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Descomposición de Gauss del producto de armónicas esféricas

Ricardo Estrada

Louisiana State University, Baton Rouge, USA

Abstract. The product of two homogeneous harmonic polynomials is ho-
mogeneous, but not harmonic, in general. We give formulas for the Gauss
decomposition of the product of two homogeneous harmonic polynomials.
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Resumen. El producto de dos polinomios armónicos y homogéneos es ho-
mogéneo pero no armónico, en general. Damos fórmulas para la descom-
posición de Gauss del producto de dos polinomios armónicos y homogéneos
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1. Introduction

Let us denote byHm the space of homogeneous harmonic polynomials of degree
m in n variables. If the elements of Hm are considered as polynomial functions
in Rn they are called solid harmonics of degree m, while when considered as
functions on the unit sphere S they are called spherical harmonics of degree m.

Any homogeneous polynomial of degree m, p ∈ Pm, can be written in a
unique way as

p (x) =

[[ m/2 ]]∑
j=0

r2jWm−2j (x) , (1)

where Wm−2j ∈ Hm−2j and where as usual r2 = |x|2 =
∑n
i=1 x

2
i . This is the

Gauss decomposition of p. If Yk ∈ Hk and Y′m ∈ Hm then YkY
′
m ∈ Pm+k but
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42 RICARDO ESTRADA

in general it will not belong to Hm+k. The aim of this article is to give the
Gauss decomposition of this product. Indeed, we prove that

YkY
′
m =

k∑
q=0

r2qZm+k−2q , (2)

where the Zm+k−2q ∈ Hm+k−2q are given as(
k

q

) k∑
j=q

(
k − q
j − q

)
B

(m+k−j)
j,q+1 (−1)

j−q
r2j−2qYk

(
xk−j∇j

)
Y′m , (3)

the B
(m+k−j)
j,q+1 being constants, defined in (48), and where Yk

(
xk−j∇j

)
, the

notation employed to denote certain differential operators with polynomial co-
efficients, is explained in Section 2.

Formulas for the Gauss decomposition of the product of spherical harmonics
have attracted the attention of researchers since long ago. In the classic book
of Hobson [13, Sects 52-53] we find the expression of the product of Legendre
polynomials as a sum of Legendre polynomials, which is exactly the Gauss de-
composition of the product of zonal harmonics, explained in Subsection 3.1,
in three variables1. The case n = 2 is even older, since the Gauss decomposi-
tion is nothing but the well known product to sum formulas from elementary
trigonometry,

cos kθ cosmθ =
1

2
cos (k +m) θ +

1

2
cos (k −m) θ , (4)

cos kθ sinmθ =
1

2
sin (k +m) θ +

1

2
sin (k −m) θ , (5)

sin kθ sinmθ = −1

2
cos (k +m) θ +

1

2
cos (k −m) θ . (6)

Interestingly these elementary formulas are the starting point of the method for
solving integral equations on a circle as presented in [7] and a similar method
for solving equations over a sphere could be constructed from the formulas of
the present study.

The plan of the paper is as follows. In Section 2 we explain a rather useful
notation employed to manipulate symmetric tensors and particularly the ex-
pressions that appear in our analysis. The formulas for k = 1 and k = 2 are
given in Section 3; they already find use in the description of zonal harmonics
presented in the Subsection 3.1. The general formula is stated in the Theorem
4.1 of Section 4, where several particular cases are considered. An interesting
identity, corollary of the general formula, is given in the next section, while the

1Hobson gives credit for the formulas to F. E. Neumann, who gave them in his 1878 book
Beiträge zur Theorie der Kugelfunctionen.
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proof of the theorem is presented in Section 6. Finally in Section 7 we apply
our analysis to obtain formulas involving the integrals of the product of three
spherical harmonics2.

