Revista Colombiana de Matemáticas Volumen 53(2019) páginas 185-194

Cyclic derivations, species realizations and potentials

Derivaciones cíclicas, realización por especies y potenciales

DANIEL LÓPEZ-AGUAYO

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México

ABSTRACT. In this paper we give an overview of a generalization, introduced by R. Bautista and the author, of the theory of mutation of quivers with potential developed in 2007 by Derksen-Weyman-Zelevinsky. This new construction allows us to consider finite dimensional semisimple F-algebras, where F is any field. We give a brief account of the results concerning this generalization and its main consequences.

 $Key\ words\ and\ phrases.$ species realization, mutation, quiver with potential, strongly primitive.

2010 Mathematics Subject Classification. 16G10, 16G20.

RESUMEN. En este artículo daremos un panorama de una generalización, introducida por R. Bautista y el autor, de la teoría de mutación de carcajes con potencial desarrollada en 2007 por Derksen-Weyman-Zelevinsky. Esta nueva construcción nos permite considerar álgebras semisimples de dimensión finita sobre F, donde F es cualquier campo. Daremos un resumen de los resultados de esta generalización y de sus principales consecuencias.

Palabras y frases clave. realización por especies, mutación, carcaj con potencial, fuertemente primitivo.

1. Introduction

Since the development of the theory of quivers with potentials created by Derksen-Weyman-Zelevinsky in [4], the search for a general concept of *mu*tation of a quiver with potential has drawn a lot of attention. The theory of quivers with potentials has proven useful in many subjects of mathematics such as cluster algebras, Teichmüller theory, KP solitons, mirror symmetry, Poisson DANIEL LÓPEZ-AGUAYO

geometry, among many others. There have been different generalizations of the notion of a quiver with potential and mutation where the underlying F-algebra, F being a field, is replaced by more general algebras, see [3, 6, 7]. This paper is organized as follows. In Section 2, we review the preliminaries taken from [1] and [2]. Instead of working with an usual quiver, we consider the completion of the tensor algebra of M over S, where M is an S-bimodule and S is a finite dimensional semisimple F-algebra. We will then see how to construct a cyclic derivation, in the sense of Rota-Sagan-Stein [9], on the completion of the tensor algebra of M. Then we introduce a natural generalization of the concepts of potential, right-equivalence and cyclical equivalence as defined in [4]. In Section 3, we describe a generalization of the so-called *Splitting theorem* ([4, Theorem 4.6) and see how this theorem allows us to lift the notion of mutation of a quiver with potential to this more general setting. Finally, in Section 4, we recall the notion of species realizations and describe how the generalization given in [2] allows us to give a partial affirmative answer to a question raised by J. Geuenich and D. Labardini-Fragoso in [5].

2. Preliminaries

The following material is taken from [1] and [2].

Definition 2.1. Let F be a field and let D_1, \ldots, D_n be division rings, each containing F in its center and of finite dimension over F. Let $S = \prod_{i=1}^{n} D_i$ and let M be an S-bimodule of finite dimension over F. Define the algebra of formal power series over M as the set

$$\mathcal{F}_S(M) = \left\{ \sum_{i=0}^{\infty} a(i) : a(i) \in M^{\otimes i} \right\}$$

where $M^0 = S$. Note that $\mathcal{F}_S(M)$ is an associative unital *F*-algebra where the product is the one obtained by extending the product of the tensor algebra $T_S(M) = \bigoplus_{i=0}^{\infty} M^{\otimes i}$.

Let
$$\{e_1, \ldots, e_n\}$$
 be a complete set of primitive orthogonal idempotents of S .

Definition 2.2. An element $m \in M$ is legible if $m = e_i m e_j$ for some idempotents e_i, e_j of S.

