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Abstract. The paper is devoted to the study of graded-simple modules and
gradings on simple modules over finite-dimensional simple Lie algebras. In
general, a connection between these two objects is given by the so-called loop
construction. We review the main features of this construction as well as nec-
essary and sufficient conditions under which finite-dimensional simple modules
can be graded. Over the Lie algebra sl2(C), we consider specific gradings on
simple modules of arbitrary dimension.
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Resumen. El art́ıculo está dedicado al estudio de módulos graduados simples y
graduaciones de módulos simples sobre álgebras de Lie simples de dimensión
finita. En general, una conexión entre estos dos objetos viene dada por la
llamada construcción de lazos.

Revisaremos las caracteŕısticas principales de esta construcción, aśı como
las condiciones necesarias y suficientes bajo las cuales se pueden graduar los
módulos simples de dimensión finita. Para el álgebra de Lie sl2(C), consider-
amos graduaciones espećıficas en módulos simples de dimensión arbitraria.
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1. Introduction

Let G be a non-empty set. A G-grading on a vector space V over a field F is a
direct sum decomposition of the form

V =
⊕
g∈G

Vg. (1)

We will sometimes use Greek letters to refer to gradings, for example, we may
write Γ : V =

⊕
g∈G Vg. If such a grading is fixed, V is called G-graded.

Note that the Vg are allowed to be zero subspaces. The subset S ⊂ G
consisting of those g ∈ G for which Vg 6= {0} is called the support of the
grading Γ and denoted by Supp Γ or SuppV . The subspaces Vg are called
the homogeneous components of Γ, and the nonzero elements in Vg are called
homogeneous of degree g (with respect to Γ). A graded subspace U ⊂ V is an
F-subspace satisfying U =

⊕
g∈G U ∩ Vg (so U itself becomes G-graded).

Now let Γ and Γ′ : V =
⊕

g′∈G′ V
′
g′ be two gradings on V with supports S

and S′, respectively. We say that Γ is a refinement of Γ′ (or Γ′ is a coarsening
of Γ), if for any s ∈ S there exists s′ ∈ S′ such that Vs ⊂ V ′s′ . The refinement
is proper if this inclusion is strict for at least one s ∈ S.

An F-algebra A (not necessarily associative) is said to be graded by a set
G, or G-graded if A is a G-graded vector space and for any g, h ∈ G such that
AgAh 6= {0} there is k ∈ G (automatically unique) such that

AgAh ⊂ Ak. (2)

In this paper, we will always assume that G is an abelian group and k in Equa-
tion (2) is determined by the operation of G. Thus, if G is written additively
(as is commonly done in papers on Lie theory), then Equation (2) becomes
AgAh ⊂ Ag+h. If G is written multiplicatively, then it becomes AgAh ⊂ Agh.
More generally, one can consider gradings by nonabelian groups (or semi-
groups). A grading on A is called fine if it does not have a proper refinement.
Note that this concept depends on the class of gradings under consideration:
by sets, groups, abelian groups, etc. It is well known that the latter two classes
coincide for simple Lie algebras.

Given a grading Γ : A =
⊕

g∈GAg with support S, the universal group of Γ,
denoted by Gu, is the group given in terms of generators and defining relations
as follows: Gu = 〈S | R〉, where R consists of all relations of the form gh = k
with {0} 6= AgAh ⊂ Ak. If Γ is a group grading, then S is embedded in Gu

and the identity map idS extends to a homomorphism Gu → G so that Γ can
be viewed as a Gu-grading Γu. In fact, any group grading Γ′ : A =

⊕
g′∈G′ A

′
g′

that is a coarsening of Γ can be induced from Γu by a (unique) homomorphism
ν : Gu → G′ in the sense that Ag′ =

⊕
g∈ν−1(g′)Ag for all g′ ∈ G′. In this

situation, one may say that Γ′ is a quotient of Γu. In the above considerations,
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we can replace “group” by “abelian group” and, in general, this leads to a
different Gu. However, there is no difference for gradings on simple Lie algebras.

For example, choose the elements

x =

[
0 1

0 0

]
, h =

[
1 0

0 −1

]
, y =

[
0 0

1 0

]
as a basis of L = sl2(C) and consider the following grading by G = Z3:

Γ : L1 = 〈x〉, L0 = 〈h〉, L2 = 〈y〉.

The support of Γ is G itself, the universal group is Z, and

Γu : L−1 = 〈x〉, L0 = 〈h〉, L1 = 〈y〉.

The following grading by G′ = Z2 is a coarsening of Γ:

Γ′ : L1 = 〈x, y〉, L0 = 〈h〉.

Both Γ and Γ′ are quotients of Γu, while Γ′ is a coarsening but not a quotient
of Γ.

A left module M over a G-graded associative algebra A is called G-graded
if M is a G-graded vector space and

AgMh ⊂Mgh for all g, h ∈ G.

A G-graded left A-module M is called graded-simple if M has no graded sub-
modules different from {0} and M . Graded modules and graded-simple modules
over a graded Lie algebra L are defined in the same way.

If a Lie algebra L is graded by an abelian group G, then its universal
enveloping algebra U(L) is also G-graded. Every graded L-module is a graded
left U(L)-module and vice versa. The same is true for graded-simple modules.

A very general problem is the following: given a module V over a G-graded
Lie algebra L, determine if V can be given a G-grading that is compatible
with the G-grading on L, i.e., one that makes V a graded L-module. In this
paper, we restrict ourselves to the case where L is a finite-dimensional simple
Lie algebra over an algebraically closed field of characteristic zero and focus on
simple L-modules.

For finite-dimensional V , the answer is given in [12], where the authors
classified finite-dimensional graded-simple modules up to isomorphism and, as
a corollary, determined which finite-dimensional simple modules can be made
graded and which finite-dimensional modules can be made graded-simple. The
classification depends on the so-called graded Brauer invariants (see Subsec-
tions 4.3 and 4.4 for definitions), which were computed in [12] for all classical
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simple Lie algebras except D4 and for the remaining types in [13, 8]. We note
that it is difficult to obtain an explicit grading on V using this approach.