Spherical harmonics have been studied in detail for centuries, as one can
see in the texts [3, 10, 16], but we would like to point out the recent interest in
harmonic polynomials in Mathematical Physics as they play a pivotal role in
Stora’s fine notion of divergent amplitudes [14, 18], as well as in several aspects
of the theory of multipoles [5, 15]. The formulas given in this article are of
general interest, but they will be particularly useful in these areas as well as
in Fourier analysis, as needed in Mathematical Physics [1, 2], and in integral
geometry [9].

2. The symmetric algebra

If E is a vector space, we denote by
∨

(E) =
∑∞
N=0

∨
N (E) the symmetric

algebra of E. The space
∨
N (E) is the subspace of ⊗NE = E ⊗ · · · ⊗ E, N

times, consisting of all symmetric tensors.

Notice that there is an operator s : ⊗NE →
∨
N (E) , the symmetrization,

given as

s (v1 ⊗ · · · ⊗ vN ) =
1

n!

∑
σ∈SN

vσ(1) ⊗ · · · ⊗ vσ(N) , (7)

that is, if A = {Ai1···iN }, then

s (A)i1···iN =
1

n!

∑
σ∈SN

Aσ(i1)···σ(iN ) . (8)

The symmetric product of the symmetric tensors T ∈
∨
N (E) and S ∈

∨
M (E)

is given as
T ∨ S = s (T ⊗ S) . (9)

Example 2.1. If T = {ti} and S = {sj} are vectors (tensors of first order)
then T ∨ S is the symmetric matrix (tensor of second order)

(T ∨ S)ij =
1

2
(tisj + tjsi) . (10)

Example 2.2. If T = {tij} while s = {sk} then

(T ∨ S)ijk =
1

3
(tijsk + tjksi + tiksj) . (11)

We denote as TN∨ the symmetric product of T with itself N times.

2It is interesting to observe that, as reported in [13], formulas for the integrals of the
product of three Legendre polynomials have been considered for a long time, as they appear,
without proof, in the 1877 book Spherical Harmonics by Ferrera, a proof being given by J.
C. Adams in 1878.
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44 RICARDO ESTRADA

Example 2.3. If T = {tij} while s = {sk} then

(
T ∨ S2∨

)
ijkl

=
1

6
(tijsksl + tiksjsl + tilsjsk + tjksisl + tjlsisk + tklsisj) .

(12)
Similarly, (

T 2∨
)
ijkl

=
1

3
(tijtjl + tiktjl + tiltjk) . (13)

Our next goal is to show how each homogeneous polynomial of degree N in
n real variables, p ∈ PN (Rn) gives rise to a function in

∨
N (Rn) . Indeed, we

can write

p (x1, . . . , xn) =

n∑
i1=1

· · ·
n∑

iN=1

Ai1···iNxi1 · · ·xiN , (14)

for some symmetric3 tensor
{
Ai1···iN

}
. We can then define p̃ :

∨
N (Rn) → R

(or C) by putting

p̃ ({ti1···iN }) =

n∑
i1=1

· · ·
n∑

iN=1

Ai1···iN ti1···iN . (15)

That is, p̃ ∈ (
∨
N (Rn))

′
.

Example 2.4. A simple example will clarify the idea. If

p (x1, x2, x3, x4, x5) = x2
1x2 + x3x4x5 , (16)

and a = {aijk}5i,j,k=1 ∈
∨

3

(
R5
)

then

p̃ (a) = a112 + a345 . (17)

It is important to observe that the polynomial p can be recovered from p̃
by the simple formula

p (x) = p̃
(
xN∨

)
. (18)

From now on, we shall denote p̃ simply as p since no confusion should arise.

This construction also allow us to construct from a given homogeneous
polynomial p ∈ PN (Rn) several polynomials in two variables x,y ∈ Rn as
follows. Indeed, if 0 ≤ L ≤ N then we can consider the polynomial qL (x,y) =
p
(
xL∨ ∨ y(N−L)∨

)
, and in particular the differential operators

qL (x,∇) = p
(
xL∨ ∨∇(N−L)∨

)
. (19)

Notice that q0 (x,y) = p (x) for all y.

3Naturally there are other non-symmetric tensors that also work.