Definition 2.3. Let $Z = \sum_{i=1}^{n} Fe_i \subseteq S$. We say that M is Z-freely generated by a Z-subbimodule M_0 of M if the map $\mu_M : S \otimes_Z M_0 \otimes_Z S \to M$ given by $\mu_M(s_1 \otimes m \otimes s_2) = s_1 m s_2$ is an isomorphism of S-bimodules. In this case we say that M is an S-bimodule which is Z-freely generated.

Volumen 53, Año 2019

Throughout this paper we will assume that M is Z-freely generated by M_0 .

Definition 2.4. Let A be an associative unital F-algebra. A cyclic derivation, in the sense of Rota-Sagan-Stein [9], is an F-linear function $\mathfrak{h} : A \to \operatorname{End}_F(A)$ such that

$$\mathfrak{h}(f_1 f_2)(f) = \mathfrak{h}(f_1)(f_2 f) + \mathfrak{h}(f_2)(f f_1)$$
(1)

for all $f, f_1, f_2 \in A$. Given a cyclic derivation \mathfrak{h} , we define the associated cyclic derivative $\delta : A \to A$ as $\delta(f) = \mathfrak{h}(f)(1)$.

We now construct a cyclic derivative on $\mathcal{F}_S(M)$. First, we define a cyclic derivation on the tensor algebra $A = T_S(M)$ as follows. Consider the map

$$\hat{u}: A \times A \to A$$

given by $\hat{u}(f,g) = \sum_{i=1}^{n} e_i g f e_i$ for every $f,g \in A$. This is an *F*-bilinear map

which is Z-balanced. By the universal property of the tensor product, there exists a linear map $u : A \otimes_Z A \to A$ such that $u(a \otimes b) = \hat{u}(a, b)$. Now we define an F-derivation $\Delta : A \to A \otimes_Z A$ as follows. For $s \in S$, we define $\Delta(s) = 1 \otimes s - s \otimes 1$; and for $m \in M_0$, we set $\Delta(m) = 1 \otimes m$. Then we define $\Delta : M \to T_S(M)$ by

$$\Delta(s_1 m s_2) = \Delta(s_1) m s_2 + s_1 \Delta(m) s_2 + s_1 m \Delta(s_2)$$

for $s_1, s_2 \in S$ and $m \in M_0$. Note that the above map is well-defined since $M \cong S \otimes_Z M_0 \otimes_Z S$ via the multiplication map μ_M . Once we have defined Δ on M, we can extend it to an F-derivation on A. Now we define $\mathfrak{h} : A \to \operatorname{End}_F(A)$ as follows

$$\mathfrak{h}(f)(g) = u(\Delta(f)g)$$

We have

$$\begin{split} \mathfrak{h}(f_1 f_2)(f) &= u(\Delta(f_1 f_2) f) \\ &= u(\Delta(f_1) f_2 f) + u(f_1 \Delta(f_2) f) \\ &= u(\Delta(f_1) f_2 f) + u(\Delta(f_2) f f_1) \\ &= \mathfrak{h}(f_1)(f_2 f) + \mathfrak{h}(f_2)(f f_1). \end{split}$$

It follows that \mathfrak{h} is a cyclic derivation on $T_S(M)$. We now extend \mathfrak{h} to $\mathcal{F}_S(M)$ as follows. Let $f, g \in \mathcal{F}_S(M)$, then $\mathfrak{h}(f(i))(g(j)) \in M^{\otimes (i+j)}$; thus we define $\mathfrak{h}(f)(g)(l) = \sum_{i+j=l} \mathfrak{h}(f(i))(g(j))$ for every *non*-negative integer *l*.

In [1, Proposition 2.6], it is shown that the *F*-linear map $\mathfrak{h} : \mathcal{F}_S(M) \to \operatorname{End}_F(\mathcal{F}_S(M))$ is a cyclic derivation. Using this fact we obtain a cyclic derivative δ on $\mathcal{F}_S(M)$ given by

$$\delta(f) = \mathfrak{h}(f)(1).$$

Definition 2.5. Let C be a subset of M. We say that C is a right S-local basis of M if every element of C is legible and if for each pair of idempotents e_i, e_j of S, we have that $C \cap e_i M e_j$ is a D_j -basis for $e_i M e_j$.

