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Abstract. In this paper, we review some recent developments of compact
quantum groups that arise as θ-deformations of compact Lie groups of rank at
least two. A θ-deformation is merely a 2-cocycle deformation using an action of
a torus of dimension higher than 2. Using the formula (Lemma 5.3) developed
in [11], we derive the noncommutative 7-sphere in the sense of Connes and
Landi [3] as the fixed-point subalgebra.
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Resumen. En este art́ıculo nosotros revisamos algunos desarrollos recientes de
grupos cuánticos compactos que surgen en θ-deformaciones de grupos com-
pactos de Lie de rango al menos dos. Una θ-deformación es simplemente una
deformación por 2-cociclo, usando una acción de un toro de dimensión su-
perior a 2. Usando la fórmula (Lemma 5.3) desarrollada en [11], nosotros
derivamos la 7-esfera no conmutativa, en el sentido de Connes y Landi [3],
como la subálgebra de puntos fijos.
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grupo cuántico compacto, deformación de Connes-Landi, θ-deformación..

1. Introduction

Lie groups play crucial roles both in mathematics and physics. For example,
most field theories of particle physics are based on certain symmetries with
gauge group. For instance, quantum chromodynamics is a gauge theory with
the symmetry group SU(3) while quantum electromagnetism is a gauge theory
with the symmetry group U(1) and the standard model is a gauge theory with
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the symmetry group SU(3) × SU(2) × U(1). Also, SU(5) had been proposed
as a gauge group in grand unification theory.

The main purpose of this article is to survey the construction of compact
quantum groups from compact Lie groups of rank at least 2 using both the left
and the right action of the torus on the algebra generated by coordinate func-
tions [7]. Once we establish an action by Tn, we can apply the θ-deformation
on the coordinate functions using an antisymmetric bicharacter or a 2-cocycle
to deform the multiplication of the algebra [3, 7, 6]. These noncommutative
manifolds are called θ-deformation because the original work used θ as the
parameter.

We consider a noncommutative version of the group SU(n) in the framework
of θ-deformation of manifolds introduced in [3]. This version of deformations of
compact Lie groups to compact quantum groups was first discovered by Rieffel
in [7] using his theory of strict deformation quantization along the action of
Rn [6], which is a 2-cocycle twist of the multiplication of the algebra structure.
Later, Connes and Landi in [3] considered isometric actions of Tn on compact
spin manifolds to deform the algebra of continuous functions to obtain a non-
commutative compact spin manifold. Since in their case, the spectrum of the
Dirac operator does not change, it is often referred to as the isospectral defor-
mation. More generally, since the new product on the algebra can be defined
as long as there is an action of the n-torus on the algebra, the deformed al-
gebra is also called a toric noncommutative manifold. Although this type of
deformation was done in the C∗-algebraic framework, we will deform only the
algebraic part to obtain generators and relations. At the algebraic level we will
be able to give very explicit formulae in terms of the generators. The resulting
compact quantum group will be a compact matrix quantum group in the sense
of Woronowicz [12].

In [2], Connes and Dubois-Violette constructed some quantum matrix groups
as quotients of the θ-deformation Mn×n(R)θ of the algebra generated by the
coordinates of Mn×n(R). However, their method does not yield any nontriv-
ial deformation of SU(n) whereas [7] yields nontrivial deformations of SU(n),
n ≥ 3. Since a compact Lie group G of rank higher than 2 admits a nontriv-
ial θ-deformation to a compact quantum group, it is natural to ask whether a
Lie group action G × X → X on a compact manifold X endowed with a Tn
action, n ≥ 2, extends to an action C(Xθ′)→ C(Gθ)⊗C(Xθ′) of the compact
quantum group Gθ. Of course, the original action will induce an action at the
vector space level, but, in general, it is no longer an algebra homomorphism.
For instance, Landi and van Suijlekom in [5] studied for exactly which values
θ′ij of S7

θ′ the diagonal action of the group SU(2) on S7 extends to an action of

SU(2) on S7
θ′ . On the contrary, the group SU(2) does not admit any nontrivial

θ-deformation because the group is of rank 1. We recite a lemma from [11] in
order to determine the dependence of the deformation parameters θ and θ′,
which generalizes the computation in [5]. Although the group SU(2) does not
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admit a nontrivial deformation in the framework of [7], a similar construction
of Hopf fibration was generalized to the quantum group SUq(2) in [4], which
is, a priori, a different deformation than our framework.

