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Abstract. By coding Polish metric spaces with metrics on countable sets, we
propose an interpretation of Polish metric spaces in models of ZFC and extend
Mostowski’s classical theorem of absoluteness of analytic sets for any Polish
metric space in general. In addition, we prove a general version of Shoenfield’s
absoluteness theorem.
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Resumen. Mediante la codificación de espacios polacos con métricas de con-
juntos contables, proponemos una interpretación de espacios métricos polacos
en modelos de ZFC y extendemos el clásico Teorema de Absolutidad (para
conjuntos anaĺıticos) de Mostowski para cualquier espacio métrico polaco en
general. Adicionalmente, probamos una versión general del Teorema de Ab-
solutidad de Shoenfield.
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1. Introduction

Mostowski’s Absoluteness Theorem (also known as Σ1
1 absoluteness) states

that any analytic subset of the Baire space ωω is absolute for transitive mod-
els of ZFC. To be more precise, for any tree T ⊆ (ω × ω)<ω the statement
∃y ∈ ωω((x, y) ∈ [T ]) is absolute (recall that any closed subset of (ω × ω)ω is
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characterized by such a tree, so they code all the analytic subsets). On the
other hand, Shoenfields’s Absoluteness Theorem (also known as Σ1

2 absolute-
ness) states that any Σ1

2 subset of the Baire space is absolute for transitive
models M ⊆ N of ZFC when ωN1 ⊆ M . Since, Π1

n sets are the complements
of Σ1

n sets (for n = 1, 2, . . .), the previous theorems are equivalent to Π1
1 abso-

luteness and Π1
2 absoluteness, respectively.

The Σ1
1 absoluteness theorem was proven by Mostowski [9] in 1959, while

Σ1
2 absoluteness was proven by Shoenfield [10] in 1961,1 though proofs with

modern notation can be found in standard references like [4] and [8]. Although
they are only proved in the context of ωω, the same proof works for the Cantor
space 2ω and for any Polish space of the form

∏
n<ω S(n) with the product

topology where each S(n) is a countable discrete space. The same arguments
seem to be able to be readapted for spaces like R, Rω, or any other standard
Polish spaces.

However, it seems that there is no reference of a general version of these
absoluteness theorems for arbitrary Polish spaces. It may be that mathemati-
cians trust that they can be reproved similarly for each particular Polish space
that comes at hand, so there is no worry to provide general statements. An-
other reason may be that each well known Polish space has a certain shape
that tells how to be interpreted in an arbitrary model of ZFC and standard
ways of interpreting may vary depending on each space.

In this paper the main result is the generalization of Mostowski’s theorem
and Shoenfield’s theorem for any arbitrary Polish space or, more concretely, for
any Polish metric space. To achieve this, we provide a way to code Polish metric
spaces by reals, define how to interpret a Polish metric space with respect to a
given code, and use Solovay-type codes (cf. [11, Sect. II.1]) of analytic and Σ1

2

subsets to be able to state and prove the general theorems.

The proof of our theorems is also a generalization of the original proofs. For a
tree T ⊆ (ω×A)<ω and x ∈ ωω denote T (x) := {t ∈ A<ω : (x�|t|, t) ∈ T}. The
proof of Mostowski’s Absoluteness Theorem indicates that, for any analytic
A ⊆ ωω, we can find a tree T ⊆ (ω × ω)<ω such that, for any x ∈ ωω,
x ∈ A iff the tree T (x) is ill-founded (compare with the first paragraph of
this introduction); the main point of Shoenfield’s theorem is that, for any Σ1

2-
set P ⊆ ωω, there is a tree T̂ ⊆ (ω×ω×ω1)<ω such that, for any x ∈ ωω, x ∈ P
iff the tree T̂ (x) is ill-founded. In the case of the Cantor space 2ω, subtrees of
(2×ω)<ω and (2×ω×ω1)<ω are considered, respectively, in an analogous way.
In our generalizations, for any arbitrary Polish space X, we construct definable
functions Tc from X into the subtrees of ω<ω (see Definition 3.8), and T̂c,ω1

from X into the subtrees of (ω×ω1)<ω (see Definition 4.1), where c is a real that
codes the corresponding Σ1

1 and Σ1
2 sets. We show that, for x ∈ X, x is in the

1Shoenfield [10] also states that Σ1
1 absoluteness follows by Klenne’s characterization of

Π1
1 sets through well-orders (see [6]), plus the absoluteness of the notion of “well-order”.
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Σ1
1 (resp. Σ1

2) subset coded by c iff Tc(x) (resp. T̂c,ω1
(x)) is ill-founded. Hence,

our generalizations of both absoluteness results come from the absoluteness of
the functions Tc and T̂c,ω1 , which we prove accordingly.