We note that a right S-local basis C induces a dual basis $\{u, u^*\}_{u \in C}$, where $u^* : M_S \to S_S$ is the morphism of right S-modules defined by $u^*(v) = 0$ if $v \in C \setminus \{u\}$; and $u^*(u) = e_j$ if $u = e_i u e_j$.

Let T be a Z-local basis of M_0 and let L be a Z-local basis of S. The former means that for each pair of distinct idempotents e_i, e_j of $S, T \cap e_i M e_j$ is an F-basis of $e_i M_0 e_j$; the latter means that $L(i) = L \cap e_i S$ is an F-basis of the division algebra $e_i S = D_i$. It follows that the non-zero elements of the set $\{sa : s \in L, a \in T\}$ form a right S-local basis of M. Therefore, for every $s \in L$ and $a \in T$, we have the map $(sa)^* \in \text{Hom}_S(M_S, S_S)$ induced by the dual basis.

Definition 2.6. Let \mathcal{D} be a subset of M. We say that \mathcal{D} is a left S-local basis of M if every element of \mathcal{D} is legible and if for each pair of idempotents e_i, e_j of S, we have that $\mathcal{D} \cap e_i M e_j$ is a D_i -basis for $e_i M e_j$.

Let ψ be any element of $\text{Hom}_S(M_S, S_S)$. We will extend ψ to an *F*-linear endomorphism of $\mathcal{F}_S(M)$, which we will denote by ψ_* .

First, we define $\psi_*(s) = 0$ for $s \in S$; and for $M^{\otimes l}$, where $l \geq 1$, we define $\psi_*(m_1 \otimes \cdots \otimes m_l) = \psi(m_1)m_2 \otimes \cdots \otimes m_l \in M^{\otimes (l-1)}$ for $m_1, \ldots, m_l \in M$. Finally, for $f \in \mathcal{F}_S(M)$ we define $\psi_*(f) \in \mathcal{F}_S(M)$ by setting $\psi_*(f)(l-1) = \psi_*(f(l))$ for each integer l > 1. Then we define

$$\psi_*(f) = \sum_{l=0}^{\infty} \psi_*(f(l)).$$

Definition 2.7. Let $\psi \in M^* = \operatorname{Hom}_S(M_S, S_S)$ and $f \in \mathcal{F}_S(M)$. We define $\delta_{\psi} : \mathcal{F}_S(M) \to \mathcal{F}_S(M)$ as

$$\delta_{\psi}(f) = \psi_*(\delta(f)) = \sum_{l=0}^{\infty} \psi_*(\delta(f(l)))$$

Definition 2.8. Given an S-bimodule N we define the cyclic part of N as $N_{cyc} := \sum_{i=1}^{n} e_j N e_j.$

Definition 2.9. A potential P is an element of $\mathcal{F}_S(M)_{cyc}$.

Motivated by the Jacobian ideal introduced in [4], we define an analogous two-sided ideal of $\mathcal{F}_S(M)$.

For each legible element a of $e_i M e_j$, we let $\sigma(a) = i$ and $\tau(a) = j$.

Volumen 53, Año 2019

Definition 2.10. Let *P* be a potential in $\mathcal{F}_S(M)$, we define a two-sided ideal R(P) as the closure of the two-sided ideal of $\mathcal{F}_S(M)$ generated by all the elements $X_{a^*}(P) = \sum_{s \in L(\sigma(a))} \delta_{(sa)^*}(P)s, a \in T.$

In [2, Theorem 5.3], it is shown that R(P) is invariant under algebra isomorphisms that fix pointwise S. Furthermore, one can show that R(P) is independent of the choice of the Z-subbimodule M_0 and also independent of the choice of Z-local bases for S and M_0 .

