}, h− := min{h(x), x ∈ Ω̄}.
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For any p ∈ C+(Ω̄) we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u : Ω→ R is measurable and

∫
Ω

|u(x)|p(x) dx < +∞}

endowed with Luxemburg norm

|u|p(x) = inf{λ > 0/ρp(x)(
u

λ
) ≤ 1}.

where

ρp(x)(u) =

∫
Ω

|u(x)|p(x) dx, ∀u ∈ Lp(x)(Ω).

(Lp(x)(Ω), | . |p(x)) is a Banach space [7, Theorem 2.5], separable and reflexive

[7, Corollary 2.7]. Its conjugate space is Lp
′(x)(Ω) where 1/p(x) + 1/p′(x) = 1

for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), Hölder inequality holds
[7, Theorem 2.1]∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′
−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2)

Notice that if (un) and u ∈ Lp(.)(Ω) then the following relations hold true (see
[11])

|u|p(x) < 1(= 1;> 1) ⇔ ρp(x)(u) < 1(= 1;> 1),

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (3)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (4)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (5)

From (3) and (4), we can deduce the inequalities

|u|p(x) ≤ ρp(x)(u) + 1, (6)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (7)

If p1, p2 ∈ C+(Ω̄), p1(x) ≤ p2(x) for any x ∈ Ω̄, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Next, we define the variable exponent Sobolev space W 1,p(x)(Ω) as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω)/|∇u| ∈ Lp(x)(Ω)}.

It is a Banach space under the norm

||u|| = |u|p(x) + |∇u|p(x).
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32 MUSTAPHA AIT HAMMOU, ELHOUSSINE AZROUL & BADR LAHMI

We also define W
1,p(.)
0 (Ω) as the subspace of W 1,p(·)(Ω) which is the closure

of C∞0 (Ω) with respect to the norm || · ||. If the exponent p(·) satisfies the
log-Hölder continuity condition, i.e., there is a constant α > 0 such that for
every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2 one has

|p(x)− p(y)| ≤ α

− log |x− y|
, (8)

then we have the Poincaré inequality (see [15, 16]), i.e., the exists a constant
C > 0 depending only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x),∀u ∈W
1,p(·)
0 (Ω). (9)

In particular, the space W
1,p(.)
0 (Ω) has a norm | · | given by

|u|1,p(x) = |∇u|p(·) for all u ∈W 1,p(x)
0 (Ω),

which is equivalent to || · ||. In addition, we have the compact embedding

W
1,p(.)
0 (Ω) ↪→ Lp(.)(Ω)(see [7]). The space (W

1,p(x)
0 (Ω), | · |1,p(x)) is a Banach

space, separable and reflexive (see [11, 7]). The dual space of W
1,p(x)
0 (Ω), de-

noted W−1,p′(x)(Ω), is equipped with the norm

|v|−1,p′(x) = inf{|v0|p′(x) +

N∑
i=1

|vi|p′(x)},

where the infinimum is taken on all possible decompositions v = v0−divF with
v0 ∈ Lp

′(x)(Ω) and F = (v1, . . . , vN ) ∈ (Lp
′(x)(Ω))N .

Next, we discuss the p(x)−Laplacian operator

−∆p(x)u := −div(|∇u|p(x)−2∇u).

Consider the following functional:

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, u ∈W 1,p(x)

0 (Ω).

We know that (see [6]) J ∈ C1(W
1,p(x)
0 (Ω),R) and the p(x)−Laplacian operator

is the derivative operator of J in the weak sense.

We denote L = J ′ : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω), then

〈Lu, v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx, for all u, v ∈W 1,p(x)
0 (Ω).

Theorem 3.1. [6, Theorem 3.1]

(i) L : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is a continuous, bounded and strictly

monotone operator;

(ii) L is a mapping of class (S+);

(iii) L is a homeomorphism.
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4. Assumptions and Main Results

In this section, we study the strongly nonlinear problem (1) based on the degree
theory in Section 2, where Ω ⊂ RN ,N ≥ 2 is a bounded domain with a Lipschitz
boundary ∂Ω, p ∈ C+(Ω̄) satisfies the log-Hölder continuity condition (8), q ∈
C+(Ω̄), 2 < q− ≤ q(x) ≤ q+ < p− ≤ p(x) ≤ p+ <∞ and f : Ω× R× RN → R
is a real-valued function such that:

(f1) f satisfies the Carathéodory condition, that is, f(., η, ζ) is measurable on
Ω for all (η, ζ) ∈ R × RN and f(x, ., .) is continuous on R × RN for a.e.
x ∈ Ω.

(f2) f has the growth condition

|f(x, η, ζ)| ≤ c(k(x) + |η|r(x)−1 + |ζ|r(x)−1)

for a.e. x ∈ Ω and all (η, ζ) ∈ R × RN , where c is a positive constant,
k ∈ Lp′(x)(Ω), k(x) ≥ 0 and r ∈ C+(Ω̄) with 2 < r− ≤ r(x) ≤ r+ < p−.