Volumen 53, Número 1, Año 2019
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Example 2.5. If p = x2
1x2, then q0 (x,∇) = x2

1x2,

q1 (x,∇) =
1

3

(
2x1x2∇1 + x2

1∇2

)
, (20)

and q2 (x,∇) = ∇2
1∇2.

Example 2.6. If p = xk−2
1 x2

2 then

p
(
x ∨∇(k−1)∨

)
=
k − 2

k
x1∇k−3

1 ∇2
2 +

2

k
x2∇k−2

1 ∇2 , (21)

and consequently, if q = xk−2
1 r2 then

q
(
x ∨∇(k−1)∨

)
=
k − 2

k
x1∇k−3

1 ∆ +
2

k
D∇k−2

1 , (22)

where ∆ is the Laplacian and where D is Euler’s operator
∑n
j=1 xj∇j .

From now on we shall simplify the notation by writing

xL∨ ∨∇(N−L)∨ as xL∇N−L, (23)

since no confusion should arise and the formulas can be written in a more
compact way. This is the notation employed in [8] when considering the distri-
butional derivatives of power potentials.

3. The first and second order formulas

Let us start by considering the Gauss decomposition of the product YkY
′
m of

two harmonic polynomials when k = 1. It is enough to consider the case when
Yk = xi for some i. We have the ensuing very simple formula.

Proposition 3.1. If Y′m ∈ Hm, m ≥ 1, then the Gauss decomposition of xiY
′
m

is

xiY
′
m = Wm+1 + r2Wm−1 , (24)

where

Wm+1 = xiY
′
m − r2βm(Y′m),i , Wm−1 = βm(Y′m),i , (25)

and

βm =
1

n+ 2m− 2
. (26)

Proof. Indeed, if we start with the decomposition (24) with Wm±1 ∈ Hm±1

and apply the Laplacian to both sides we immediately obtain (Y′m),1 =
∆
(
r2Wm−1

)
= (n+ 2m− 2)Wm−1, so that (25) follows. �X
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46 RICARDO ESTRADA

Notice, for future reference, that βm can actually be considered as a mero-
morphic function of m.

We can iterate the result of the Proposition 3.1 to obtain the decomposition
of xixjY

′
m if m ≥ 2. Indeed, if we use (24) then

xixjY
′
m = xjWm+1 + r2xjWm−1

= (xjWm+1 − r2βm+1(Wm+1),i) + r2βm+1(Wm+1),i

+ r2xj
(
Wm−1 − r2βm−1(Wm−1),i + r2βm−1(Wm−1),i

)
.

Employing (25) we therefore obtain the following decomposition.

Proposition 3.2. If Y′m ∈ Hm, m ≥ 2, then the Gauss decomposition of
xixjY

′
m is

xixjY
′
m = Zm+2 + r2Zm + r4Zm−2 , (27)

where

Zm+2 = xixjY
′
m

− βm+1r
2(δijY

′
m + xi(Y

′
m),j + xj(Y

′
m),i) + βm+1βmr

4(Y′m),ij , (28)

Zm = βm+1(δijY
′
m + xi(Y

′
m),j + xj(Y

′
m),i)− 2βm+1βm−1r

2(Y′m),ij , (29)

and

Zm−2 = βmβm−1(Y′m),ij . (30)

Consider now the decomposition of the product Y2Y
′
m. The elements of

H2 have the form Y2 =
∑n
i,j=1 aijx

ixj with
∑n
i=1 aii = 0 and therefore the

Proposition 3.2 yields the general formula that follows.