If we do not restrict ourselves to finite-dimensional modules, the first ques-
tion that arises is that, in general, there is no classification of simple mod-
ules of arbitrary dimension for any simple Lie algebra, with the exception of
L = sl2(C), for which a classification was suggested by R. Block [7]. Despite
this, in a number of more recent papers, the authors still try to give a more
transparent description of simple sl2(C)-modules. We refer the reader to the
monograph [17]; some other works in this area are [2, 5, 12, 16, 18, 19].

We start this paper by reviewing the criteria of [12, 13, 8] for the existence
of a compatible grading on a finite-dimensional simple module V . Then we
focus on the case L = sl2(C), where we give explicit gradings for those V that
admit them.

After this we switch to infinite-dimensional simple sl2(C)-modules. We re-
view their construction and determine, for some of these modules, whether they
can be made graded or not.

Finally, we turn our attention to reviewing the main results of [14]. Therein,
it is described how the so-called loop construction could be used for the clas-
sification of graded-simple modules of arbitrary dimension. It should be noted
that, even in the case L = sl2(C), this classification remains an interesting open
problem.

2. Finite-dimensional simple modules
over finite-dimensional simple Lie algebras

Let L be a finite-dimensional simple Lie algebra over an algebraically closed
field F of characteristic 0 and suppose L is graded by an abelian group G.
In this section, we will give necessary and sufficient conditions for the finite-
dimensional simple L-module V (λ) of highest weight λ to admit a structure of
G-graded L-module.

All G-gradings on L are known (see e.g. the monograph [11, Ch. 3–6]): they
have been classified up to isomorphism for all types except E6, E7 and E8,
and for these latter, the fine gradings have been classified ([9, 22, 10]), which
gives a description of all G-gradings as follows. Every G-grading Γ on L is a
coarsening of at least one fine grading ∆, so Γ is induced by a homomorphism
ν : Gu → G, where Gu is the universal group of ∆. In other words, Γ is
obtained by assigning the degree ν(s) ∈ G to all nonzero elements of L that are
homogeneous of degree s ∈ Gu with respect to ∆. The isomorphism problem
for G-gradings on L of types E6, E7 and E8 remains open.

Let Ĝ be the group of characters of G, i.e., group homomorphisms χ : G→
F×. If W is a G-graded vector space then Ĝ acts on W as follows:

χ · w = χ(g)w ∀χ ∈ Ĝ, g ∈ G, w ∈Wg (3)
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(extended by linearity). For the given G-grading on the Lie algebra L, such

action defines a homomorphism Ĝ→ Aut(L) sending χ 7→ αχ where αχ(x) :=
χ · x for all x ∈ L. The grading is called inner if all αχ belong to the group of
inner automorphisms Int(L), otherwise it is called outer. Let τχ be the image
of αχ in the outer automorphism group Out(L) := Aut(L)/Int(L).

Fixing a Cartan subalgebra and a system of simple roots α1, . . . , αr for L, we
may identify Out(L) with the group of automorphisms of the Dynkin diagram of
L, which permutes α1, . . . , αr and hence acts on the lattice of integral weights.
Let

Kλ = {χ ∈ Ĝ : τχ(λ) = λ} and Hλ = K⊥λ := {h ∈ G : χ(h) = 1 ∀χ ∈ Kλ}.

Observe that |Hλ| = [Ĝ : Kλ] is the size of the Ĝ-orbit of λ. The nontriviality
of Hλ is the first obstruction for V (λ) becoming a G-graded L-module (see [12,
§3.1]).

We denote the fundamental weights of L by π1, . . . , πr and write λ =∑r
i=1miπi, mi ∈ Z≥0. Our numbering of the simple roots is shown for each

type of L on the diagrams below. In all cases, V (π1) has the lowest possible
dimension among the nontrivial L-modules (which is the reason why we prefer
C2 over B2). Let H = Hπ1 . We have |H| ≤ 2 for types Ar (r ≥ 2) and E6,
|H| ≤ 3 for D4, and |H| = 1 for all other types.

Consider the homomorphism %λ : U(L) → E := EndF(V (λ)) associated to
the L-action on V (λ). It turns out that there is a unique G/Hλ-grading on
the simple associative algebra E such that %λ becomes a homomorphism of
graded algebras (see [12, §3.2]). For this grading on E, there exist a graded-
division algebra D and a graded right D-module V such that E is isomorphic to
EndD(V) as a G-graded algebra (see e.g. [11, Theorem 2.6]), where D is unique
up to graded isomorphism and V up to graded isomorphism and shift of grading
(see e.g. [11, Theorem 2.10]). Here, a graded-division algebra is a graded unital
associative algebra in which every nonzero homogeneous element is invertible,
and the shift of grading by an element g ∈ G replaces a G-graded vector space
W with W [g], which equals W as a vector space, but the elements that had
degree g′ will now have degree g′g, for any g′ ∈ G. The graded-division algebra
D represents the graded Brauer invariant of V (λ), and its nontriviality is the
second obstruction for V (λ) becoming a G-graded L-module (see [12, §3.2]).
A generalization of this analysis is outlined in Subsections 4.3 and 4.4 below,
following [14].

Group gradings on classical simple Lie algebras were classified by studying
D and V associated to the ‘natural module’ V (π1). Since D is a graded-division
algebra, we can find a D-basis {v1, . . . , vk} of V that consists of homogeneous
elements. Let g1, . . . , gk be the degrees of the basis elements. If H is nontrivial,
we will write ḡ1, . . . , ḡk to remind ourselves that these degrees belong to G/H.
Let T be the support of D, which is a finite subgroup of G/H. Pick any nonzero
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elements Xt of Dt, t ∈ T . Note that all homogeneous components of D are one-
dimensional, because De = F1 (being a finite-dimensional division algebra over
the algebraically closed field F) and hence Dt = DeXt = FXt. Hence,

XsXt = β(s, t)XtXs ∀s, t ∈ T, (4)

where β : T × T → F× is an alternating bicharacter, i.e.,

β(s1s2, t) = β(s1, t)β(s2, t), β(t, s1s2) = β(t, s1)β(t, s2), and β(t, t) = 1

for all s1, s2, t ∈ T . Bicharacters are analogous to bilinear forms, so we are
using the same terminology. In particular, the radical of β is the subgroup
{s ∈ T : β(s, t) = 1 ∀t ∈ T}. Since the algebra EndF(V (π1)) is central simple,
so is D, and hence the radical of β must be trivial. Alternating bicharacters
with trivial radical are said to be nondegenerate. They admit a ‘symplectic
basis’ (see e.g. [11, Ch. 2, §2]), which implies that there exist subgroups P and
Q of T such that T = P×Q, the restrictions of β to these subgroups are trivial,
and the mapping P → Q̂ sending p 7→ β(p, ·) is an isomorphism. Therefore,
|T | = `2 where ` = |P | = |Q|. Note that in our case ` is the degree of the
matrix algebra D, hence k` = n := dimV (π1).