One motivation of this paper is the research of forcing preservation results
of definable cardinal characteristics of the continuum and the study of Suslin
ccc posets presented in [1, Sect. 4], in which arbitrary Polish spaces and their
interpretations in forcing extensions play a fundamental role. For instance,
when considering a Suslin ccc poset under an arbitrary Polish space, the forcing
relation of Borel statements can be described by Σ1

2-sets, so we can conclude
its absoluteness by our general theorems.

We discriminate between the terms ‘Polish space’ and ‘Polish metric space’.
A Polish metric space is a separable complete metric space 〈X, d〉 and a Polish
space is a topological space X which is homeomorphic to some Polish metric
space (so note that in the first concept the metric is required). The reason we
differentiate those terms is that we code using countable metric spaces as in [2]
because any Polish metric space is the completion of such a space, so the actual
metric in the Polish (metric) space cannot be ignored. Though this coding is
also introduced in [3, Ch. 14] (a standard reference in this topic), the discussion
there is focused on the Effros Borel space of the universal Urysohn space. Our
preference towards the first coding relies on the practicality to interpret Polish
spaces in models of ZFC through this coding.

We fix additional notation. Given two metric spaces 〈X, d〉 and 〈X ′, d′〉, say
that a function ι : 〈X, d〉 → 〈X ′, d′〉 is an isometry if, for all x, y ∈ X, d(x, y) =
d(f(x), f(y)) (we do not demand an isometry to be onto). Additionally, we say
that ι is an isometrical isomorphism if it is onto, in which case we say that the
metric spaces 〈X, d〉 and 〈X ′, d′〉 are isometrically isomorphic. By a transitive
model of ZFC we actually refer to a transitive model of a large enough finite
part of ZFC to carry the arguments at hand.

We structure this paper as follows. In Section 2 we review some general
aspects about completions of metric spaces, introduce the coding for Polish
metric spaces and look at the complexity of statements concerning these codes.
In Section 3 we define interpretations of codes of Polish metric spaces in tran-
sitive models of ZFC, and we use a well known coding for open and closed
sets to code analytic sets and to state and prove Mostowski’s theorem in its
general version. Finally, in Section 4, we state and prove a general version of
Shoenfield’s Absoluteness Theorem.

2. Coding Polish metric spaces and functions

The contents of this section reviews some quite known facts about completion
of metric spaces and coding of Polish metric spaces. They are presented as a
summary of [7].

Revista Colombiana de Matemáticas
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Let 〈X, d〉 be a metric space. Recall that 〈X∗, d∗, ι〉 is a completion of 〈X, d〉
if 〈X∗, d∗〉 is a complete metric space and ι : 〈X, d〉 → 〈X∗, d∗〉 is a dense isom-
etry, that is, an isometry such that ι[X] is dense in X∗. For our main results,
the dense isometries associated with the completions will play an important
role.

Given a metric space 〈X, d〉 and an isometry ι : 〈X, d〉 → 〈X∗, d∗〉 into
a complete metric space 〈X∗, d∗〉, say that 〈X∗, d∗, ι〉 commutes diagrams of
isometries from 〈X, d〉 if, for any isometry f : 〈X, d〉 → 〈Y, d′〉 into a complete

metric space 〈Y, d′〉, there is a unique continuous function f̂ : 〈X∗, d∗〉 → 〈Y, d′〉
such that f = f̂ ◦ ι. It is well known that 〈X∗, d∗, ι〉 is a completion of 〈X, d〉
iff it commutes diagrams of isometries, even more, such a completion is unique
modulo isometries.

Even more, a completion commutes diagrams of much less than isometries.
Recall that a function f : 〈X, d〉 → 〈Y, d′〉 between metric spaces is Cauchy-
continuous if, for any Cauchy sequence 〈xn〉n<ω in 〈X, d〉, 〈f(xn)〉n<ω is a
Cauchy sequence in 〈Y, d′〉. Though Cauchy-continuity is not equivalent to con-
tinuity in general, whenever f : 〈X, d〉 → 〈Y, d′〉 is a function between metric
spaces with 〈X, d〉 complete, f is continuous iff it is Cauchy-continuous.

Theorem 2.1. Let 〈X0, d0, ι〉 be a completion of the metric space 〈X, d〉 and
let f : 〈X, d〉 → 〈Y, d′〉 be a continuous function into a complete metric space
〈Y, d′〉.

(a) There is at most one continuous function f̂ : X0 → Y such that f = f̂ ◦ ι.

(b) f̂ as in (a) exists iff f is Cauchy-continuous.

(c) If f is Cauchy-continuous, then

(c-1) f̂ is uniformly continuous iff f is.

(c-2) f̂ is an isometry iff f is.

(c-3) f̂ is an isometrical isomorphism iff f is a dense isometry.