Definition 4.1. We say that u ∈W 1,p(x)
0 (Ω) is a weak solution of (1) if∫

Ω

|∇u|p(x)−2∇u∇vdx =

∫
Ω

(λ|u|q(x)−2u+ f(x, u,∇u))vdx, ∀v ∈W 1,p(x)
0 (Ω).

Remark 4.2. Note that
∫

Ω
|∇u|p(x)−2∇u∇vdx = 〈Lu, v〉 as defined in section

2, λ|u|q(x)−2u ∈ Lp′(x)(Ω) and f(x, u,∇u) ∈ Lp′(x)(Ω) under u ∈ W 1,p(x)
0 (Ω)

and the given hypotheses about the exponents p, q and r and condition (f2)
because: k ∈ Lp′(x)(Ω), α(x) = (q(x)− 1)p′(x) ∈ C+(Ω̄) with α(x) < p(x) and
β(x) = (r(x) − 1)p′(x) ∈ C+(Ω̄) with β(x) < p(x). Then, we can conclude by
the continuous embedding, Lp(x) ↪→ Lα(x) and Lp(x) ↪→ Lα(x).

Since v ∈ Lp(x)(Ω), we have (λ|u|q(x)−2u + f(x, u,∇u))v ∈ L1(Ω). Then,
the integral

∫
Ω

(λ|u|q(x)−2u+ f(x, u,∇u))vdx exist.

Lemma 4.3. Under assumptions (f1) and (f2), the operator S : W
1,p(x)
0 (Ω)→

W−1,p′(x)(Ω) setting by

〈Su, v〉 = −
∫

Ω

(λ|u|q(x)−2u+ f(x, u,∇u))vdx, ∀u, v ∈W 1,p(x)
0 (Ω)

is compact.

Proof. Step 1

Let φ : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be the operator defined by

φu(x) := −λ|u(x)|q(x)−2u(x) for u ∈W 1,p(x)
0 (Ω) and x ∈ Ω.
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It is obvious that φ is continuous. We prove that φ is bounded.

For each u ∈W 1,p(x)
0 (Ω), we have by inequalities (6) and (7) that

|φu|p′(x) ≤ ρp′(x)(φu) + 1

=

∫
Ω

|λ|u|q(x)−1|p
′(x) dx+ 1

≤ (|λ|p
′−

+ |λ|p
′+

)ρα(x)(u) + 1

≤ (|λ|p
′−

+ |λ|p
′+

)(|u|α
−

α(x) + |u|α
+

α(x)) + 1.

By the continuous embedding Lp(x) ↪→ Lα(x) and the Poincaré inequality (9)
we have

|φu|p′(x) ≤ const(|u|α
−

1,p(x) + |u|α
+

1,p(x)) + 1.

This implies that φ is bounded on W
1,p(x)
0 (Ω).

Step 2

Let ψ : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be an operator defined by

ψu(x) := −f(x, u,∇u) for u ∈W 1,p(x)
0 (Ω) and x ∈ Ω.

We prove that ψ is bounded and continuous.

For each u ∈ W
1,p(x)
0 (Ω), we have, by the growth condition (f2) and the

inequalities (6) and (7) that

|ψu|p′(x)≤ ρp′(x)(φu) + 1

=

∫
Ω

|f(x, u(x),∇u(x)|p
′(x) dx+ 1

≤ const(ρp′(x)(k) + ρβ(x)(u) + ρβ(x)(∇u)) + 1

≤ const(|k|p
′−

p′(x)+ |k|p
′+

p′(x)+ |u|β
−

β(x) + |u|β
+

β(x) + |∇u|β
−

β(x) + |∇u|β
+

β(x)) + 1.

By the continuous embedding Lp(x) ↪→ Lβ(x) and the Poincaré inequality (9)
we have

|ψu|p′(x) ≤ const(|k|p
′−

p′(x) + |k|p
′+

p′(x) + |u|β
−

1,p(x) + |u|β
+

1,p(x)) + 1.

This implies that ψ is bounded on W
1,p(x)
0 (Ω).

To show that ψ is continuous, let un → u in W
1,p(x)
0 (Ω). Then un → u

and ∇un → ∇u in Lp(x)(Ω). Hence there exist a subsequence (uk) of (un) and
measurable functions h in Lp(x)(Ω) and g in (Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x),
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|uk(x)| ≤ h(x) and |∇uk(x)| ≤ |g(x)|

for a.e. x ∈ Ω and all k ∈ N. Since f satisfies the Carathéodory condition, we
obtain that

f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

It follows from (f2) that

|f(x, uk(x),∇uk(x))| ≤ c(k(x) + |h(x)|r(x)−1 + |g(x)|r(x)−1)

for a.e. x ∈ Ω and for all k ∈ N.