Definition 2.11. An algebra with potential is a pair $(\mathcal{F}_S(M), P)$ where P is a potential in $\mathcal{F}_S(M)$ and $M_{cyc} = 0$.

We denote by $[\mathcal{F}_S(M), \mathcal{F}_S(M)]$ the closure in $\mathcal{F}_S(M)$ of the *F*-subspace generated by all the elements of the form [f,g] = fg - gf with $f,g \in \mathcal{F}_S(M)$.

Definition 2.12. Two potentials P and P' are called cyclically equivalent if $P - P' \in [\mathcal{F}_S(M), \mathcal{F}_S(M)].$

Definition 2.13. We say that two algebras with potential $(\mathcal{F}_S(M), P)$ and $(\mathcal{F}_S(M'), Q)$ are right-equivalent if there exists an algebra isomorphism φ : $\mathcal{F}_S(M) \to \mathcal{F}_S(M')$, with $\varphi|_S = id_S$, such that $\varphi(P)$ is cyclically equivalent to Q.

The following construction follows the one given in [4, p.20]. Let k be an integer in [1, n] and $\bar{e}_k = 1 - e_k$. Using the S-bimodule M, we define a new S-bimodule $\mu_k M = \widetilde{M}$ as:

$$\overline{M} := \overline{e}_k M \overline{e}_k \oplus M e_k M \oplus (e_k M)^* \oplus^* (M e_k)$$

where $(e_k M)^* = \operatorname{Hom}_S((e_k M)_S, S_S)$, and $*(Me_k) = \operatorname{Hom}_S(S(Me_k), S)$. One can show (see [2, Lemma 8.7]) that $\mu_k M$ is Z-freely generated.

Definition 2.14. Let P be a potential in $\mathcal{F}_S(M)$ such that $e_k P e_k = 0$. Following [4], we define

$$\mu_k P := [P] + \sum_{sa \in_k \hat{T}, bt \in \hat{T}_k} [btsa]((sa)^*)(^*(bt))$$

where

$$k\hat{T} = \{sa: s \in L(k), a \in T \cap e_kM\}$$
$$\tilde{T}_k = \{bt: b \in T \cap Me_k, t \in L(k)\}.$$

3. Mutations and potentials

Let $P = \sum_{i=1}^{N} a_i b_i + P'$ be a potential in $\mathcal{F}_S(M)$ where $A = \{a_1, b_1, \dots, a_N, b_N\}$ is contained in a Z-local basis T of M_0 and $P' \in \mathcal{F}_S(M)^{\geq 3}$. Let L_1 denote the

complement of A in T, N_1 be the F-vector subspace of M generated by A and N_2 be the F-vector subspace of M generated by L_1 ; then $M = M_1 \oplus M_2$ as S-bimodules where $M_1 = SN_1S$ and $M_2 = SN_SS$.

One of the main results proved in [4] is the so-called *Splitting theorem* (Theorem 4.6). Inspired by this result, the following theorem is proved in [2].

Theorem 3.1. ([2, Theorem 7.15]) There exists an algebra automorphism φ : $\mathcal{F}_S(M) \to \mathcal{F}_S(M)$ such that $\varphi(P)$ is cyclically equivalent to a potential of the form $\sum_{i=1}^N a_i b_i + P''$ where P'' is a reduced potential contained in the closure of

the algebra generated by M_2 and $\sum_{i=1}^{N} a_i b_i$ is a trivial potential in $\mathcal{F}_S(M_1)$.

Definition 3.2. Let $P \in \mathcal{F}(M)$ be a potential and k an integer in $\{1, \ldots, n\}$. Suppose that there are no two-cycles passing through k. Using Theorem 3.1, one can see that $\mu_k P$ is right-equivalent to the direct sum of a trivial potential W and a reduced potential Q. Following [4], we define the mutation of P in the direction k, as $\overline{\mu}_k(P) = Q$.