Proposition 3.3. If Y2 ∈ H2, Y
′
m ∈ Hm, m ≥ 2, then the Gauss decomposition

of Y2Y
′
m is

Y2Y
′
m = Zm+2 + r2Zm + r4Zm−2 , (31)

where

Zm+2 =
(
Y2

(
x2
)
− 2βm+1r

2Y2 (x∇) + βm+1βmr
4Y2

(
∇2
))

Y′m , (32)

Zm =
(
2βm+1Y2 (x∇)− 2βm+1βm−1r

2Y2

(
∇2
))

Y′m , (33)

and

Zm−2 = βmβm−1Y2

(
∇2
)
Y′m . (34)

Observe that the formulas of this last proposition do not hold if we try to
decompose the product pY′m with p ∈ P2 \H2. An extremely simple example is
provided by p = r2. A more instructive example is provided by taking p = x2

i ,
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whose decomposition is given in the Proposition 3.2, but which we now show
how to decompose in another way. Indeed, we can write

x2
i = Y2 +

1

n
r2, Y2 =

(
x2
i −

1

n
r2

)
∈ H2 . (35)

Hence x2
iY
′
m = Y2Y

′
m − 1

nr
2Y′m, and the decomposition of Y2Y

′
m follows from

the Proposition 3.3 by observing that

Y2 (x∇)Y′m = xi∇iY′m −
m

n
Y′m , Y2

(
∇2
)

= ∇2
iY
′
m . (36)

Naturally we obtain (28)-(30) with i = j (not summed).

3.1. Zonal Harmonics

Let ζ ∈ S be a fixed unit vector. There exists a unique monic polynomial of
degree m, um, such that

Uζm (ω) = um (ω · ζ) ∈ Hm (S) . (37)

The Uζm and its multiples are the zonal harmonics of degree m, the spherical
harmonics that are constant on circles perpendicular to ζ. The multiples of the
polynomials um are called ultraspherical polynomials, and are actually multiples
of the Chebychev polynomials if n = 2, the Legendre polynomials if n = 3, and
in general of Gegenbauer polynomials for any m [3, 17, 16]. The corresponding
solid harmonics are given as

Uζm (x) = Uζm (rω) = rmum (ω · ζ) = rmum (x · ζ/r) . (38)

Since the polynomials um do not depend on ζ, we may take ζ = (1, 0, . . . , 0) ,
so that x · ζ =x1, and we will do so in the following, employing the simpler
notation Um.

We have u0 (x) = 1, u1 (x) = x, while we encountered u2 in (35) since
U2 = Y2, that is, u2 (x) = x2 − 1/n. We may use the Proposition 3.1 to find
a recursion relation for the um since Um+1 must be the part in the Gauss
decomposition of x1Um that belongs to Hm+1. Therefore,

Um+1 (x) = x1Um − r2βm∇1(Um), (39)

and consequently,

um+1 (x) = xum − βmLm (um) , (40)

where Lm (u) (x1) is given as

∇1

(
rmu

(x1

r

))∣∣∣
r=1

= mx1u (x1) +
(
1− x2

1

)
u′ (x1) . (41)
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48 RICARDO ESTRADA

We should also have that∇1(Um) must be a multiple of Um−1; actually a simple
computation gives

um =
1

βm−1m (n+m− 3)
Lm (um) , (42)

so that
um+1 (x) = xum −m (n+m− 3)βmβm−1um−1 . (43)

These recursion relations give the expression

um (x) = xm −
(
m

2

)
βm−1x

m−2 (44)

+

(
m

4

)
3βm−1βm−2x

m−4 −
(
m

6

)
3 · 5βm−1βm−2βm−2x

m−6 + · · · .

A particularly important multiple of the zonal harmonic Uζm (ω) is Z (ζ, ω) ,
the reproducing kernel of the finite dimensional Hilbert space Hm (S) with the
L2 inner product [3, Thm. 5.38], and is given as Z (ζ, ω) = cum (ω · ζ) , where
c = (m!βmβm−1 · · ·β1)−1 :

Z (ζ,x) =
1

βm

[[ m/2 ]]∑
q=0

(−1)
q n (n+ 2) · · · (n+ 2m− 2q − 4)

2qq! (m− 2q)!
(x · ζ)

m−2q |x|2q .

(45)

4. The general formula

We shall now give the general formula for the Gauss decomposition of the
product YkY

′
m, k ≤ m, of two harmonic polynomials. We start by defining

several sets and constants that will appear in our formulas.