(d) If 〈X1, d1, ι1〉 commutes diagrams of isometries from 〈X, d〉, then there is
a unique isometrical isomorphism ι∗ : 〈X0, d0〉 → 〈X1, d1〉 such that ι1 =
ι∗ ◦ ι. In particular, 〈X1, d1, ι1〉 is a completion of 〈X, d〉.

Now we introduce coding for Polish metric spaces. The completion of any
countable metric space is a Polish (metric) space and, conversely, any Polish
space is the completion of some countable metric space. As countable metric
spaces are simple to describe, they can be used to code Polish metric spaces.
Concretely, when d is a metric on η := dom(d) and η is a countable ordinal, we
say that d codes the Polish metric space 〈X, dX〉 if 〈X, dX , ι〉 is a completion
of 〈η, d〉 for some dense isometry ι. When Z is a Polish space, we say that d
codes Z if some (or any) completion of 〈η, d〉 is homeomorphic with Z.
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Example 2.2. (1) If d is a metric on a natural number n, then d only codes
Hausdorff spaces of size n.

(2) The Polish metric space 〈R, dR〉 with the standard metric is coded by dQ
where dQ is the (unique) metric on ω that makes the canonical bijection
ιQ : ω → Q an isometry onto 〈Q, dR�(Q×Q)〉. As a consequence, dQ codes
R as a Polish space.

(3) For S : ω → (ω + 1) r {0} recall the complete metric d∏S on
∏
S =∏

n<ω S(n) given by d∏S(x, y) = 2− inf{n<ω:x(n) 6=y(n)}, which is compatible
with the product topology when each S(n) is discrete. Here, 〈

∏
S, d∏S〉 is

coded by dQS where η = |QS |,2 QS is the set of eventually zero sequences in∏
S and dQS is the (unique) metric on η such that the canonical bijection

ιQS : η → QS is an isometry onto 〈QS , d∏S�(QS ×QS)〉.3

(4) As a particular case of (3), consider ω̄ : ω → {ω} the constant function on
ω. The metric dQω̄ on ω will be used as the standard coding of the Baire
space.

As indicated in Example 2.2(1), metrics on finite sets are trivial as codes for
Polish spaces. Thereafter, we concentrate our work on metrics on ω. Denote by
D(ω) the set of metrics on ω. As D(ω) ⊆ Rω×ω, it is understood that infinite
Polish spaces are coded by reals. Define the order �di on D(ω) as d �di d

′ iff
there is a dense isometry ι : 〈ω, d〉 → 〈ω, d′〉 (‘di’ stands for ‘dense isometry’),
and define the equivalence relation ≈di on D(ω) as d ≈di d

′ iff 〈ω, d〉 and 〈ω, d′〉
have isometrically isomorphic completions.

Lemma 2.3 ([7, Cor. 3.4]). For any d, d′ ∈ D(ω), d ≈di d
′ iff there is a

d∗ ∈ D(ω) such that d, d′ �di d
∗.

The following results compile some features of the coding and their com-
plexity.

Theorem 2.4 ([2, Lemma 4], see also [7, Thm. 3.5]). (a) The family D(ω) of
metrics on ω is Π0

1 in Rω×ω. In particular, D(ω) is a Polish space.

(b) The statement “x is dense in the metric space 〈ω, d〉” is Σ0
2 in 2ω ×Rω×ω.

(c) The statement “g : 〈ω, d〉 → 〈ω, d′〉 is an isometry between metric spaces”
is Π0

1 in ωω × (Rω×ω)2.

(d) The function Img : 2ω×ωω → 2ω defined as Img(x, g) = g[x] is continuous.

(e) The relation �di is Σ1
1 in (Rω×ω)2.

2Note that η is finite iff S(n) = 1 for all but finitely many n.
3Consider QS with the anti-lexicographic order. Since it has order type η, ιQS can be

defined as the (unique) order-isomorphism between both sets.
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(f) The relation ≈di is Σ1
1 in (Rω×ω)2.

Lemma 2.5 ([7, Lemma 3.6]). Let 〈X, d〉 be a metric space and let 〈X∗, d∗, ι〉
be its completion.

(a) If z ∈ X∗ is isolated, then z ∈ ι[X].

(b) x ∈ X is isolated iff ι(x) is isolated in X∗.

(c) X∗ is perfect iff X is perfect.

Corollary 2.6 ([7, Cor. 3.7]). 〈ω, d〉 codes a perfect Polish space iff 〈ω, d〉 is
perfect. Even more, the set

D∗(ω) := {d ∈ D(ω) : 〈ω, d〉 is perfect}

is Π0
2 in Rω×ω, so it is a Polish space.

Recall that every perfect countable metric space is homeomorphic to Q, so
all the codes for Perfect Polish spaces are pairwise homeomorphic. This means
that homeomorphic countable metric spaces do not lead to homeomorphic com-
pletions.