An interesting consideration of Gθ is the construction of quantum homoge-
neous space. Suppose Tn ⊂ K ⊂ G, n ≥ 2 with K a closed subgroup of the
compact Lie group G. Using the isomorphism C(G/K) ∼= C(G)K , we can define
a quantum homogeneous space to be the fixed-point subalgebra for the action
of K. This definition can be generalized to essentially any quantum subgroup
acting on the quantum group. In our present work, we present an example of
the ’quotient’ SU(4)λ/SU(3)θ. To make this statement precise, we give an ac-
tion ρ : SU(4)λ → SU(4)λ ⊗ SU(3)θ and compute the invariant elements. We
show that the subalgebra generated by the invariant elements is isomorphic to
a noncommutative 7-sphere S7

θ′ for some θ′.

Quantum homogeneous spaces using the θ-deformation of compact Lie groups
had been treated by Varilly in [9]. However, Varilly does not consider an ac-
tion of quantum groups nor the fixed-point subalgebra for the action. Rather
than computing the fixed-point subalgebra, Varilly endows C(G/K) with a
new product consistent in a way that it is embedded in C(Gθ). We take an
approach to endow C(G) with the action (by the left multiplication) C(G)→
C(K)⊗C(G) by its subgroup K then extend the action to the θ-deformation.
Only then, we can compute the fixed-point subalgebra for the action. This
subalgebra will be our notion of quantum homogeneous spaces.

This paper is organized as follows. In Section 2, we relate the strict de-
formation quantization of periodic action in [6] and the θ-deformation in [2].
Section 2.2 is devoted to the review of the construction of the θ-deformation
of compact quantum groups [7], and we survey some main results. In Sec-
tion 2.3, we compute relations on the generators of the deformation SU(3)θ
of SU(3) as a compact quantum matrix group. In Section 3, we restate the
necessary and the sufficient condition as to when an action of a group on an
algebra of functions extends to the setting of θ-deformations [11, Lemma 5.3]
as Lemma 3.2. We recall an example from [11] in Section 3.1 where it endows
the noncommutative 5-sphere S5

λ with an action of SU(3)θ. In this case, the
fixed-point subalgebra is trivial. Finally in Section 3.2, we construct an ac-
tion ρ : SU(4)λ → SU(4)λ ⊗ SU(3)θ of SU(3)θ on SU(4)λ whose fixed-point

subalgebra SU(4)
SU(3)θ
λ is isomorphic to the noncommutative 7-sphere S7

θ′ .

2. The θ-deformation of compact quantum groups

In this section, we review the construction of toric noncommutative manifolds
as a special case of Rieffel’s deformation quantization along the action of Rn
[6] and use it to obtain a deformation of compact Lie group of rank at least 2
[7] in Section 2.2. Deforming the algebraic structure is a simple matter while
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obtaining a compatible coalgebra structure is more subtle; the 2-cocycle has to
be chosen carefully.

2.1. θ-deformation as Rieffel’s strict deformation quantization

The construction of toric noncommutative manifolds proceeds as follows [3, 6].
Given a compact manifold M endowed with an action of an n-torus Tn or
equivalently with a periodic action of Rn, n ≥ 2, the algebra C∞(M) of smooth
functions on M can be decomposed into isotypic components C∞(M)~r =

{
f ∈

C∞(M) : αt(f) = e2πit·~rf
}

indexed by ~r ∈ T̂n = Zn. A deformed algebra
structure can, then, be given by the linear extension of the product of two
functions f~r and g~s in some isotypic components. A new product ×θ on these
elements is given by

fr × gs = χ(r, s)frgs, (1)

where χ : Zn×Zn → T is an antisymmetric bicharacter on the Pontryagin dual
Zn = T̂n of Tn i.e. χ(s, r) = χ(r, s). The bicharacter relation

χ(r, s+ t) = χ(r, s)χ(r, t), χ(r + s, t) = χ(r, t)χ(s, t), s, t ∈ Zn

ensures the associativity of the new product. For instance,

χ(r, s) := exp (πi r · θs)

where θ = (θjk) is a real antisymmetric n × n matrix is a typical choice. The
involution for the new product is given by the complex conjugation of the
functions. We denote the algebra obtained by extending the new product ×θ
to all continuous functions by C(Mθ) [6].