The bicharacter β is clearly independent of the choice of the elements
Xt. Even though the k-tuple (g1, . . . , gk) depends on the choice of the basis
{v1, . . . , vk}, the multiset Ξ := {g1T, . . . , gkT} in G/T is uniquely determined
by V. T , β and Ξ are among the parameters that define the grading on L up
to isomorphism. Some other parameters will be introduced later as needed.

Ar (r ≥ 1) •α1 •α2 •α3 · · · •
αr−1 •αr

For this type n = r + 1. Note that if r ≥ 2 then there are two possibilities for
π1, which lead to L-modules that are dual to one another.

We have |H| = 1 if the grading on L is inner and |H| = 2 if it is outer.
In the latter case, the grading determines a nondegenerate homogeneous ϕ0-
sesquilinear form B : V × V → D, where ϕ0 is an orthogonal involution on the
G/H-graded matrix algebra D (see [11, Ch. 2, §4 and Ch. 3, §1]). The existence
of ϕ0 implies that T is an elementary 2-group, so ` is a power of 2. The degree
g0 ∈ G/H of B is another parameter of the grading on L. If n is even, set

gΞ,ḡ0
:=

{
g
n/2
0 (g1 · · · gk)` if ` 6= 2,

(c̄g0)n/2(g1 · · · gk)` if ` = 2,
(5)

where, for ` = 2, c̄ is the unique element of T such that ϕ0(Xc̄) = −Xc̄.

Theorem 2.1. [12, Corollaries 16 and 24] Suppose a simple Lie algebra L
of type Ar is given a G-grading with parameters T , β, Ξ and, if the grading
is outer, also g0 ∈ G/H as described above. Consider the finite-dimensional
simple L-module V (λ) of highest weight λ =

∑r
i=1miπi.
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I If the grading on L is inner, then V (λ) admits a G-grading making it a
graded L-module if and only if the number

∑r
i=1 imi is divisible by the

exponent of the group T .

II If the grading on L is outer (hence r ≥ 2), then V (λ) admits a G-grading
making it a graded L-module if and only if the following two conditions
are satisfied:

1) mi = mr+1−i for all i;

2) either r is even or r is odd and at least one of the following holds:

(i) m(r+1)/2 is even, or

(ii) r ≡ 3 (mod 4) and gΞ,ḡ0 is the trivial element of G/H, or

(iii) r ≡ 1 (mod 4), |T | = 1, and gΞ,ḡ0
is the trivial element of G/H,

where gΞ,ḡ0 is defined by Equation (5). �X

Br (r ≥ 3) •α1 •α2 •α3 · · · •
αr−1 +3•αr

For this type n = 2r + 1 is odd and |H| = 1. The existence of an involution
on D implies that T is an elementary 2-group, so ` is a power of 2 dividing n,
hence ` = 1, k = n and D = F. The grading on L determines a nondegenerate
homogeneous symmetric bilinear form B : V × V → F, which may be assumed
to have degree e (at the expense of shifting the grading on V, see [11, Ch. 3,
§4]). This implies that the multiset Ξ = {g1, . . . , gn} is ‘balanced’ in the sense
that, for any g ∈ G, the multiplicities of g and g−1 in Ξ are equal to one
another. We order the n-tuple (g1, . . . , gn) so that g2

i = e for 1 ≤ i ≤ q and
g2
i 6= e for i > q, where 1 ≤ q ≤ n and q is odd. For i = 1, . . . , q, set

g̃i := g1 · · · gi−1gi+1 · · · gq. (6)

Then g̃2
i = e and g̃1 · · · g̃q = e. Consider the group homomorphism fΞ : Ĝ→ Zq2

given by
fΞ(χ) := (x1, . . . , xq) where χ(g̃i) = (−1)xi . (7)

It determines the graded Brauer invariant of the spin module V (ωr) ([12, §5]),
but here we only state the following:

Theorem 2.2. [12, Corollary 29] Suppose a simple Lie algebra L of type Br is
given a G-grading with parameter Ξ as described above. The finite-dimensional
simple L-module V (λ) of highest weight λ =

∑r
i=1miπi admits a G-grading

making it a graded L-module if and only if at least one of the following holds:

(i) mr is even, or

(ii) the elements g̃1, . . . , g̃q of G defined by Equation (6) and the homomor-

phism fΞ : Ĝ → Zq2 defined by Equation (7) have the following property:

for any x ∈ fΞ(Ĝ), g̃x1
1 · · · g̃

xq
q = e. �X
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Cr (r ≥ 2) •α1 •α2 •α3 · · · •ks
αr−1 •αr

For this type n = 2r, |H| = 1, and again the existence of an involution on D
implies that T is an elementary 2-group.

Theorem 2.3. [12, Corollary 32] Suppose a simple Lie algebra L of type Cr is
given a G-grading with parameter T as described above. The finite-dimensional
simple L-module V (λ) of highest weight λ =

∑r
i=1miπi admits a G-grading

making it a graded L-module if and only if either |T | = 1 or
∑b(r+1)/2c
i=1 m2i−1

is even. �X

Dr (r ≥ 4) •
αr−1

•α1 •α2 •α3 · · · •
αr−2

•αr

For this type n = 2r and, unless r = 4, |H| = 1. For type D4, we have |H| ≤ 3

and we can avoid the case |H| = 2: if Ĝ interchanges two of the outer vertices
of the Dynkin diagram, we label by 1 the fixed outer vertex.

Assume that the grading on L is inner. Then |H| = 1 and the grading
determines a nondegenerate homogeneous ϕ0-hermitian form B : V × V → D,
where ϕ0 is an orthogonal involution on the G-graded matrix algebra D. Let
g0 ∈ G be the degree of B. The existence of ϕ0 again implies that T is an
elementary 2-group, so ` is a power of 2 dividing n.