One of the main results of [4] is that mutation at an arbitrary vertex is a well-defined involution on the set of right-equivalence classes of reduced quivers with potentials. In [2], the following analogous result is proved.

Theorem 3.3. ([2, Theorem 8.21]) Let P be a reduced potential such that the mutation $\overline{\mu}_k P$ is defined. Then $\overline{\mu}_k \overline{\mu}_k P$ is defined and it is right-equivalent to P.

Definition 3.4. Let k_1, \ldots, k_l be a finite sequence of elements of $\{1, \ldots, n\}$ such that $k_p \neq k_{p+1}$ for $p = 1, \ldots, l-1$. We say that an algebra with potential $(\mathcal{F}_S(M), P)$ is (k_l, \ldots, k_1) -nondegenerate if all the iterated mutations $\bar{\mu}_{k_1}P, \bar{\mu}_{k_2}\bar{\mu}_{k_1}P, \ldots, \bar{\mu}_{k_l}\cdots\bar{\mu}_{k_1}P$ are 2-acyclic. We say that $(\mathcal{F}_S(M), P)$ is nondegenerate if it is (k_l, \ldots, k_1) -nondegenerate for every sequence of integers as above.

In [2, p.29], we impose the following condition on each of the bases L(i). For each $s, t \in L(i)$:

$$e_i^*(st^{-1}) \neq 0$$
 implies $s = t$ and $e_i^*(s^{-1}t) \neq 0$ implies $s = t$ (2)

Volumen 53, Año 2019

where $e_i^* : D_i \to F$ denotes the standard dual map corresponding to the basis element $e_i \in L(i)$.

Throughout the rest of the paper we will assume that each of the bases L(i) satisfy (2).

4. Species realizations

We begin this Section by recalling the definition of *species realization* of a skew-symmetrizable integer matrix, in the sense of [5] (Definition 2.22).

Definition 4.1. Let $B = (b_{ij}) \in \mathbb{Z}^{n \times n}$ be a skew-symmetrizable matrix, and let $I = \{1, \ldots, n\}$. A species realization of B is a pair (\mathbf{S}, \mathbf{M}) such that:

- (1) $\mathbf{S} = (F_i)_{i \in I}$ is a tuple of division rings;
- (2) **M** is a tuple consisting of an $F_i F_j$ bimodule M_{ij} for each pair $(i, j) \in I^2$ such that $b_{ij} > 0$;
- (3) for every pair $(i, j) \in I^2$ such that $b_{ij} > 0$, there are $F_j F_i$ -bimodule isomorphisms

$$\operatorname{Hom}_{F_i}(M_{ij}, F_i) \cong \operatorname{Hom}_{F_i}(M_{ij}, F_j);$$

(4) for every pair $(i, j) \in I^2$ such that $b_{ij} > 0$ we have $\dim_{F_i}(M_{ij}) = b_{ij}$ and $\dim_{F_i}(M_{ij}) = -b_{ji}$.

In [5, p.14], motivated by the seminal paper [4], J. Geuenich and D. Labardini-Fragoso raise the following question:

Question [5, Question 2.23] Can a mutation theory of species with potential be defined so that every skew-symmetrizable matrix B have a species realization which admit a nondegenerate potential?

In [4], it is shown that if the underlying base field F is uncountable then a nondegenerate quiver with potential exists for every underlying quiver.

Motivated by the above question, the following theorem is proved in [1].

Theorem 4.2. ([1, Theorem 3.5]) Let $B = (b_{ij}) \in \mathbb{Z}^{n \times n}$ be a skew-symmetrizable matrix with skew-symmetrizer $D = \text{diag}(d_1, \ldots, d_n)$. Suppose that d_j divides b_{ij} for every j and every i. Then the matrix B can be realized by a species that admits a nondegenerate potential provided the underlying field F is uncountable.