The sets Bj
q, 1 ≤ q ≤ j+1, are subsets with j elements of {q ∈ Z : |q| ≤ j−1}

defined as

Bj
1 = {j − 1, . . . , 0} , Bj

j+1 = {0, . . . ,− (j − 1)} , (46)

while if 1 < q < j + 1,

Bj
q = {j − q + 1, . . . , j − 2q + 3} ∪ {j − 2q + 1, . . . ,−q + 1} . (47)

For example B2
1 = {1, 0},B2

2 = {1,−1}, and B2
3 = {0,−1} while B3

1 =
{2, 1, 0}, B3

2 = {2, 0,−1}, B3
3 = {1, 0,−2}, and B3

4 = {0,−1,−2}. It would
also be convenient to use the extreme cases B0

1 = ∅, B1
1 = B1

2 = {0}.
The constants B

(t)
j,q are the products

B
(t)
j,q =

∏
l∈Bj

q

βl+t . (48)

Volumen 53, Número 1, Año 2019
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For instance B
(t)
2,1 = βt+1βt, B

(t)
2,2 = βt+1βt−1, and B

(t)
2,3 = βtβt−1. We also

have B
(t)
3,1 = βt+2βt+1βt, B

(t)
3,2 = βt+2βtβt−1, B

(t)
3,3 = βt+1βtβt−2, and B

(t)
3,4 =

βtβt−1βt−2. If j = 0 or 1 we obtain B
(t)
0,1 = 1, B

(t)
1,1 = B

(t)
2,1 = βt.

Theorem 4.1. If Yk ∈ Hk, Y′m ∈ Hm, m ≥ k, then the Gauss decomposition
of YkY

′
mis

YkY
′
m =

k∑
q=0

r2qZm+k−2q, (49)

where the Zm+k−2q ∈ Hm+k−2q are given as

Zm+k−2q (50)

=

(
k

q

) k∑
j=q

(
k − q
j − q

)
B

(m+k−j)
j,q+1 (−1)

j−q
r2j−2qYk

(
xk−j∇j

)
Y′m .

We shall give the proof of the theorem in Section 6. Presently we give
several special cases of the general formula. Indeed, if k = 3 we obtain the
Gauss decomposition of Y3Y

′
m = Zm+3 + r2Zm+1 + r4Zm−1 + r6Zm−3 as

Zm+3 =
(
Y3

(
x3
)
− 3βm+2r

2Y3

(
x2∇

)
(51)

+3βm+2βm+1r
4Y3

(
x∇2

)
− βm+2βm+1βmr

6Y3

(
∇3
))

Y′m ,

Zm+1 =
(
3βm+2Y3

(
x2∇

)
(52)

−6βm+2βmr
2Y3

(
x∇2

)
+ 3βm+2βmβm−1r

4Y3

(
∇3
))

Y′m ,

Zm−1 =
(
3βm+1βmY3

(
x∇2

)
(53)

−3βm+1βmβm−2r
2Y3

(
∇3
))

Y′m ,

Zm−3 = βmβm−1βm−2Y3

(
∇3
)
Y′m . (54)

As another interesting particular case, let us employ the general formula (50)
with Yk replaced with the zonal harmonic Um of (38). We obtain that if m ≥ k
and UkY

′
m =

∑k
q=0 r

2qZm+k−2q then calling αj the coefficients in the expansion
(44),

Zm−k (x) = B
(m)
k,k+1Uk (∇)Y′m (x) (55)

= B
(m)
k,k+1

(
∇k1 + α1∇k−2

1 ∆ + α1∇k−2
1 ∆ + · · ·

)
Y′m (x)

= B
(m)
k,k+1∇

k
1Y
′
m (x) = βmβm−1 · · ·βm−k+1∇k1Y′m (x) .