We need to take a closer look at ϕ0. Since it preserves degree and all com-
ponents of D are one-dimensional, we have

ϕ(Xt) = β(t)Xt ∀t ∈ T

where β : T → {±1}, and Equation (4) shows that β(st) = β(s)β(t)β(s, t) for
all s, t ∈ T , i.e., β(·) is a quadratic form with polar form β(·, ·) if we regard
T as a vector space over the field Z2. Moreover, this quadratic form has Arf
invariant 0 because ϕ0 is orthogonal.

The multiset Ξ = {g1T, . . . , gkT} is ‘g0-balanced’ in the following sense: if
g′ and g′′ in G satisfy g0g

′g′′ ∈ T then g′T and g′′T have the same mutliplicity
in Ξ. We order the k-tuple (g1, . . . , gk) so that g0g

2
i ∈ T for 1 ≤ i ≤ q and

g0g
2
i /∈ T for i > q, where 0 ≤ q ≤ k and q has the same parity as k. The cases

` = 1, ` = 2, ` = 4, and ` > 4 require different computations to find the graded
Brauer invariants of the half-spin modules V (πr−1) and V (πr) (see [12, §7.3]),
so we consider these cases separately. If q = 0, the invariants are trivial, so we
assume q ≥ 1.
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` = 1 This case is similar to type Br: k = n, D = F, and we may assume
g0 = e at the expense of shifting the grading on V (see [12, Remark 42]). For
i = 1, . . . , q, we have g2

i = e, and it can be shown that g1 · · · gq = e. Consider

the group homomorphism fΞ : Ĝ→ Zq2 given by

fΞ(χ) := (x1, . . . , xq) where χ(gi) = (−1)xi . (8)

It determines the graded Brauer invariants of the half-spin modules, which in
this case are equal to one another.

In all remaining cases, these invariants are distinct (although related), and
the grading on L can be used to define a specific nonscalar central element of
the spin group (see [12, §7.3]), whose action determines the designation of one
of the half-spin modules as S+ and the other as S−. For i = 1, . . . , q, set

ti := g0g
2
i .

These elements of T determine the canonical form of B : V×V → D and satisfy
β(ti) = 1 for all i.

` = 2 Write T = {e, a, b, c} ' Z2
2 where β(a) = β(b) = 1 and β(c) = −1,

so ti ∈ {e, a, b}. For any t ∈ T , define

It = {1 ≤ i ≤ q : ti = t}.

Then Ic = ∅ and the sets Ie, Ia and Ib form a partition of {1, . . . , q}. It can be
seen that |Ie|, |Ia| and |Ib| have the same parity as r. Set

ga = g
(|Ie|+|Ia|)/2
0

∏
i∈Ie∪Ia

gi and gb = g
(|Ie|+|Ib|)/2
0

∏
i∈Ie∪Ib

gi. (9)

These elements determine the graded Brauer invariant of S+ and hence of S−.

` = 4 Recall that T has a ‘symplectic basis’: T = 〈a1, a2, b1, b2〉 ' Z4
2

where β(ai, bj) = (−1)δij and the values of β(·, ·) on the remaining pairs of
basis elements are equal to 1. We choose the basis in such a way that β(aj) =
β(bj) = 1 for j = 1, 2 (in other words, with respect to the quadratic form β(·),
the subgroups 〈a1, a2〉 and 〈b1, b2〉 are totally isotropic). Then the following
4× 4 matrix with entries in Z2 determines the graded Brauer invariant of S+:

M+
Ξ,g0

=

q∑
i=1

M+(ti), (10)

where, for any t = ax1
1 ax2

2 by1

1 b
y2

2 , the symmetric matrix M+(t) is given by

M+(t) =


0 (x1 + 1)(x2 + 1) 0 (x1 + 1)(y2 + 1)

0 (x2 + 1)(y1 + 1) 1

0 (y1 + 1)(y2 + 1)

sym 0

 .
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` > 4 In this case, the graded Brauer invariant of S+ is trivial.

Theorem 2.4. [12, Corollaries 47 and 49] and [13, Corollary 24] Suppose a
simple Lie algebra L of type Dr is given a G-grading and consider the finite-
dimensional simple L-module V (λ) of highest weight λ =

∑r
i=1miπi.

I If the grading on L is inner, with parameters T , β, Ξ and g0 as described
above, then V (λ) admits a G-grading making it a graded L-module if and
only if one of the following conditions is satisfied:

1) |T | = 1 and at least one of the following holds:

(i) mr−1 ≡ mr (mod 2), or

(ii) the elements g1, . . . , gq and the homomorphism fΞ : Ĝ → Zq2
defined by Equation (8) have the following property: for any

x ∈ fΞ(Ĝ), gx1
1 · · · g

xq
q = e;

2) |T | > 1, mr−1 ≡ mr (mod 2) and one of the following holds:

(i) r is even and
∑r/2
i=1m2i−1 is even, or

(ii) r is odd and
∑(r−1)/2
i=1 m2i−1 − (mr−1 −mr)/2 is even;

3) mr−1 6≡ mr (mod 2), r is even,
∑r/2
i=1m2i−1 is even, and one of the

following holds:

(i) |T | = 4 and the elements ga and gb defined by Equation (9)
belong to T , or

(ii) |T | = 16 and the matrix M+
Ξ,g0

defined by Equation (10) is 0, or

(iii) |T | > 16,

where in 3) we assume that the numbering of the simple roots is
chosen so that V (πr) = S+.

II If the grading on L is outer and, in the case r = 4, the Ĝ-action is not
transitive on the outer vertices of the Dynkin diagram, then V (λ) admits
a G-grading making it a graded L-module if and only if the following two
conditions are satisfied:

1) mr−1 = mr;

2) |T | = 1 or
∑br/2c
i=1 m2i−1 is even;

where in the case r = 4 we assume that the numbering of the simple roots
is chosen so that π1 is fixed by Ĝ.

III If r = 4 and the Ĝ-action is transitive on the outer vertices of the Dynkin
diagram, then V (λ) admits a G-grading making it a graded L-module if
and only if m1 = m3 = m4. �X
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E6 •α1 •α2 •α3

α6

•α4 •α5

•

For this type the dimension of V (π1) is 27 (there are two possibilities for π1,
which lead to dual modules), and we have |H| = 1 if the grading on L is inner
and |H| = 2 if it is outer.