The definition of a new product in (1) is a discretized version of the Rieffel’s
deformation quantization [6] by viewing the action as a periodic action of Rn.
First of all, Rieffel expressed the deformed product of an algebra endowed with
an action of Rn in the integral form

a×J b =

∫
V×V

αJs(a)αt(b) e
2πis·t ds dt (2)

where a and b belong to an algebra A and J is a real antisymmetric real
n×n matrix [6]. This integral may be interpreted as an oscillatory integral and
α : V ↪→Aut(A) is a strongly continuous action of a finite dimensional vector
space V ∼= Rn on A. The oscillatory integral (2) makes sense a priori only for
elements a, b of the smooth subalgebra A∞ (which forms a Fréchet algebra) of
A under the action α i.e. v 7→ αv(a) is smooth. However, Rieffel showed that
if A is a C∗-algebra, then the new algebra AJ can also be given a C∗-algebra
structure.

First, A∞ can be given a suitable pre C∗-norm for which the product ×J
is continuous in a way that the completion with respect to this norm obtains
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the deformed algebra AJ . Thus, the deformed product can be extended to the
entire algebra AJ .

It should be remarked that the smooth subalgebra remains unchanged as
vector spaces (AJ)∞ = A∞, even though they have different products [7, The-
orem 7.1].

If the action α of V is periodic, then αv(a) = a for all v in some lattice Λ ⊂ V
and a ∈ A. α can, then, be viewed as an action of the compact abelian group
H = V/Λ. Then, A∞ admits a decomposition into a direct sum of isotypic

components indexed by Λ = Ĥ. It is shown in [6, Proposition. 2.21] that if
αs(ap) = e2πip·sap and αt(bq) = e2πiq·tbq with p, q ∈ Λ, then (1) defines an
associative product.

The toric noncommutative manifolds [3] based on the deformation quantiza-
tion (1), as far as the algebra structure is concerned, is a special case of Rieffel’s
strict deformation quantization theory. The same remarks are also made in [8]
and [9]. We call the θ-deformed algebra the toric noncommutative manifold.

2.2. Compact quantum Lie groups associated with n-torus

We now review the θ-deformation of compact Lie groups in [7].

Let G be a compact Lie group of rank at least 2 or equivalently Tn ⊂ G,
n ≥ 2. We use the natural action α(t,s)(f)(x) = f

(
t−1xs

)
of Tn × Tn to

deform the algebra C(G) of continuous functions and write down the relations
for the matrix coefficients in the case of G = SU(3) and SU(4). However,
not every choice of deformation of this kind respects the original coalgebra
structure [6]. If the antisymmetric matrix θ is chosen to be of the formK⊕(−K)
where KT = −K is an n × n real antisymmetric matrix, we would obtain a
θ-deformation of compact quantum groups.

Definition 2.1. A coalgebra C is an associative unital algebra with linear
maps 4 : C → C ⊗ C called coproduct and ε : C → C called counit such that

(id⊗4) ◦ 4 = (4⊗ id) ◦ 4
(ε⊗4) ◦ 4 = (4⊗ ε) ◦ 4 = id .

If these maps are algebra homomorphisms, then C is called a bialgebra.

If H is a unital bialgebra endowed with an anti-homomorphism S : H → H
such that

m ◦ (id⊗S) ◦ 4 = m ◦ (S ⊗ id) ◦ 4 = η ◦ ε

where m : H ⊗ H → H is the multiplication map and η : C → H is the
embedding of the unit element is called a compact quantum group.
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For example, if G is a compact Lie group, then the usual (C∗-)compact
quantum group structure can be given as follows:

4 : C(G)→ C(G)⊗̂C(G) ∼= C(G×G), 4(f)(x, y) = f(xy)

ε(f) = f(e)

S(f(x)) = f(x−1)

where e ∈ G is the identity element and ⊗̂ is the completed tensor product.
Although in this paper we do not address the C∗-algebraic setting, when looking
at the algebra of continuous functions on a compact Lie group, it is the correct
setting.