Cantor-Bendixson Theorem (see, e.g., [5, Thm. 6.4]) states that any Polish
space has a unique partition on a perfect set (known as the perfect kernel) and
a countable open set. More generally, any second countable space has a perfect
kernel and its complement is open countable (see [5, Sect. 6.C]). However, the
perfect kernel of a countable metric space does not represent the perfect kernel
of its completion (for an example, see [7, Sect. 3]).

We finish this section with a brief review about codes of homeomorphic
Polish spaces. Define the equivalence relation ≈P on D(ω) by d0 ≈P d1 iff the
completions of 〈ω, d0〉 and 〈ω, d1〉 are homeomorphic. This means that d0 and
d1 code the same Polish space (modulo homeomorphism). The following result
settles the complexity of this equivalence relation.

Theorem 2.7 ([3, Proposition 14.4.2], see also [7, Sect. 4]). The relation ≈P

is Σ1
2 in (Rω×ω)2.

A deeper study about coding Polish spaces and the equivalence relations
≈di and ≈P can be found in [3, Ch. 14].

3. Mostowski’s Absoluteness Theorem

Throughout this section, we fix M ⊆ N transitive models of ZFC. Given a
countable metric space, it is clear that the Polish metric space it codes is inter-
preted in a model as a completion inside the model. Though these completions
are isometrically isomorphic, we do not restrict the concept of interpretation to
a single completion. For this purpose, the dense isometry we deal with is also
relevant.
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Definition 3.1. Let d ∈ D(ω) ∩M . Say that 〈XM
d , (d∗)M , ιMd 〉 is an inter-

pretation in M of the Polish metric space coded by d if it is an object in M
and

M |= “〈XM
d , (d∗)M , ιMd 〉 is a completion of 〈ω, d〉”.

Notation 3.2. Let d ∈ D(ω). We write 〈Xd, d
∗, ιd〉 to refer to an arbitrary

completion of 〈ω, d〉, unless it is explicitly specified. In the same way, if M is a
transitive model of ZFC and d ∈ M , we write 〈XM

d , (d∗)M , ιMd 〉 to refer to an
arbitrary completion of 〈ω, d〉 inside M , unless it is explicitly specified.

When M ⊆ N , the interpretation of a Polish metric space (through some
code) in N is actually a completion of its interpretation in M , as illustrated in
the following result.

Lemma 3.3. Let d ∈ D(ω) ∩M . Then, there is a unique ιM,N
d ∈ N such that

ιNd = ιM,N
d ◦ ιMd and N |=“〈XN

d , (d
∗)N , ιM,N

d 〉 is a completion of 〈XM
d , (d∗)M 〉”.

Proof. Work within N . Choose a completion 〈X∗, d∗, ι∗〉 of 〈XM
d , (d∗)M 〉.

By Theorem 2.1 applied to ι∗ ◦ ιMd , there is an isometrical isomorphism f :

〈X∗, d∗〉 → 〈XN
d , (d

∗)N 〉 such that f ◦ ι∗ ◦ ιMd = ιNd . Put ιM,N
d = f ◦ ι∗. �X

To state Mostowski’s Absoluteness Theorem in full generality, we need to
code analytic sets. For a Polish space X, recall that A ⊆ X is analytic in X
if A is the projection of some closed set C of X × ωω, that is, A = {x ∈ X :
∃y ∈ ωω((x, y) ∈ C)}. As this definition relies on closed sets, we first aim to
code closed and open subsets of a Polish (metric) space.

Definition 3.4. Fix {(k∗n, q∗n) : n < ω} a bijective enumeration of ω ×Q+.

(1) Define BC1 := {c ∈ 2ω : c(0) = 0}.

(2) If d ∈ D(ω) and c ∈ BC1, define the open subset of Xd coded by c (with
respect to d, ιd) as

Op(c) = Opd,ιdXd
(c) :=

⋃
{B〈Xd,d∗〉(ιd(k

∗
n), q∗n) : c(n+ 1) = 1, n < ω}.

Define Cl(c) = Cld,ιdXd
(c) := Xd r Op(c) the closed subset of X∗ coded by c

(with respect to d, ιd).

The previous definition is close to Solovay’s original coding of Borel sets (see
[11, Sect. II.1]). In the case of Definition 3.4(2), note that any open subset of
Xd is coded by some c ∈ BC1, likewise for any closed subset. Though we could
have used all 2ω to code open sets, we use BC1 to allow, as in Solovay’s work,
further definition of BCα ⊆ 2ω for 1 < α < ω1 by recursion so that BCα codes
all the Σ0

α and Π0
α subsets of any Polish metric space. Solovay also proved that

the set BC :=
⋃
α<ω1

BCα of codes of Borel sets is Π1
1 (in an effective way).
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For every x ∈ Xd, there is a sequence 〈ml〉l<ω in ω such that 〈ιd(ml)〉l<ω
converges to x and d(ml,ml+1) < 2−(l+2) for all l < ω. Even more, such a
sequence is always Cauchy in 〈ω, d〉. This fact let us deal with absoluteness of
open and closed sets in a very easy way, as we can see in the following results.