Out of the 14 fine gradings on L (up to equivalence), 5 are inner, with
universal groups Z6, Z2 × Z2

3, Z2 × Z3
2, Z4

3 and Z3
2 × Z2

3, and 9 are outer, with
universal groups Z4 × Z2, Z2 × Z3

2, Z × Z5
2, Z × Z4

2, Z2 × Z3
3, Z7

2, Z6
2, Z3

4 and
Z4 × Z4

2.

For each of the inner fine gradings on L with Gu = Z2 × Z2
3, Z3

2 × Z2
3 and

Z4
3, there is a distinguished subgroup T ' Z2

3 of Gu, which is associated to the
graded Brauer invariant of V (π1). For all other fine gradings, this invariant is
trivial (see [8, §4]).

Theorem 2.5. [8, Corollaries 4.2 and 4.5] Suppose a simple Lie algebra L of
type E6 is given a G-grading induced by a homomorphism ν : Gu → G from
one of the fine gradings. Consider the finite-dimensional simple L-module V (λ)

of highest weight λ =
∑6
i=1miπi.

I If the grading on L is inner, then V (λ) admits a G-grading making it a
graded L-module if and only if one of the following conditions is satisfied:

1) Gu is not one of the groups Z2 × Z2
3, Z3

2 × Z2
3 and Z4

3;

2) Gu is Z2×Z2
3, Z3

2×Z2
3 or Z4

3 and at least one of the following holds:

(i) m1 −m2 +m4 −m5 ≡ 0 (mod 3), or

(ii) ν is not injective on the distinguished subgroup T ⊂ Gu.

II If the grading on L is outer, then V (λ) admits a G-grading making it a
graded L-module if and only if m1 = m5 and m2 = m4. �X

E7 •α1 •α2 •α3 •α4

α7

•α5 •α6

•

For this type the dimension of V (π1) is 56 and we have |H| = 1. There are
14 fine gradings on L (up to equivalence), with universal groups Z7, Z3 × Z3

2,
Z × Z3

3, Z2
2 × Z3

3, Z × Z2 × Z2
4, Z3

2 × Z2
4, Z2 × Z3

4, Z4 × Z2
2, Z2 × Z4

2, Z × Z5
2,

Z× Z6
2, Z7

2, Z5
2 × Z4 and Z8

2.

For the fine gradings on L with Gu = Z7, Z3 × Z3
2 and Z× Z3

3, the graded
Brauer invariant of V (π1) is trivial. For each of the remaining fine gradings,
this invariant gives a distinguished subgroup T ' Z2

2 of Gu (see [8, §5]).
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Theorem 2.6. [8, Corollary 5.7] Suppose a simple Lie algebra L of type E7 is
given a G-grading induced by a homomorphism ν : Gu → G from one of the
fine gradings. The finite-dimensional simple L-module V (λ) of highest weight

λ =
∑7
i=1miπi admits a G-grading making it a graded L-module if and only if

one of the following conditions is satisfied:

1) Gu is Z7, Z3 × Z3
2 or Z× Z3

3;

2) Gu is not one of the groups Z7, Z3 × Z3
2 and Z× Z3

3 and at least one of
the following holds:

(i) m1 +m3 +m7 ≡ 0 (mod 2), or

(ii) ν is not injective on the distinguished subgroup T ⊂ Gu. �X

For the remaining types, the algebraic group Aut(L) is connected and simply

connected, which implies that every dominant integral weight λ is fixed by Ĝ
and the graded Brauer invariant of V (λ) is trivial (see [13, Appendix A]).

Theorem 2.7. [13, Corollary 22] Suppose a simple Lie algebra L of type E8,
F4 or G2 is given a G-grading. Then any finite-dimensional L-module admits
a G-grading making it a graded L-module. �X

3. Group gradings of sl2(C)-modules

In this section we restrict our attention to modules over the Lie algebra of type
A1, which can be realized as sl2(C).

3.1. Group gradings of sl2(C)

All group gradings on sl2(C) are well-known, see e.g [11]. We will use the
following bases:

x =

[
0 1

0 0

]
, h =

[
1 0

0 −1

]
, y =

[
0 0

1 0

]
. (11)

A =

[
1 0

0 −1

]
= h, B =

[
0 1

1 0

]
, C =

[
0 1

−1 0

]
. (12)

Up to equivalence, there are precisely two fine gradings on sl2(C) (see [11,
Theorem 3.55]):

(1) the Cartan grading with the universal group Z,

Γ1
sl2 : sl2(C) = L−1 ⊕ L0 ⊕ L1 where L0 = 〈h〉 , L1 = 〈x〉 , L−1 = 〈y〉 ;
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(2) the Pauli grading with the universal group Z2
2,

Γ2
sl2 : sl2(C) = L(1,0) ⊕ L(0,1) ⊕ L(1,1)

where
L(1,0) = 〈A〉 , L(0,1) = 〈B〉 , L(1,1) = 〈C〉 .

Hence, up to isomorphism, any G-grading on sl2(C) is a coarsening of one of
the two gradings: Cartan or Pauli.

Note that any grading Γ of a Lie algebra L uniquely extends to a grading
U(Γ) of its universal enveloping algebra U(L). The grading U(Γ) is a grading
in the sense of associative algebras but also as L-modules where U(L) is either
a (left) regular L-module or an adjoint L-module. In our study of gradings
on sl2(C)-modules we will often consider a Z2-coarsening of U(Γ2

sl2
), in which

the component of the coarsening labeled by 0 is the sum of components of the
original grading labeled by (0, 0) and (1, 0) while the component labeled by 1
is the sum of components labeled by (0, 1) and (1, 1).

3.2. Algebras U(Iλ)

Let c ∈ U(sl2(C)) be the Casimir element for sl2(C). With respect to the basis
{h, x, y} of sl2(C), this element can be written as

c = (h+ 1)2 + 4yx = h2 + 1 + 2xy + 2yx. (13)

It is well-known that the center of U(sl2(C)) is the polynomial ring C[c]. Note
that c is a homogeneous element of degree zero, with respect to the Cartan
grading of U(sl2(C)). One can write the Casimir element with respect to the
basis {h,B,C} of sl2(C).