We now give an example ([1, p.8]) of a class of skew-symmetrizable 4×4 integer matrices, which are not globally unfoldable nor strongly primitive, and that have a species realization admitting a nondegenerate potential. This gives

DANIEL LÓPEZ-AGUAYO

an example of a class of skew-symmetrizable 4×4 integer matrices which are not covered by [6].

Let

$$B = \begin{bmatrix} 0 & -a & 0 & b \\ 1 & 0 & -1 & 0 \\ 0 & a & 0 & -b \\ -1 & 0 & 1 & 0 \end{bmatrix}$$
(3)

where a, b are positive integers such that a < b, a does not divide b and $gcd(a, b) \neq 1$.

Note that there are infinitely many such pairs (a, b). For example, let p and q be primes such that p < q. For any $n \ge 2$, define $a = p^n$ and $b = p^{n-1}q$. Then a < b, a does not divide b and $gcd(a, b) = p^{n-1} \ne 1$. Note that B is skew-symmetrizable since it admits D = diag(1, a, 1, b) as a skew-symmetrizer.

Remark 4.3. By [6, Example 14.4] we know that the class of all matrices given by (3) does *not* admit a global unfolding. Moreover, since we are not assuming that a and b are coprime, then such matrices are not strongly primitive; hence they are not covered by [6].

We have the following

Proposition 4.4. ([1, Proposition 5.2]) The class of all matrices given by (3) are not globally unfoldable nor strongly primitive, yet they can be realized by a species admitting a nondegenerate potential.

By Theorem 4.2, we know that a nondegenerate potential exists provided the underlying field F is uncountable. If F is infinite (but not necessarily uncountable) one can show that $\mathcal{F}_S(M)$ admits "locally" nondegenerate potentials. More precisely, we have

Proposition 4.5. ([2, Proposition 12.5]) Let $B = (b_{ij}) \in \mathbb{Z}^{n \times n}$ be a skewsymmetrizable matrix with skew-symmetrizer $D = \text{diag}(d_1, \ldots, d_n)$. Suppose that d_j divides b_{ij} for every j and every i. If k_1, \ldots, k_l is an arbitrary sequence of elements of $\{1, \ldots, n\}$ and F is infinite, then there exists a species realization (M, S) of B, and a potential $P \in \mathcal{F}_S(M)$ on this species, such that the mutation $\overline{\mu}_{k_l} \cdots \overline{\mu}_{k_1} P$ exists.

We conclude the paper by giving an example of a class of skew-symmetrizable 4×4 integer matrices that have a species realization via field extensions of the rational numbers. Although in this case we cannot guarantee the existence of a nondegenerate potential, we can guarantee (by Proposition 4.5) the existence of "locally" nondegenerate potentials.

First, we require some definitions.

Volumen 53, Año 2019

192

Definition 4.6. Let E/F be a finite field extension. An *F*-basis of *E*, as a vector space, is said to be semi-multiplicative if the product of any two elements of the basis is an *F*-multiple of another basis element.

It can be shown that every extension E/F which has a semi-multiplicative basis satisfies (2).

Definition 4.7. A field extension E/F is called a simple radical extension if E = F(a) for some $a \in E$, with $a^n \in F$ for some integer $n \ge 2$.

Note that if E/F is a simple radical extension then E has a semi-multiplicative F-basis.

Definition 4.8. A field extension E/F is a radical extension if there exists a tower of fields $F = F_0 \subseteq F_1 \ldots \subseteq F_l = E$ such that F_i/F_{i-1} is a simple radical extension for $i = 1, \ldots, l$.

As before, let

$$B = \begin{bmatrix} 0 & -a & 0 & b \\ 1 & 0 & -1 & 0 \\ 0 & a & 0 & -b \\ -1 & 0 & 1 & 0 \end{bmatrix}$$
(4)

but without imposing additional conditions on a or b.