Lemma 3.5. Let (k, q) ∈ ω × Q+, d ∈ D(ω), and let 〈ml〉l<ω be a sequence
in ω such that d(ml,ml+1) < 2−(l+2) for all l < ω. If the sequence 〈ιd(ml)〉l<ω
converges to a point x ∈ Xd, then d∗(x, ιd(k)) < q iff there are an ε ∈ Q+ and
an l < ω such that d(k,ml) < q − 2−(l+1) − ε (even more, the latter holds for
all but finitely many l < ω).

Proof. If d∗(x, ιd(k)) < q, find l′ < ω and ε ∈ Q+ such that d∗(x, ιd(k)) <
q−2−(l′+1)−ε. Now, for all but finitely many l < ω, we have d∗(ιd(ml), ιd(k)) <
q − 2−(l′+1) − ε, so d(k,ml) < q − 2−(l′+1) − ε. Therefore, for all but finitelly
many l (above l′), d∗(k,ml) < q − 2−(l+1) − ε.

Now assume that there are an ε ∈ Q+ and an l∗ < ω such that d(k,ml∗) <
q − 2−(l∗+1) − ε. Then, by induction, it can be proved that d(k,ml) < q −
2−(l+1) − ε for all l ≥ l∗. Therefore, d∗(ιd(k), x) ≤ q − ε. �X

Lemma 3.6. Let c ∈ BC1 ∩M and d ∈ D(ω) ∩M .

(a) If (k, q) ∈ ω ×Q+ then (ιM,N
d )−1[BN

XNd
(ιNd (k), q)] = BM

XMd
(ιMd (k), q).

(b) If c ∈ BC1∩M then (ιM,N
d )−1[OpN (c)] = OpM (c) and (ιM,N

d )−1[ClN (c)] =

ClM (c).

Proof. (a) Let x ∈ XM
d , so there exists a Cauchy sequence 〈ml〉l<ω ∈ M in

〈ω, d〉 such that 〈ιMd (ml)〉l<ω converges to x and d(ml,ml+1) < 2−(l+2)

for all l < ω. Thus, by Lemma 3.5, x ∈ BM
XMd

(ιMd (k), q) iff ιM,N
d (x) ∈

BN
XNd

(ιNd (k), q).

(b) Immediate from (a).

�X

Lemma 3.7. If c ∈ BC1 ∩M and d ∈ D(ω) then, in N , ClN (c) is the closure

of ιM,N
d [ClM (c)] with respect to XN

d .

Proof. It is enough to prove that the statement ‘Op(c)∩Cl(c′) 6= ∅’ in BC1×
BC1 is absolute for transitive models of ZFC. Let T be a set of finite sequences
t such that

(i) |t| ≥ 3, t(0) ∈ Q+ and t(k) ∈ ω for all 0 < k < |t|,

(ii) c(t(1) + 1) = 1,
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(iii) d(k∗t(1), t(2)) < q∗t(1) − 2−1 − t(0),

and, for any 2 ≤ k < |t|,

(iv) d(t(k), t(k + 1)) < 2−k and

(v) for every n < ω, if c′(n+ 1) = 1 then d(k∗n, t(k)) ≥ q∗n − 2−(k−1).

Note that T is a tree in the sense that, whenever t ∈ T and 3 ≤ k < |t|,
t � k ∈ T . Using this tree, it remains to show that ‘Op(c) ∩ Cl(c′) 6= ∅’ is
equivalent to say ‘T has an infinite branch’ (the latter statement is absolute
because it means that T , ordered by ⊇, is not well-founded). First assume
that Op(c) ∩ Cl(c′) 6= ∅, which means that there is some x ∈ Op(c) such that
x /∈ Op(c′). Choose a sequence 〈ml〉l<ω in ω such that 〈ιd(ml)〉l<ω converges
to x and d(ml,ml+1) < 2−(l+2) for all l < ω. As x ∈ Op(c), by Lemma 3.5,
there are some j0 < ω, ε0 ∈ Q+ and l0 < ω such that c(j0 + 1) = 1 and
d(k∗j0 ,ml0) < q∗j0 − 2−(l0+1) − ε0. Wlog we may assume that l0 = 0. On the

other hand, x /∈ Op(c′) implies that d(k∗n,ml) ≥ q∗n− 2−(l+1) for any l < ω and
any n < ω such that c′(n + 1) = 1 (because d∗(x,ml) < 2−(l+1)). Define the
sequence b with domain ω as b(0) := ε0, b(1) := j0 and b(k) := mk−2 for every
k ≥ 2. It is clear that b is a branch in T , that is, b�k ∈ T for any k ≥ 3.