Namely,

c = 2xy + 2yx+ h2 + 1 = 2

(
B + C

2

)(
B − C

2

)
+ 2

(
B − C

2

)(
B + C

2

)
+ h2 + 1

=
1

2
(B2 + CB −BC − C2) +

1

2
(B2 +BC − CB − C2) + h2 + 1,

and so
c = B2 − C2 + h2 + I = A2 +B2 − C2 + 1.

It follows that c is also homogeneous, of degree (0,0), with respect to the Pauli
grading of U(sl2(C)).

Let R be an associative algebra (or just an associative ring), and V be a
left R-module. The annihilator of V , denoted by AnnR(V ), is the set of all
elements r in R such that, for all v in V , r.v = 0 :
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AnnR(V ) = {r ∈ R | r.v = 0 for all v ∈ V }.

Given λ ∈ C, let Iλ be the two-side ideal of U(sl2(C)), generated by the central
element c− (λ+ 1)2.

Theorem 3.1. [17, Theorem 4.7] For any simple U(sl2(C))-module M , there
exists λ ∈ C such that Iλ ⊂ AnnU(sl2(C))(M).

Proposition 3.2. Let R be a graded algebra and M be a graded R-module,
then AnnR(M) is graded.

Proof. Let I = AnnR(M) = {x ∈ R | x.M = 0}, and 0 6= x ∈ I ⊆ R, then
x = x1 + x2 + · · ·xk, where xi are homogeneous elements in R (belonging to
different homogeneous components ). Let v ∈M be an arbitrary homogeneous
element, then 0 = x.v = x1.v+x2.v+· · ·xk.v. Since the components xi.v belong
to different homogeneous subspaces, it follows that xi.v = 0 for all i. and since
v is an arbitrary homogeneous element, then xi ∈ I for all i. �X

Proposition 3.3. The ideal Iλ is both Z - and Z2
2-graded ideal.

Proof. Since c−(λ+1)2 is homogeneous of degree 0 (resp., (0,0)) with respect
to the Z-grading (resp., Z2

2- grading), then Iλ is graded. �X

Now for any λ ∈ C, we write U(Iλ) := U(sl2(C))/Iλ. Using Proposition 3.3,
U(Iλ) is a Z-graded algebra and Z2

2-graded algebra. It is well-known (see e.g.
[17]) that the algebra U(Iλ) is a free C[h]-module with basis

B0 =
{

1, x, y, x2, y2, . . .
}
,

and so it is free over C with basis B =
{

1, h, h2, . . .
}
.B0. Note that the basis B is

a basis of U(Iλ) consisting of homogeneous elements with respect to the Cartan
grading by Z. A basis of U(Iλ) over C consisting of homogeneous elements with
respect to the Pauli grading by Z2

2 can be computed as follows. Set

B̂0 = {1, B,C,BC,B2, B2C,B3, B3C, . . .}.

Then easy calculations, using induction by the natural filtration in B and the
relation C2 = h2 +B2 − λ2 − 2λ show that the set B̂ = {1, h, h2, . . .} · B̂0 is a
Z2

2-homogeneous basis of U(Iλ).

Let p(t) = 1
4 ((λ2 + 2λ) − 2t − t2) ∈ C[t]. Then, inside U(Iλ) , for any

q(t) ∈ C[t], we have the following relations:

xkq(h) = q(h− 2k)xk

yjq(h) = q(h+ 2j)yj .

If k ≥ j then
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xkyj = p(h− 2k) · · · p(h− 2(k − j + 1))xk−j

yjxk = p(h+ 2(j − 1)) · · · p(h)xk−j .

If j ≥ k then

xkyj = p(h− 2k) · · · p(h− 2)yj−k

yjxk = p(h+ 2(j − 1)) · · · p(h+ 2(j − k))yj−k.

Moreover, U(Iλ) is a generalized Weyl algebra (see e.g [4]) and has the following
properties.

Theorem 3.4. [17, Theorem 4.15]

(1) U(Iλ) is both left and right Noetherian.

(2) U(Iλ) is a domain.

(3) The algebra U(Iλ) is simple for all λ ∈ C \ Z.

(4) For every n ∈ N0, the algebra U(In) has a unique proper ideal.

One more property that is important for us is the following.

Theorem 3.5. [17, Theorem 4.26] For any non-zero left ideal I ⊂ U(Iλ), the
U(Iλ)-module U(Iλ)/I has finite length.

3.3. Weight modules over sl2(C)

Let V be an sl2(C)-module, h = 〈h〉 be the Cartan subalgebra of sl2(C). Since
dim(h) = 1, we can think of h∗ as C. We call

Vµ = {v ∈ V | h.v = µv}, for µ ∈ C,

the weight spaces for V , and if Vµ is nontrivial we call µ ∈ C the weight of V .
If V is the direct sum of these weight spaces, we say that V is a weight module.
The set of all weights is called the support of V , denoted Supp(V ). In the case
of a weight module, if λ ∈ Supp(V ) and λ+2 /∈ Supp(V ), λ is called the highest
weight of V , and the elements of the space Vλ are called highest weight vectors.
Similarly, if λ ∈ Supp(V ) and λ − 2 /∈ Supp(V ), then λ is called the lowest
weight and the elements of the space Vλ are called lowest weight vectors. If the
weight module is generated by vλ, where vλ is a highest (resp., lowest) weight
vector, then V is called highest (resp., lowest) weight module of weight λ.

Lemma 3.6. Any h-invariant subspace of a weight sl2(C)-module is spanned
by weight vectors.
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Proof. Let V be a weight sl2(C)-module and W an h-invariant subspace of V .
Let w ∈W ⊂ V , so w = v1 +v2 +· · ·+vk, where vi is a nonzero weight vector of
weight µi ∈ C, for all i = 1, 2, . . . , k, where we may assume that µ1, µ2, . . . , µk
are distinct. Define the elements hi ∈ U(h), i = 1, . . . , k, by

hi =
∏
l 6=i(h− µl).

Then

hi.vj =

{
0 if i 6= j;∏
l 6=i(µi − µl)vi if i = j.