Revista Colombiana de Matemáticas



50 RICARDO ESTRADA

Similarly,

Zm−k−2 (x) = k(B
(m+1)
k−1,k Uk

(
x∇(k−1)

)
−B(m)

k,k r
2Uk (∇))Y′m (x) ,

and employing the Example 2.6,

Uk
(
x∇(k−1)

)
Y′m (x) = x1∇k−1

1 Y′m (x)− 2α1

k
D
(
∇k−2

1 Y′m (x)
)

= x1∇k−1
1 Y′m (x)− 2α1

k
(m− k + 2)∇k−2

1 Y′m (x) ,

so that

Zm−k−2 (x) = kB
(m+1)
k−1,k x1∇k−1

1 Y′m (x) (56)

− k (k − 1)B
(m+1)
k−1,k (m− k + 2)∇k−2

1 Y′m (x)− kB(m)
k,k r

2∇k1Y′m (x) .

5. An identity for the βm

The fact that (32)-(34) is the Gauss decomposition of Y2Y
′
m implies that we

should have

βm+1βm − 2βm+1βm−1 + βmβm−1 = 0 . (57)

Similarly, (51)-(54) gives

−βm+2βm+1βm + 3βm+2βmβm−1− 3βm+1βmβm−2 + βmβm−1βm−2 = 0. (58)

Both identities are easy to verify directly. Notice also that they will actually
hold for all m ∈ C, since they hold for all large enough integers and the left
side is a rational function of m.

If we employ the general formula given in the Theorem 4.1 we therefore
obtain the ensuing identity.

Proposition 5.1. For all m ∈ C,

k∑
q=0

(
k

q

)
(−1)

k−q
B

(m)
k,q+1 = 0 . (59)

The case k = 4, that follows, should help to clarify the notation:

βm+3βm+2βm+1βm − 4βm+3βm+1βmβm−1 + 6βm+2βm+1βm−1βm−2

− 4βm+1βmβm−1βm−3 + βmβm−1βm−2βm−3 = 0 .
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6. Proof of the Theorem

In this section we give a proof of the Theorem 4.1. We shall proceed by induction
on k. The case k = 1 has already being given in the Proposition 3.1. On
the other hand, it is enough to show that if we assume the formula (50) for
all Yk ∈ Hk then the same formula holds for just one harmonic polynomial
Yk+1 ∈ Hk+1. Indeed, we may invoke the Funk-Hecke formula4 as presented in

[6], since it is clear that if YkY
′
m =

∑k
q=0 r

2qZm+k−2q then

Zm+k−2q =

k∑
j=q

r2j−2qpk,j,q
(
xk−j∨∇j

)
Y′m , (60)

for some polynomials pk,j,q = Pk,j,q (Yk) and the operators Pk,j,q are invariant
under the group SO (n) . Hence

pk,j,q = λk,j,qYk , (61)

for some constants, the same for all Yk ∈ Hk. What this means is that if we
are able to establish the formula for one Yk+1 ∈ Hk+1 then it will hold for all
homogeneous harmonic polynomials of degree k + 1.

We shall take Yk+1 (x) = x1Yk (x̃) where x̃ = (0, x2, . . . , xn) , that is, where
Yk does not depend on x1. This is possible as long as n ≥ 3; the proof when
n = 2 is simpler and will not be presented here. Let m ≥ k + 1 and Y′m ∈ Hm.
The induction hypothesis tells us that the Gauss decomposition of YkY

′
m is

given in (49)-(50). Let us write

Yk+1Y
′
m =

k+1∑
q=0

r2qWm+k+1−2q . (62)

We need to show that the Wm+k−2q are given by the formula corresponding to
(50) applied to Yk+1 instead of Yk. Employing the Proposition 3.1 and (49) we
obtain

Wm+k+1 = x1Zm+k − βm+kr
2∇1Zm+k , Wm−k−1 = βm−k∇1Zm−k , (63)

while for 1 ≤ q ≤ k, Wm+k+1−2q equals

x1Zm+k−2q − βm+k−2qr
2∇1Zm+k−2q + βm+k−2q+2∇1Zm+k−2q+2 . (64)