To see the converse, assume that b is a branch in T . Define ml := b(l + 2)
for any l < ω. By (iv), 〈ml : l < ω〉 is a Cauchy-sequence in 〈ω, d〉, so it
converges in Xd to some x, even more, d∗(x, ιd(ml)) < 2−(l+1). Thus, by (iii),
d(x, ιd(k

∗
b(1))) ≤ q

∗
b(1) − b(0) < q∗b(1) so, as c(b(1) + 1) = 1 by (i), x ∈ Op(c). On

the other hand, (v) implies that, whenever c′(n + 1) = 1, d∗(ιd(k
∗
n), x) ≥ q∗n,

that is, x /∈ Op(c′). �X

In the previous proof, the statement ‘Op(c) ∩ Cl(c′) 6= ∅’ is actually Σ1
1 in

BC1×BC1, so its absoluteness should be implied by Mostowski’s Absoluteness
Theorem for the Cantor space (a standard well-known case). Actually, the
argument above relies on the absoluteness of well-foundedness, which is actually
the main point in the proof of Mostowski’s Absoluteness Theorem.

So far we know we can use BC1 to code analytic sets, but still we should
deal with a standard way to code products, or at least products with ωω. Recall
the coding of the Baire space presented in Example 2.2(4). Fix XdQω̄ = ωω,

ιdQω̄ = ιQω̄ and d∗Qω̄ = dωω . According to Notation 3.2, XM
d = ωω ∩M and

ιMdQω̄ = ιdQω̄ , so ιM,N
dQω̄

: ωω ∩ M → ωω ∩ N is the inclusion map. Fix the

canonical bijection i∗ = (i∗0, i
∗
1) : ω → ω×ω. For d ∈ D(ω) let dπ ∈ D(ω) be the

unique metric on ω that makes i∗ an isometry onto 〈ω×ω, d⊗dQω̄ 〉 where (d⊗
dQω̄ )((m0, n0), (m1, n1)) = max{d(m0,m1), dQω̄ (n0, n1)}. Given a completion
〈Xd, d

∗, ιd〉 of 〈ω, d〉, we denote by 〈Xdπ , d
∗
π, ιdπ 〉 the completion of 〈ω, dπ〉 given

by Xdπ = Xd × ωω, d∗π((x0, y0), (x1, y1)) = max{d∗(x0, x1), d∗π(y0, y1)} and
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ιdπ (k) = (ιd(i
∗
0(k)), ιdQω̄ (i∗1(k))). According to Notation 3.2, XM

dπ
= XM

d ×
(ωω ∩M) and ιMdπ = (ιMd ◦ i∗0, ιdQω̄ ◦ i

∗
1), so ιM,N

dπ
= (ιM,N

d , idωω∩M ) (here idA
denotes the identity function on the set A).

Definition 3.8. For c ∈ BC1 and d ∈ D(ω), define

(1) the analytic subset of Xd coded by c (with respect to d, ιd) as An(c) =

And,ιdXd
(c) := {x ∈ Xd : ∃y ∈ ωω((x, y) ∈ Cl

dπ,ιdπ
Xdπ

(c))}, and

(2) Tc = T d,ιdc,Xd
: Xd → P(ω<ω) as

Tc(x) = {t ∈ ω<ω : x ∈ clXd{w ∈ Xd : ∃y ∈ ωω(t ⊆ y

and ((w, y) ∈ Cl
dπ,ιdπ
Xdπ

(c))}}

where clXd denotes the closure operation in Xd.

Clearly, any analytic subset of Xd is of the form An(c) for some c ∈ BC1.
On the other hand, Tc(x) is a tree in ω<ω for any x ∈ Xd and the map Tc is
Borel. The relation between An(c) and Tc is illustrated in the next theorem,
which is sort of a generalization of the tree representation of an analytic set.

Theorem 3.9. Let d ∈ D(ω) and c ∈ BC1. For any x ∈ Xd, x ∈ An(c) iff
Tc(x) is ill-founded.

Proof. If x ∈ An(c) then there is a y ∈ ωω such that (x, y) ∈ Cl(c), so
y�n ∈ Tc(x) for all n < ω. Conversely, assume that x ∈ Xd and Tc(x) is ill-
founded, so there is a y ∈ ωω such that y�n ∈ Tc(x) for all n < ω. By Definition
of Tc(x), there are xn ∈ Xd and yn ∈ ωω such that d∗(x, xn) < 2−n, y�n ⊆ yn
and (xn, yn) ∈ Cl(c). It is clear that the sequence 〈(xn, yn)〉n<ω converges to
(x, y) in Xd × ωω and, as Cl(c) is closed, (x, y) ∈ Cl(c). Thus, x ∈ An(c). �X

To prove our version of Mostowski’s theorem, we deal with the absoluteness
of Tc in the following result.