Hence,

W 3 hi.w =
∑k
j=1 hi.vj = hi.vi =

∏
l 6=i(µi − µl)vi,

which means that vi ∈W . �X

3.3.1. Simple finite-dimensional sl2(C)-modules

Let V = V (n) be a finite - dimensional simple sl2(C)-module of dimension n+1,
with a highest weight vector v0 ∈ Vn and highest weight n. Define vi = 1

i!y
i.v0

for i = 0, 1, . . . , n. This is a basis of V . It is convenient to set v−1 = 0. The
module action is given by

h.vi = (n− 2i)vi,

x.vi = (n− (i− 1))vi−1,

y.vi = (i+ 1)vi+1,

(14)

hence

V (n) = Vn ⊕ Vn−2 ⊕ .....⊕ V−(n−2) ⊕ V−n.

Note that any finite-dimensional simple sl2(C)-module is a highest weight mod-
ule of weight n = dim(V )− 1, see e.g [15, 17].

3.3.2. Verma modules of sl2(C)

The general construction for the Verma modules over a semisimple Lie algebra
L is given by the following: consider B(∆) = h ⊕ N be the standard Borel
subalgebra of the semisimple Lie algebra L, where h is the Cartan subalgebra
of L, ∆ is the basis of the root system of L with respect to h, and N the
sum of the positive root spaces. For any λ ∈ h∗, start with a 1-dimensional
B(∆)-module, say Dλ, with trivial N -action and h acting through λ, and set
Z(λ) = U(L)⊗

U(B(∆))
Dλ. Then Z(λ) is a U(L)-module called the Verma module

of weight λ. In the case of L = sl2(C), we have B(∆) = 〈h, x〉 and N = 〈x〉. In
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view of the general Definition of the Verma module, Verma sl2(C)-module of
highest weight λ ∈ C, is

Z(λ) = U(sl2(C))⊗U(B(∆)) Dλ.

In [17], Mazorchuk introduces the Verma sl2(C)-module explicitly, he just
uses the mathematical induction to generalize from the case of simple finite-
dimensional sl2(C)-modules to the Verma sl2(C)-modules, and takes vi =
1
i!y

i.v0, for i ∈ N0. Then

Z(λ) = 〈v0, v1, v2, . . .〉

and the action is given by the formulas (14). Thus,

Z(λ) =
⊕
i∈N0

Vλ−2i,

where Vλ−2i = Cvi.
The module Z(λ) is a simple sl2(C)-module if and only if λ /∈ N0. If n is a

non-negative integer, then Z(n) is indecomposable and has a unique nontrivial
submodule Z(−n− 2), with V (n) ∼= Z(n)/Z(−n− 2). It is well-known see e.g.
[17] that Iλ is the annihilator of the Verma module Z(λ).

3.3.3. Anti-Verma modules of sl2(C)

Let V be the formal vector space with the basis {vi | i ∈ N0}. Now set v−1 = 0
and define the action on V for λ ∈ C as:

h.vi = (λ+ 2i)vi,

x.vi = vi+1,

y.vi = −i(λ+ i− 1)vi−1,

(15)

then V is a lowest weight sl2(C)-module with lowest weight λ, denoted by Z(λ)
and called anti-Verma module.

The support of the anti-Verma module is

Supp(Z(λ)) = {λ+ 2i | i ∈ N0}

and the Casimir element acts on it as the scalar (λ− 1)2. The module Z(λ) is
a simple sl2(C)-module if and only if −λ /∈ N0. If n is a negative integer, then
Z(n) has a unique maximal submodule Z(−n+ 2), with V (n) ∼= Z(n)/Z(−n+
2).
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3.3.4. Dense modules of sl2(C)

A weight sl2(C)-module is called a dense module if it has no highest nor lowest
weights. In other words, the weight module V is dense if Supp(V ) = λ + 2Z
for some λ ∈ C. Now we will study a big class of the dense modules.

For ξ ∈ C/2Z and τ ∈ C, consider V to be the formal vector space with
the basis {vµ | µ ∈ ξ}. Define the action on V as:

h.vµ = µvµ,

x.vµ = 1
4 (τ − (µ+ 1)2)vµ+2,

y.vµ = vµ−2,

(16)

then V is a dense weight sl2(C)-module, denoted by V (ξ, τ). In this case the
module V (ξ, τ) is simple if and only if τ 6= (λ + 1)2 for all λ ∈ ξ, but if the
module V (ξ, τ) is not simple, then it contains a unique maximal submodule
isomorphic to a Verma module for some highest weight.

Theorem 3.7. [17, Theorem 3.32] Up to isomorphism, any simple weight
sl2(C)-module is one of the following modules

(1) V (n) for some n ∈ N.

(2) Z(λ) for some λ ∈ C\N0.

(3) Z̄(−λ) for some λ ∈ C\N0

(4) V (ξ, τ) for some ξ ∈ C/2Z and τ ∈ C, with τ 6= (λ+ 1)2 for all λ ∈ ξ. 2

Proposition 3.8. [17] Let Jn := AnnU(sl2(C))(V (n)), where V (n) is a finite-
dimensional simple sl2(C)-module. Then

(1) In ⊂ Jn.

(2) AnnU(sl2(C))(Z(λ)) = Iλ−2.

(3) Let ξ ∈ C/2Z and τ = (λ+ 1)2 ∈ C, then AnnU(sl2(C))(V (ξ, τ)) = Iλ. 2

3.4. Torsion-free modules over sl2(C)

Definition 3.9. Let M be an sl2(C)-module, then the module M is called
torsion if for any m ∈M there exists non-zero p(t) ∈ C[t] such that p(h).m = 0.
The module M is torsion-free if M 6= 0 and p(h).m 6= 0 for all 0 6= m ∈
M and all non-zero p(t) ∈ C[t]. If M a torsion-free C[h]-module of rank n, we
say that M is of rank n.

Theorem 3.10. [17, Theorem 6.3] A simple sl2(C)-module is either a weight
or a torsion-free module. 2

Volumen 53, Año 2019



GRADED MODULES OVER SIMPLE LIE ALGEBRAS 63

Theorem 3.10 means that if h has at least one eigenvector on M , then M
is a weight module.

As a consequence of Theorem 3.1, it is sufficient to describe simple torsion-
free U(Iλ)-modules instead of simple U(sl2(C))-modules (see e.g [17]).