Since
k + |h|r(x)−1 + |g(x)|r(x)−1 ∈ Lp

′(x)(Ω)

and taking into account the equality

ρp′(x)(ψuk − ψu) =

∫
Ω

|f(x, uk(x),∇uk(x))− f(x, u(x),∇u(x))|p
′(x)dx,

the dominated convergence theorem and the equivalence (5) imply that

ψuk → ψu in Lp
′(x)(Ω).

Thus the entire sequence (ψun) converges to ψu in Lp
′(x)(Ω) and then ψ is

continuous.

Step 3

Since the embedding I : W
1,p(x)
0 (Ω)→ Lp(x)(Ω) is compact, it is known that

the adjoint operator I∗ : Lp
′(x)(Ω)→W−1,p′(x)(Ω) is also compact. Therefore,

the compositions I∗oφ and I∗oψ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) are compact.

We conclude that S = I∗oφ+ I∗oψ is compact. This completes the proof. �X

Theorem 4.4. Under assumptions (f1) and (f2), problem (1) has a weak so-

lution u in W
1,p(x)
0 (Ω).

Proof. Let S : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) be as in Lemma 4.3 and L :

W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω), as in section 3.2, given by

〈Lu, v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx, for all u, v ∈W 1,p(x)
0 (Ω).

Then u ∈W 1,p(x)
0 (Ω) is a weak solution of (1) if and only if

Lu = −Su. (10)

Thanks to the properties of the operator L seen in Theorem 3.1 and in view of
Minty-Browder Theorem (see [17], Theorem 26A), the inverse operator
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T := L−1 : W−1,p′(x)(Ω) → W
1,p(x)
0 (Ω) is bounded, continuous and satisfies

condition (S+). Moreover, note by Lemma 4.3 that the operator S is bounded,
continuous and quasimonotone.

Consequently, equation (10) is equivalent to

u = Tv and v + SoTv = 0. (11)

Following the terminology of [17], the equation v + SoTv = 0 is an abstract
Hammerstein equation in the reflexive Banach space W−1,p′(x)(Ω).

To solve equations (11), we will apply the degree theory introduced in sec-
tion 2. To do this, we first claim that the set

B := {v ∈W−1,p′(x)(Ω)|v + tSoTv = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let v ∈ B. Set u := Tv, then |Tv|1,p(x) = |∇u|p(x).

If |∇u|p(x) ≤ 1, then |Tv|1,p(x) is bounded.

If |∇u|p(x) > 1, then we get by, the implication (3), the growth condition
(f2), the Hölder inequality (2), the inequality (7) and the Young inequality, the
estimate

|Tv|p
−

1,p(x) = |∇u|p−p(x)

≤ ρp(x)(∇u)

= 〈Lu, u〉
= 〈v, Tv〉
= −t〈SoTv, Tv〉

= t

∫
Ω

(λ|u|q(x)−2u+ f(x, u,∇u))udx

≤ const(|λ|ρq(x)(u) +

∫
Ω

|k(x)u(x)|dx+ ρr(x)(u) +

∫
Ω

|∇u|r(x)−1|u|dx)

≤ const(|u|q
−

q(x) + |u|q
+

q(x) + |k|p′(x)|u|p(x) + |u|r
−

r(x) + |u|r
+

r(x)

+
1

r′−
ρr(x)(∇u) +

1

r−
ρr(x)(u))

≤ const(|u|q
−

q(x) + |u|q
+

q(x) + |u|p(x) + |u|r
−

r(x) + |u|r
+

r(x) + |∇u|r
+

r(x)).

From the Poincaré inequality (9) and the continuous embedding Lp(x) ↪→ Lq(x)

and Lp(x) ↪→ Lr(x), we can deduct the estimate

|Tv|p
−

1,p(x) ≤ const(|Tv|
q+

1,p(x) + |Tv|1,p(x) + |Tv|r
+

1,p(x)).

It follows that {Tv|v ∈ B} is bounded.
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Since the operator S is bounded, it is obvious from (11) that the set B is
bounded in W−1,p′(x)(Ω). Consequently, there exists R > 0 such that

|v|−1,p′(x) < R for all v ∈ B.

This says that

v + tSoTv 6= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1].

From Lemma 2.1 it follows that

I + SoT ∈ FT (BR(0)) and I = LoT ∈ FT (BR(0)).

Since the operators I, S and T are bounded, I + SoT is also bounded. We
conclude that

I + SoT ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Consider a homotopy H : [0, 1]×BR(0)→W−1,p′(x)(Ω) given by

H(t, v) := v + tSoTv for (t, v) ∈ [0, 1]×BR(0).

Applying the homotopy invariance and normalization property of the degree d
stated in Theorem(2.4), we get

d(I + SoT,BR(0), 0) = d(I,BR(0), 0) = 1

and hence, there exists a point v ∈ BR(0) such that

v + SoTv = 0.

We conclude that u = Tv is a weak solution of (1). This completes the proof.
�X
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[14] M. Ru̇žička, Electrorheological fuids: modeling and mathematical theory,
Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. MR
1810360, 1986 (English).
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