Lemma 3.10. If d ∈ D(ω) ∩M and c ∈ BC1 ∩M then TNc ◦ ι
M,N
d = TMc .

Proof. Fix x ∈ XM
d and t ∈ ωω. Note that t ∈ TMc (x) iff for all ε ∈ Q+

∃w, y ∈M(w ∈ XM
d , y ∈ ωω, t ⊆ y, (d∗)M (w, x) < ε and (w, y) ∈ ClM (c)).

On the other hand, t ∈ TNc (ιM,N
d (x)) iff for all ε ∈ Q+

∃w′, y′ ∈ N(w′ ∈ XN
d , y

′ ∈ ωω, t ⊆ y′, (d∗)N (w′, ιM,N
d (x)) < ε

and (w′, y′) ∈ ClN (c)).
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It is clear that t ∈ TMc (x) implies t ∈ TNc (ιM,N
d (x)). For the converse, if

ε ∈ Q+ and there are w′ ∈ XN
d and y′ ∈ ωω ∩ N satisfying the state-

ment above for ε
2 , by Lemma 3.7 we can find a (w, y) ∈ ClM (c) such that

t ⊆ y and (d∗)N (ιM,N
d (w), w′) < ε

2 . Therefore (d∗)N (ιM,N
d (w), ιM,N

d (x)) < ε, so

(d∗)M (w, x) < ε. �X

Now, we are ready to prove one of the main results of this paper.

Theorem 3.11 (Mostowki’s Absoluteness Theorem for Polish spaces). If d ∈
D(ω) ∩M and c ∈ BC1 then (ιM,N

d )−1[AnN (c)] = AnM (c).

Proof. Fix x ∈ XM
d . By Theorem 3.9,

(i) x ∈ AnM (c) iff M |=“TMc (x) is ill-founded”, and

(ii) ιM,N
d (x) ∈ AnN (c) iff N |=“TNc (ιM,N

d (x)) is ill-founded”.

By Lemma 3.10, TMc (x) = TNc (ιM,N
d (x)). So, as the ill-foundedness of a tree is

absolute, then x ∈ AnM (c) iff ιM,N
d (x) ∈ AnN (c). �X

As a consequence, the expression ‘d ∈ D(ω)’ is absolute, as well as the
relations ≈di and ≈cdi. Moreover,

Corollary 3.12. All the statements (or sets or relations) in Theorem 2.4 and
Corollary 2.6 are absolute for transitive models of ZFC.

Though the previous corollary could be obtained by versions of Mostowski’s
theorem for (Rω×ω)2 or other similar spaces, Theorem 3.11 validates it imme-
diately with respect to any metric on ω that codes (Rω×ω)2 as a Polish space.

4. Shoenfield’s Absoluteness Theorem

As in the previous section, we fix transitive models M ⊆ N of ZFC and use No-
tation 3.2 to deal with arbitrary completions and interpretations of a countable
metric space.

To state the general version of Shoenfield’s theorem, we first code Σ1
2 sets of

a Polish space. Let d ∈ D(ω). We use the notation presented after Lemma 3.7 to
define the metric dππ := (dπ)π to code Xd×ωω×ωω and ιdππ := ι(dπ)π denotes
the corresponding dense isometry. Note that XM

dππ
= XM

d ×(ωω∩M)×(ωω∩M)

and ιM,N
dππ

= (ιM,N
d , idωω∩M , idωω∩M ).

Fix a bijective enumeration {si : i < ω} of ω<ω such that |si| ≤ i for all
i < ω. If A and B are sets (or even definable classes that may not be sets),
we abuse of the notation to say that (s, t) ∈ (A × B)<ω means s ∈ A<ω,
t ∈ B<ω and |s| = |t|. If T ⊆ (A × B)<ω is a tree and y ∈ Aω, we denote
T (y) := {t ∈ B<ω : (y�|t|, t) ∈ T}.
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Definition 4.1. Let d ∈ D(ω), c ∈ BC1 and let α be either an ordinal or the
class of all ordinals ON. Define

(1) the Σ1
2-subset of Xd coded by c (with respect to d, ιd) as

Pca(c) = Pcaιd,dXd
(c) :=

{x ∈ Xd : ∃y ∈ ωω∀z ∈ ωω((x, y, z) /∈ Cl
dππ,ιdππ
Xdππ

(c))},

(2) the function T̂c := T̂ d,ιdc,Xd
with domain Xd such that

T̂c(x) := {(s, t) ∈ (ω × ω)<ω : x ∈ clXd{u ∈ Xd :

∃(y, z) ∈ ωω × ωω(s ⊆ y, t ⊆ z and (u, y, z) ∈ Cl
dππ,ιdππ
Xdππ

(c))}},

(3) and the function T̂c,α := T̂ d,ιdc,α,Xd
with domain Xd such that

T̂c,α(x) := {(t, r) ∈ (ω ×α)<ω :

∀i, j < |r|[(si ( sj and (t�|sj |, sj) ∈ T̂c(x)) ⇒ r(i) > r(j)]}.