We immediately obtain the required formula for Wm−k−1, namely:

βm−k∇1(B
(m)
k,k+1Yk

(
∇k
)
Y′m) = B

(m)
k+1,k+2Yk+1

(
∇k+1

)
Y′m . (65)

4This celebrated formula was first given for integral transforms in three variables in [11,
12], and for any number of variables in [4].
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The expression for Wm+k+1 is obtained as follows, where we use (49) and the
fact that ∇1Yk = 0 :

Wm+k+1 = x1

k∑
j=0

(
k

j

)
B

(m+k−j)
j,1 (−1)

j
r2jYk

(
xk−j∇j

)
Y′m

− βm+kr
2

k∑
j=0

(
k

j

)
B

(m+k−j)
j,1 (−1)

j (
2jx1r

2j−2Yk
(
xk−j∇j

)
+r2jYk

(
xk−j∇j

)
∇1

)
Y′m ,

so that Wm+k+1 =
∑k+1
j=0 r

2jpj (x,∇)Y′m. Notice that

p0 = B
(m+k)
0,1 x1Yk

(
xk−j∇j

)
= B

(m+k+1)
0,1 Yk+1

(
∇k+1

)
, (66)

since B
(t)
0,1 = 1 for all t. Also pk+1 is given as

−βm+kB
(m+k)
k,1 (−1)

k Yk
(
∇k
)
∇1 = B

(m+k+1)
k+1,1 (−1)

k+1 Yk+1

(
∇k+1

)
. (67)

When 1 ≤ j ≤ k we obtain

pj (x,∇) = Ajx1Yk
(
xk−j∇j

)
+BjYk

(
xk+1−j∇j−1

)
∇1, (68)

where

Aj =

(
k

j

)
B

(m+k−j)
j,1 (−1)

j −
(
k

j

)
2jβm+kB

(m+k−j)
j,1 (−1)

j

=

(
k

j

)
B

(m+k+1−j)
j,1 (−1)

j
,

since 1− 2jβm+k = βm+k/βm+k−j , and where

Bj = −
(

k

j − 1

)
βm+kB

(m+k−j+1)
j−1,1 (−1)

j
=

(
k

j − 1

)
B

(m+k+1−j)
j,1 (−1)

j
.

But we observe that

Yk+1

(
xk+1−j∇j

)
=
k + 1− j
k + 1

x1Yk
(
xk−j∇j

)
+

j

k + 1
Yk
(
xk+1−j∇j−1

)
∇1 ,

(69)
so that,

pj (x,∇) =

(
k + 1

j

)
B

(m+(k+1)−j)
j,1 (−1)

j Yk+1

(
xk+1−j∇j

)
. (70)

Therefore Wm+k+1 has the required form.

The proof of the formula for Wm+k+1−2q for 1 ≤ q ≤ k is very similar and
consequently will be omitted.
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7. The integral of the product of three spherical harmonics

In this section we shall apply the formulas for the product of harmonic poly-
nomials to obtain identities for integrals of the type∫

S
Yk (ω)Y′m (ω)Y′′l (ω) dσ (ω) , (71)

involving the product of three spherical harmonics Yk ∈ Hk, Y′m ∈ Hm, Y′′l ∈
Hl. Henceforth we will assume that m ≥ k and m ≥ l; naturally the formula
(49) shows that with this restriction we must have l = m + k − 2q for some
q that satisfies k ≥ q ≥ k/2 if the integral is not zero, and in that case the
integral

∫
S Yk (ω)Y′m (ω)Y′′m+k−2q (ω) dσ (ω) equals∫

S
Zm+k−2q (ω)Y′′m+k−2q (ω) dσ (ω) . (72)

Let us start with the case q = k = m, Y′′m+k−2q = 1, the case of the product of
two spherical harmonics of the same order. We obtain∫

S
Ym (ω)Y′m (ω) dσ (ω) =

∫
S
Zm+k−2q (ω) dσ (ω) (73)

= CB
(m)
m,m+1Ym (∇)Y′m (x)

= Cβm · · ·β1

{
Ym,Y

′
m

}
,

where the inner product
{
Ym,Y

′
m

}
is the constant function Ym (∇)Y′m (x)

[10] and C is the area of S, recovering [5, Prop. 3.3].