With the notations above, let KT = −K be a real antisymmetric matrix.
It was shown in [7] that the formula (1) with θ = K ⊕ (−K) with the unal-
tered coalgebra structure endows the algebra of continuous functions on the
compact Lie group with a quantum group structure. Other choices of θ will not
afford a quantum group with the original coalgebra structure. We denote the
resulting compact quantum group by Gθ. We view θij ∈ R as parameters of
the deformation Moreover, the deformation (Gθ)

∞ of smooth functions on G
remains dense in C(Gθ) [7]. In fact, if G is a compact matrix group, then so too
is Gθ a compact matrix quantum group in the sense of Woronowicz [12]. We
will restrict our deformation to the coordinate functions of a compact matrix
Lie group in order to be able to compute the commutation relations on them.

It is shown in [7] that the coproduct defined by4(f)(x, x′) = f(xx′) extends
to a continuous homomorphism 4 : C(Gθ) → C(Gθ) ⊗ C(Gθ). Here, the in-
terpretation of C(Gθ)⊗C(Gθ) is given by the isomorphism C ((G×G)θ⊕θ) ∼=
C(Gθ) ⊗ C(Gθ) where the tensor product is the minimal tensor product [6]
(in fact, C(Gθ) would be nuclear so distinguishing the kind of tensor product
is not necessary in this setting but since this deformation applies to any C∗

quantum group endowed with an action of Tn, we stress that this analysis is
valid for the minimal tensor for a future consideration). Moreover, the counit
ε(f)(x) = f(e) remain a homomorphism and the coinverse S(f)(x) = f(x−1)
remain an anti-homomorphism, and they satisfy all the compatibility condi-
tions in the deformation.

Lastly, since the normalized Haar measure determines a linear functional
µ on C(G), µ becomes a state on C(Gθ). In fact, this state is a tracial state
µθ : C(Gθ) → C defined by µθ(f) := µ(f) =

∫
G
f(x)dx. Moreover, this tracial

state is a Haar state [7, Theorem 4.2] as we restate in the following:

Theorem 2.2. The Haar measure µ on C(G) determines a Haar state on
the quantum group C(Gθ). That is, a continuous linear functional µθ that is
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unimodular in the sense that

(id⊗ µθ) ◦∆ = ι ◦ µθ,
(µθ ⊗ id) ◦∆ = ι ◦ µθ,

(3)

(id⊗ µθ) (1⊗ a) (∆b) = (id⊗ µθ) ((S ⊗ id) ∆a) (1⊗ b) , (4)

µθ ◦ S = µθ. (5)

We denote this faithful trace simply by µ when the presence of θ is under-
stood.

In [7], Rieffel determined the unitary dual of Gθ. He showed that irreducible
representations of G are irreducible representations of Gθ and vice versa. Here,
a representation π of the compact Lie group G means a continuous group
homomorphism π : G → GL(V ) for some finite dimensional complex vector
space such that π(g)π(g)∗ = IdimV = π(g)∗π(g). π is called irreducible if there
is no nontrivial proper subspace {0} 6= W ⊂ V such that π(g) ·W ⊂ W . In
the quantum group case, we dualize the action (g, v) 7→ π(g)v. A (unitary)
representation of the quantum group Gθ is a unitary element U ∈ Mn(Gθ),
UU∗ = U∗U = In such that (id⊗4)(U) = U12U13.

Unlike in the case of classical representation theory, if π and ρ are represen-
tations of G on V and on W , respectively, then V ⊗W and W ⊗ V are equiv-
alent, but the equivalence is not given by the flip map σπρ : V ⊗W →W ⊗ V ,
σπρ(v⊗w) = w⊗ v. It is possible to decompose a G-representation V into Tn-
representations where Tn ⊂ G. Then, every v ∈ V admits the decomposition
v =

∑
~p∈Zn v~p where v~p =

∫
Tn αt(v)e−2πip·tdt.