Clearly, any Σ1
2-subset of Xd is coded by some member of BC1. We use the

functions T̂c and T̂c,α to deal with tree representations of Σ1
2-subsets of Xd, as

verified by the following result.

Theorem 4.2. Let c ∈ BC1, d ∈ D(ω), x ∈ Xd and let α be either an
uncountable ordinal or ON. The following statements are equivalent.

(1) x ∈ Pca(c).

(2) There exists a y ∈ ωω such that T
dπ,ιdπ
c,Xdπ

(x, y) is well-founded.

(3) There exists a y ∈ ωω such that (T̂c(x))(y) is well-founded.

(4) T̂c,α(x) is ill-founded.

Proof. Note that x ∈ Pca(c) iff there is some y ∈ ωω such that (x, y) /∈
An

dπ,ιdπ
Xdπ

(c). Therefore, (1) and (2) are equivalent by Theorem 3.9.

To see (2) ⇔ (3) we show that, for any y ∈ ωω, T
dπ,ιdπ
c,Xdπ

(x, y) is ill-founded

iff (T̂c(x))(y) is ill-founded. Note that (T̂c(x))(y) is ill-founded iff there is some
z ∈ ωω such that, for any n < ω and any ε ∈ Q+,

∃u ∈ Xd∃(y′, z′) ∈ ωω × ωω[d∗(x, u) < ε, y′�n = y�n, z′�n = z�n

and ((u, y′, z′) ∈ Cl
dππ,ιdππ
Xdππ

(c))].
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On the other hand, T
dπ,ιdπ
c,Xdπ

(x, y) is ill-founded iff there is some z ∈ ωω such

that, for any ε ∈ Q+ and n,m < ω,

∃u ∈ Xd∃(y′, z′) ∈ ωω × ωω[d∗(x, u) < ε, y′�m = y�m, z′�n = z�n

and ((u, y′, z′) ∈ Cl
dππ,ιdππ
Xdππ

(c))].

Hence, it is clear that, whenever T
dπ,ιdπ
c,Xdπ

(x, y) is ill-founded, so is (T̂c(x))(y).

To see the converse, for m,n < ω use max{m,n} in the first statement.

Now we prove (3) ⇔ (4). Assume (3), so there is a function h : ω → ω1

such that, for any si, sj ∈ (T̂c(x))(y), if si ( sj then h(i) > h(j). Therefore,

(y, h) is an infinite branch in T̂c,ω1(x) and, as T̂c,ω1(x) ⊆ T̂c,α(x) (because α is

uncountable), then T̂c,α(x) is ill-founded.

To see the converse, assume that (y, h) ∈ ωω × αω is a branch in Tc,α(x)

(we are abusing notation here), that is, for every i, j < ω, if (y�|sj |, sj) ∈ T̂c(x)

and si ( sj , then h(i) > h(j). This actually means that (T̂c(x))(y) is well-
founded. �X

Lemma 4.3. Let c ∈ BC1∩M , d ∈ D(ω)∩M and let α be such that N |=“either
α is an ordinal or α = ON”. Then:

(a) T̂Mc = T̂Nc ◦ ι
M,N
d .

(b) If α ⊆M then T̂Mc,α = T̂Nc,α ◦ ι
M,N
d .

Proof. (a) can be proved exactly like Lemma 3.10. (b) is immeadiate from (a)
because, as α ⊆M , M |=“either α is a ordinal or α = ON”. �X

Theorem 4.4 (Shoenfield’s Absoluteness Theorem). Let c ∈ BC1 ∩M and

d ∈ D(ω) ∩M . If ωN1 ⊆M , then (ιM,N
d )−1[PcaN (c)] = PcaM (c).

Proof. Let x ∈ XM
d . By Theorem 4.2,

(i) ιM,N
c (x) ∈ PcaN (c) iff T̂N

c,ωN1
(ιM,N
d (x)) is ill-founded, and

(ii) x ∈ PcaM (c) iff T̂M
c,ωN1

(x) is ill-founded (because ωN1 ⊆M).

By Lemma 4.3, T̂N
c,ωN1

(ιM,N
d (x)) = T̂M

c,ωN1
(x) so, as the ill-foundedness of a tree

is absolute, then x ∈ PcaM (x) iff ιM,N
c (x) ∈ PcaN (c). �X

As a consequence of Theorem 2.7 we have:

Corollary 4.5. The relation ≈P is absolute for transitive models M ⊆ N of
ZFC when ωN1 ⊆M .
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