We can now give a general identity for the integral (71).

Proposition 7.1. Let Yk ∈ Hk, Y′m ∈ Hm, Y′′l ∈ Hl, m ≥ k, m ≥ l. The
integral vanishes unless l = m+ k − 2q, k ≥ q ≥ k/2, and then∫

S
Yk (ω)Y′m (ω)Y′′m+k−2q (ω) dσ (ω) =

(
k

q

)
B

(m+k−q)
k,k+1

∫
S
Xm−q (ω) dσ (ω) ,

(74)
where

Xm−q (ω) = Yk
(
∇qx∇k−qy

) (
Y′m (x)Y′′m+k−2q (y)

)∣∣
x=y=ω

. (75)

Proof. Indeed, the integral in the left of (74) equals (72), so that (50) gives it
as (

k

q

)
B

(m+k−q)
q,q+1

∫
S
Yk
(
xk−q∇q

)
Y′m (x)

∣∣
x=ω

Y′′m+k−2q (ω) dσ (ω) , (76)

and employing (73), we obtain

M
{
Yk
(
xk−q∇q

)
Y′m (x) ,Y′′m+k−2q (x)

}
, (77)
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54 RICARDO ESTRADA

where M =
(
k
q

)
CB

(m+k−q)
q,q+1 B

(m+k−2q)
m+k−2q,m+k−2q+1. But [10] {xip (x) , q (x)} =

{p (x) ,∇iq (x)} , so that the integral becomes

M
{
Yk
(
∇qx∇k−qy

) (
Y′m (x) ,Y′′m+k−2q (y)

)∣∣
x=y

}
, (78)

and thus using (73) again we arrive at (74), since

M

CB
(m−q)
m−q,m−q+1

=
B

(m+k−q)
q,q+1 B

(m+k−2q)
m+k−2q,m+k−2q+1

B
(m−q)
m−q,m−q+1

= B
(m+k−q)
k,k+1 . (79)

�X

We now consider several illustrations of these formulas. If k = 2 and Y2 =
xixj , i 6= j, we obtain for q = 1,∫

S
ωiωjY

′
mY′′m dσ = βm+1βm

∫
S
(∇iY′m∇jY′′m +∇jY′m∇iY′′m) dσ , (80)

and for q = 2,∫
S
ωiωjY

′
mY′′m−2 dσ = βmβm−1

∫
S
(∇i∇jY′m)Y′′m−2 dσ . (81)

On the other hand, the integral
∫
S ω

2
i Y
′
mY′′m dσ can be handled if we use (35);

the result is

βm+1βm

∫
S
(∇iY′m∇iY′′m −

1

n

n∑
l=1

∇jY′m∇jY′′m +
1

n
Y′mY′′m) dσ , (82)

which does not follow if we put i = j in (80). Curiously the result of putting
i = j in (81) yields the correct result∫

S
ω2
i Y
′
mY′′m−2 dσ = βmβm−1

∫
S
(∇2

iY
′
m)Y′′m−2 dσ . (83)

When k= 3 and Y2=xixjxl, i 6= j 6= l 6= i, we obtain that
∫
S ωiωjωlY

′
mY′′m−1 dσ

equals

βm+1βmβm−1

∫
S
(∇i∇jY′m∇lY′′m−1 +∇i∇lY′m∇jY′′m−1 +∇j∇lY′m∇iY′′m−1) dσ ,

(84)
while∫

S
ωiωjωlY

′
mY′′m−3 dσ = βmβm−1βm−2

∫
S
(∇i∇j∇lY′m)Y′′m−3 dσ . (85)
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[4] A. Erdélyi, Die Funksche Integralgleichung der Kugelflächenfunktionen
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Volumen 53, Número 1, Año 2019