Then, the equivalence π ⊗ ρ ∼ ρ⊗ π is induced by the linear extension of

Rπρ(v~p ⊗ w~q) = eπiθ(~p,~q)v~p ⊗ w~q . (6)

This is not surprising since [12, Proposition 2.4] showed that a compact matrix
group with the property that if the map σ for every pair of representations is
an interwining operator then the quantum group is necessarily commutative.
Moreover, one can view the above map Rπρ as the corresponding θ-deformation
of the tensor product.

2.3. θ-deformations of SU(3)

In this section, we explicitly compute the θ-deformation SU(3)θ of the Lie
group SU(3) using the approach in Section 2.2.

We use the maximal torus T2 ⊂ SU(3) to deform the algebra H generated
by the matrix coordinate functions in C(SU(3)). The coordinate functions uij
of U ∈ SU(3) satisfy the relation

3∑
k=1

ujkujl = δkl,

3∑
k=1

ukjulj = δkl, detU = 1.
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Let K =

(
0 θ

−θ 0

)
and we use the diagonal representation of the maximal

torus

T2 =

t =

e2πiϕ1 0 0

0 e2πiϕ2 0

0 0 e2πiϕ3

 : ϕj ∈ R, ϕ3 = −(ϕ1 + ϕ2)

 .

In fact, monomials in coordinates are the isotypic components of the action

α(t,s)(f(U)) = f (tUs)

= f

e2πi(ϕ1+ψ1)u11 e2πi(ϕ1+ψ2)u12 e2πi(ϕ1+ψ3)u13

e2πi(ϕ2+ψ1)u21 e2πi(ϕ2+ψ2)u22 e2πi(ϕ2+ψ3)2u23

e2πi(ϕ3+ψ1)u31 e2πi(ϕ3+ψ2)u32 e2πi(ϕ3+ψ3)u33


of T2 × T2. In the above, we omitted taking the inverse of t because Tn is
Abelian. Since K is a 2×2 real antisymmetric matrix, there is only one inde-
pendent parameter present in the deformation, we denote the resulting compact
quantum group by SU(3)θ. It is evident that each coordinate function is in an
isotypic component A~n, ~n = (n1, n2, n3, n4), of this action. Then using the
formula (1),

uij ×θ ukl = eπiθ(−n1m2+n2m1+n3m4−n4m3)uijukl,

uij ∈ A~n and ukl ∈ A~m. Thus, we obtain the following commutation relations:

u11u12 = e−2πiθu12u11, u11u13 = e2πiθu13u11, u11u21 = e2πiθu21u11,

[u11, u22] = 0, u11u23 = e4πiθu23u11, u11u31 = e−2πiθu31u11,

u11u32 = e−4πiθu32u11, [u11, u33] = 0, u12u13 = e−2πiθu13u12,

u12u21 = e4πiθu21u12, u12u22 = e2πiθu22u12, [u12, u23] = 0,

[u12, u31] = 0, u12u32 = e−2πiθu32u12, u12u33 = e−4πiθu33u12,

[u13, u21] = 0, u13u22 = e4πiθu22u13, u13u23 = e2πiθu23u13,

u13u31 = e−4πiθu31u13, [u13, u32] = 0, u13u33 = e−2πiθu33u13,

u21u22 = e−2πiθu22u21, u21u23 = e2πiθu23u21, u21u31 = e2πiθu31u21,

[u21, u32] = 0, u21u33 = e4πiθu33u21, u22u23 = e−2πiθu23u22,

u22u31 = e4πiθu31u22, u22u32 = e2πiθu32u22, [u22, u33] = 0,

[u23, u31] = 0, u23u32 = e4πiθu32u23, u23u33 = e2πiθu33u23,

u31u32 = e−2πiθu32u31, u31u33 = e2πiθu33u31, u32u33 = e−2πiθu33u32.

The coalgebra structure restricted these elements is given by

∆(uij) =

3∑
k=1

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji.
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Thus, SU(3)θ is a compact quantum group.

While we consider only the ∗-algebra generated by elements to be our com-
pact quantum group, Theorem 3.9 of [10] shows that the algebra generated by
{uij} is dense in SU(3)θ, and therefore, that SU(3)θ can be completed to a
compact matrix quantum group with the C∗-algebra structure.