Proposition 4.9. Let $n, m \ge 2$. The matrix *B* admits a species realization (\mathbf{S}, \mathbf{M}) where \mathbf{M} is a *Z*-freely generated *S*-bimodule, *S* satisfies (2), and such species admits a locally nondegenerate potential.

Proof. To prove this we will require the following result (cf. [8, Theorem 14.3.2]).

Lemma 4.10. Let $n \ge 2, p_1, \ldots, p_m$ be distinct primes and let \mathbf{Q} denote the set of all rational numbers. Let ζ_n be a primitive nth-root of unity. Then

$$[\mathbf{Q}(\zeta_n)(\sqrt[n]{p_1},\ldots,\sqrt[n]{p_m}):\mathbf{Q}(\zeta_n)]=n^m$$

Now we continue with the proof of Proposition 4.9. Let $F = \mathbf{Q}(\zeta_n)$ be the base field and let p_1 be an arbitrary prime. By Lemma 4.10, $F_2 = F(\sqrt[n]{p_1})/F$ has degree n. Now choose m-1 distinct primes p_2, p_3, \ldots, p_m and also distinct from p_1 . Define $F_4 = F(\sqrt[n]{p_1}, \sqrt[n]{p_2}, \ldots, \sqrt[n]{p_m})/F$, then by Lemma 4.10, F_4 has degree n^m . Let $S = F \oplus F_2 \oplus F \oplus F_4$ and $Z = F \oplus F \oplus F \oplus F$. Since F/\mathbf{Q} is a simple radical extension then it has a semi-multiplicative basis; thus it satisfies (2). On the other hand, note that $F_2/\mathbf{Q}(\zeta_n)$ and $F_4/\mathbf{Q}(\zeta_n)$ are radical extensions. Using [2, Remark 6, p.29] we get that both F_2 and F_4 satisfy (2); hence, it is always possible to choose a Z-local basis of S satisfying (2). Finally,

for each $b_{ij} > 0$, define $e_i M e_j = (F_i \otimes_F F_j)^{\frac{b_{ij}}{d_j}} = F_i \otimes_F F_j$. It follows that (\mathbf{S}, \mathbf{M}) is a species realization of B.

Acknowledgments

I thank the anonymous referee for useful comments and careful reading of the manuscript.

References

- D. López-Aguayo (2018), A note on species realizations and nondegeneracy of potentials, Journal of Algebra and Its Applications 18 (2019), no. 2.
- [2] R. Bautista and D. López-Aguayo, Potentials for some tensor algebras, arXiv:1506.05880.
- [3] L. Demonet, Mutations of group species with potentials and their representations. Applications to cluster algebras, arXiv:1003.5078.
- [4] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14 (2008), no. 1, 59–119, arXiv:0704.0649.
- [5] J. Geuenich and D. Labardini-Fragoso, Species with potential arising from surfaces with orbifold points of order 2, Part I: one choice of weights, Mathematische Zeitschrift 286 (2017), no. 3-4, 1065–1143, arXiv:1507.04304.
- [6] D. Labardini-Fragoso and A. Zelevinsky, Strongly primitive species with potentials I: Mutations, Boletín de la Sociedad Matemática Mexicana (Third series) 22 (2016), no. 1, 47–115, arXiv:1306.3495.
- [7] B. Nguefack, Potentials and Jacobian algebras for tensor algebras of bimodules, arXiv:1004.2213.
- [8] S. Roman, *Field theory*, Graduate Texts in Mathematics, 158. Springer-Verlag New York, 2006.
- [9] G.-C. Rota, B. Sagan, and P. R. Stein, A cyclic derivative in noncommutative algebra, Journal of Algebra 64 (1980), 54–75.

(Recibido en junio de 2018. Aceptado en septiembre de 2018)

Escuela de Ingeniería y Ciencias Tecnologico de Monterrey, Monterrey, Nuevo León, México *e-mail:* dlopez.aguayo@itesm.mx

Volumen 53, Año 2019

194