3. actions of SU(3)θ

In this section we present examples of actions of SU(3)θ. Classically, SU(3)
acts most naturally on S5 (transitively) and on SU(4) as a subgroup. In the
first subsection, we review the action of SU(3)θ on S5

λ as a compact quantum
group. This example was also presented in [11], but it remains relevant for
the present article because the fixed-point subalgebra for this action is shown
to be trivial. Thus, it gives one way of generalizing homogeneous spaces. On
the other hand, the action of SU(3)θ on SU(4)λ as a quantum group is a new
example in Section 3.2. In this example, we derive the noncommutative 7-sphere
S7
θ′ as the fixed-point algebra for this action. Therefore, it is a homogeneous

space. In the noncommutative geometric framework, these two generalizations
of homogeneous spaces seem to be different.

3.1. action of SU(3)θ on S5
λ

We construct the action of SU(3)θ on S5
λ [11]. It is a generalization of the

classical action of SU(3) on S5. The fixed-point subalgebra is trivial, which
is analogous to the classical action of SU(3) on S5. However, the extent to
which it remains an action in the deformation depends on the choice of the
parameters of the deformations.

An odd dimensional noncommutative (2n-1)-sphere S2n−1
λ is a θ-deformation

of the algebra generated by the coordinate functions on the (2n-1)-sphere
S2n−1, which can be constructed from the action of Tn. It is the ∗-algebra
generated by n normal elements z1, z2, . . . , zn satisfying the commutation rela-
tions

zjzk = e2πiλjkzkzj , zjz
∗
k = e−2πiλjkz∗kzj ,

n∑
k=1

zkz
∗
k = 1

where λjk = −λkj . These spheres are often referred to as Connes-Landi spheres.

Definition 3.1. Let H be a compact quantum group and A an algebra. An
algebra homomorphism

ρ : A→ H ⊗A

is called a (left) action of the compact quantum group if

i) (∆⊗ id) ◦ ρ = (id⊗ ρ) ◦ ρ and
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ii) (ε⊗ id) ◦ ρ = id.

The set denoted by AH := {a ∈ A : ρ(a) = 1⊗ a} is called the fixed-point sub-
algebra for the action by H. The elements of AH are called invariant elements.

We restate the following criterion, which gives the necessary and sufficient
condition of which an action of the undeformed algebras extends to the de-
formed setting [11].

Lemma 3.2. Let A be an algebra and H a compact quantum group both
equipped with n-torus Tn actions, αt and βs, respectively. Let λ and θ = K ⊕
(−K) be real antisymmetric matrices. Suppose ρ : A→ H ⊗ A is an action of
the quantum group H on A. Then, it extends to an action ρθ,λ : Aλ → Hθ⊗Aλ
if and only if for each a =

∑
~n

a~n and b =
∑
~m

b~m the following equation holds.

eπiλ(~n,~m)

∫
Tn×Tn

ρ(αt(a~n))ρ(αs(b~m))e−2πi(t·~n+s·~m)

=
∑

( ~n′,~p),( ~m′,~q)

e2πi(θ( ~n′, ~m′)+λ(~p,~q))×

∫
T2n×T2n

(βt′ ⊗ αt)(ρ(an))(βs′ ⊗ αs)(ρ(bn))×

e−2πi(t′· ~n′+t·~p+s′· ~m′+s·~q)dt′dtds′ds

(7)

for each ~n and ~m in Zn × Zn. Moreover, the fixed-point subalgebra AHθλ ⊂ Aλ
is isomorphic to AH .

Proof. Note that a~n =
∫
Tn αt(a)e−2πit·~n. For ρ to be a homomorphism with

respect to the new products, we need to have

ρ(a×λ b) = ρ(a)×θ⊕λ ρ(b).

The left hand side gives

ρ(a×λ b) = ρ

∑
~n,~m

eπiλ(~n,~m)a~nb~m


=
∑
~n,~m

eπiλ(~n,~m)ρ(a~n)ρ(b~m)

=
∑
~n,~m

eπiλ(~n,~m)

∫
Tn×Tn

ρ(αt(a~n))ρ(αs(b~m))e−2πi(t·~n+s·~m)dtds
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while the right hand side gives

ρ(a)×θ⊕λ ρ(b) =

(∑
~n

ρ(a~n)

)
×θ⊕λ

(∑
~m

ρ(b~m)

)
=
∑
~n,~m

ρ(a~n)×θ⊕λ ρ(b~m)

=
∑
~n,~m

∑
( ~n′,~p),( ~m′,~q)

e2πi(θ( ~n′, ~m′)+λ(~p,~q))×

∫
T2n×T2n

(βt′ ⊗ αt)(ρ(a~n))(βs′ ⊗ αs)(ρ(b~m))×

e−2πi(t′· ~n′+t·~p+s′· ~m′+s·~q)dt′dtds′ds ,

which shows that ρ is a homomorphism if and only if this condition (7) is
satisfied.

To show that ρ is an action, note that the coproduct ∆ and the action
itself ρ are unchanged. Therefore, the conditions i) and ii) of left action are
automatically satisfied.

Since the action ρ is unchanged, we see that the invariant elements remain
unchanged andAHθλ is a subalgebra because ρ is an algebra homomorphism. �X

Although the proof is simple, the previous lemma an important criterion of
when an action extends to the deformed algebras. It suffices to show that the
generators satisfy (7).

For instance, using S5 ⊂ C3, the action of SU(3) on S5 can be given by
the matrix multiplication (z1, z2, z3)T 7→ U(z1, z2, z3)T , (z1, z2, z3)T ∈ S5 ⊂ C3

and U ∈ SU(3). The dual version of this action is the action given by zj 7→∑3
k=1 ujk ⊗ zk.

Let Hθ = SU(3)θ and Aλ = S5
λ. Then, an action of the compact quantum

group Hθ on Aλ can be given by the following proposition.

Proposition 3.3. Let λ = (λij) be an real antisymmetric matrix whose entries
satisfy λ12 = −λ13 = λ23 = θ. Then for this particular choice of the values of
the parameters, the linear map δ : Aλ → Hθ⊗Aλ defined by δ(zj) =

∑3
k=1 ujk⊗

zk is a left action of the compact quantum group Hθ on the algebra Aλ. This
action is ergodic in the sense that AHθλ

∼= C.

Proof. We show that the equation (7) holds for those choices of values of λjk.
For instance,

δ(z1) = u11 ⊗ z1 + u12 ⊗ z2 + u13 ⊗ z3

δ(z2) = u21 ⊗ z1 + u22 ⊗ z2 + u23 ⊗ z3.

Revista Colombiana de Matemáticas
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Now,

δ(z1 ×λ z2) = eπiλ12δ(z1z2) = δ(z1)×θ⊕λ δ(z2)

while

δ(z1)×θ⊕λ δ(z2)

= eπiθu11u21 ⊗ z1z1 + eπiλ12u11u22 ⊗ z1z2 + eπi(2θ+λ13)u11u23 ⊗ z1z3

+ eπi(2θ−λ12)u12u21 ⊗ z2z1 + eπiθu12u22 ⊗ z2z2 + eπiλ23u12u23 ⊗ z2z3

+ e−πiλ13u13u21 ⊗ z3z1 + eπi(2θ−λ23)u13u22 ⊗ z3z2 + eπiθu13u23 ⊗ z3z3.

(8)

From such relation (8), the necessary condition for the values of λ = (λjk) are
already restricted to λ12 = −λ13 = λ23 = θ. The equation (7) shows that it is
enough to prove such relations for the isotypic components of the algebra. The
commutation relations for other generators can be ccomputed similarly. Thus,
δ is an action whose fixed-point subalgebra is C by Lemma 3.2. �X

3.2. θ-deformation of 7-sphere as a homogeneous space

In this subsection, we give the noncommutative 7-sphere S7
θ′ an interpretation

of a homogeneous space. We achieve this notion by interpreting S7
θ′ as the fixed-

point subalgebra for the action by SU(3)θ on SU(4)λ. More generally, we can
consider homogeneous spaces M = G/K where G is a compact Lie group and
K is a closed subgroup. Using the isomorphism C(G)K → C(M) of algebras
between the algebra C(M) of functions on M the K-invariant functions C(G),
the algebra of functions on the homogeneous space is defined to be C(G)K .
This notion can be generalized to the noncommutative setting.

A 3-parameter deformation SU(4)λ of SU(4) using the action of its maximal
torus T3 can be computed using the same method for SU(3)θ in Section 2.3.
Now we can determine exactly when SU(3)θ acts on SU(4)λ using Lemma
3.2 and explicitly determine the invariant elements. The proof is essentially
identical to Proposition 3.3 with a minor modification. As a subgroup, SU(3) ⊂
SU(4) acts on SU(4) by the left matrix multiplication on the left upper 3×3
block. The following theorem is the quantum counterpart of this action.

Proposition 3.4. Let uij ∈ SU(3)θ and vkl ∈ SU(4)λ. The map defined by

ρ(vkl) =

3∑
α=1

ukα ⊗ vαl, k, l = 1, 2, 3

ρ(v4l) = 1⊗ v4l, k, l = 1, 2, 3, 4

is an action ρ : SU(4)λ → SU(3)θ ⊗ SU(4)λ if and only if θ = λ12 = −λ13 =

λ23. In this case, the algebra B = (SU(4)λ)
SU(3)θ of invariant elements is

generated by
{1⊗ v4l : l = 1, 2, 3, 4} .
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Set xl = 1 ⊗ v4l. Then the algebra B generated by xl is isomorphic to the
noncommutative 7-sphere S7

θ′ as in [1, 3, 5] with

θ′ =


0 −θ θ 0

θ 0 −θ 0

−θ θ 0 0

0 0 0 0

 .

Exact relations can be computed using the commutation relations of SU(4)λ
and θ = λ12 = −λ13 = λ23 as in the above theorem:

x1x2 = e−2πiθx2x1, x1x3 = e2πiθx3x1, x1x4 = x4x1,

x2x3 = e−2πiθx3x2, x2x4 = x4x2, x3x4 = x4x3,

x1x
∗
1 + x2x

∗
2 + x3x

∗
3 + x4x

∗
4 = 1.

Although the θ-deformations of compact manifolds had been considered as
homogeneous spaces, our result yields a general construction. It shows that it
is enough to compute the dependence of the deformation parameters according
to (7). For instance, Varilly in [9] concluded that the some of the generators of
the odd dimensional noncommutative spheres commute with everything else,
which is consistent with our result since x4 in the centre. On the other hand,
the noncommutative 3-sphere S3

θ′ is not a homogeneous space unless θ = 0
while S5

λ is only a homogeneous space in the sense that the fixed-point algebra
for the SU(3)θ action is trivial in the present work. Indeed, the natural left
action by SU(2) on SU(3) given by

ρ (uij) =


αu1j + βu2j i = 1

−β̄u1j + αu2j i = 2

u3j i = 3

(9)

does not extend on SU(3)θ. Simply, ρ(u11u12) 6= ρ(e−2πiθu12u11). Varilly’s
method differs from ours. Rather than computing the invariant elements, Var-
illy endows C(G/K) with a new product consistent in a way that it is embedded
in C(G)θ. We took a more direct approach to endow C(G) with the natural
action by C(K) and studied the extent to which the original action is an action
in the θ-deformation context. In that sense, it does not make sense to consider
S5
λ as an embeddable homogeneous space in SU(3)θ for SU(2).

The ubiquity of the θ-deformation in noncommutative geometry is already
familiar. While the present work shows merely an example of symmetry in θ-
deformation, it explains the pervasiveness of symmetry in the θ-deformation.
There are already numerous research in mathematical physics using a toric non-
commutative manifold as models, whether they are realized as θ-deformations
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or not. We believe that our work has potential to reveal symmetries of toric
noncommutative manifolds, and therefore, it has potential to be used in nu-
merous areas of quantum physics.

Mathematically, it would be an interesting problem to classify up to Morita
equivalence or isomorphism these objects. In fact, very little is known about
the Morita equivalence of the θ-deformations other than the case of the non-
commutative 2-torus.
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Jana i Jȩdrzeja Śniadeckich 8, 00-656 Warszawa

Polonia

e-mail: mwilson@impan.pl

Revista Colombiana de Matemáticas