A further reduction can be achieved as follows. We consider the field of
rational functions in h, K = C(h), and set A to be the algebra of skew Laurent
polynomials over K, that is

A = K[X,X−1, σ] =

{∑
i∈Z
qi(h)Xi | qi(h) ∈ K, almost all qi(h) = 0

}
,

with the usual addition and scalar multiplication, and the product

(
∑
i∈Z

pi(h)Xi)(
∑
j∈Z

qj(h)Xj) =
∑
i,j∈Z

pi(h)σi(qj(h))Xi+j ,

where σ(h) = h− 2. Note that A is an Euclidean domain and it is isomorphic
to S−1U(Iλ), the localization of the generalized Weyl algebra U(Iλ), where
S = C[h] \ {0}. An embedding of Φλ : U(Iλ) → A is the unique extension of
the following map:

Φλ(h) = h, Φλ(x) = X, Φλ(y) =
(λ+ 1)2 − (h+ 1)2

4
X−1.

Thanks to this embedding, A becomes a A – U(Iλ)-bimodule and given an
U(Iλ)-module M one can define an A-module F(M) by

F(M) = A ⊗
U(Iλ)

M.

Theorem 3.11. [17, Theorem 6.24] The following are true.

(i) The functor F induces a bijection F̂ between the isomorphism classes of
simple torsion-free U(Iλ)-modules to the set of isomorphism classes of
simple A-modules;

(1) The inverse of the bijection from (i) is the map that sends a simple A-
module N to its U(Iλ)-socle socU(Iλ)N .

Theorem 3.12. [4, Proposition 3] Let M be a simple torsion-free U(Iλ)-
module, them M ∼= U(Iλ)/(U(Iλ) ∩ Aα), for some α ∈ U(Iλ) which is irre-
ducible as an element of A.

Many examples of torsion-free sl2(C)-modules have been introduced, see e.g
[17, 16, 19]. We will highlight those of them for which we can decide if those
modules are graded or not.
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Let us define a family of U(Iλ)-modules modules, as follows. Given two
polynomials p(t), g(t) ∈ C[t], we set

M(p(t), g(t), λ) := U(Iλ)/U(Iλ)(g(h)x+ p(h)

and
M ′(p(t), g(t), λ) := U(Iλ)/U(Iλ)(g(h)y + p(h).

Theorem 3.13. [17, Theorem 6.50] Let λ ∈ C, and g(t), p(t) be non-zero
polynomials in C[t], such that if r ∈ C is a root of p(t) then

(1) r + n is not a root for g(t) for all n ∈ Z.

(2) (λ+ 1)2 6= (r + n+ 1)2 for all n ∈ Z.

Then the U(Iλ)-modules M(p(t), g(t), λ) and M ′(p(t), g(t), λ) are simple. 2

The so called Whittaker modules are a special case of Theorem 3.13. They
are defined as follows:

Definition 3.14. Let α ∈ C\ {0} and λ ∈ C, then the Whittaker modules are
the modules Mα = U(Iλ)/U(Iλ)(1− αx) = U(Iλ)/U(Iλ)(1− α

2B −
α
2C).

A full description of torsion-free sl2(C)-modules of rank 1 (over C[h]) was
given in [19].

Definition 3.15. Let α ∈ C \ {0} and β ∈ C. Let us define an sl2(C)-module
N(α, β) as a vector space C[h] equipped with the following action: for f(h) ∈
C[h]

h.f(h) = hf(h),

x.f(h) = α(h2 + β)f(h− 2),

y.f(h) = − 1
α (h2 − β)f(h+ 2).

(17)

Note that N(α, β) is simple if and only if 2β /∈ N0, see [19].

Definition 3.16. Let α ∈ C \ {0} and β ∈ C with Re(β) ≥ − 1
2 . Let us define

an sl2(C)-module N ′(α, β) as a vector space C[h] equipped with the following
action: for f(h) ∈ C[h]

h.f(h) = hf(h),

x.f(h) = αf(h− 2),

y.f(h) = − 1
α (h2 + β + 1)(h2 − β)f(h+ 2).

(18)

Definition 3.17. Let α ∈ C \ {0} and β ∈ C, with Re(β) ≥ − 1
2 . Let us define

an sl2(C)-module N̄(α, β) as a vector space C[h] equipped with the following
action: for f(h) ∈ C[h]

h.f(h) = −hf(h),

x.f(h) = 1
α (h2 + β + 1)(h2 − β)f(h+ 2),

y.f(h) = −αf(h− 2).

(19)
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Note that the Whittaker modules are torsion-free sl2(C)-modules of rank 1
with type N ′( 1

α ,
λ
2 ).

Theorem 3.18. [19, Theorem 9, Lemma 12 ] Each simple torsion-free sl2(C)-
module of rank 1 is isomorphic to one of the following (pairwise non-isomorphic)
modules:

(1) N(α, β) for some α ∈ C \ {0} and β ∈ C with 2β /∈ N0.

(2) N ′(α, β) for some α ∈ C \ {0} and β ∈ C with Re(β) ≥ − 1
2 .

(3) N̄(α, β) for some α ∈ C \ {0} and β ∈ C with Re(β) ≥ − 1
2 .

3.5. Gradings on the weight modules

3.5.1. Gradings on simple finite-dimensional sl2(C)-modules

It is obvious that every simple finite-dimensional module of sl2(C) is a weight
module, i.e., it decomposes as the direct sum of weight spaces and this decom-
position is a grading compatible with the Cartan grading on sl2(C). In [12],
the authors show that the finite-dimensional simple modules with even high-
est weight have a grading compatible with the Pauli grading on sl2(C), while
those ones with the odd highest weight do not. Here we will give an explicit
construction of the grading in the even case.

Let V = V (n) be a simple sl2(C)-module with an even highest weight
n = 2m and basis {v0, v1, ...., vn}. To construct a Z2

2-grading on V , we first
define a new basis of V as follows. Set

ei = vi + vn−i for all i = 0, 1, . . . ,m,

and
di = vi − vn−i for all i = 0, 1, . . . ,m− 1.

Then {e0, e1, . . . , em, d0, d1, . . . , dm−1} is a basis of V and the module action is
given as follows.

h.ei = (n− 2i)di for all i = 0, 1, . . . ,m;

B.ei =

{
(n− i+ 1)ei−1 + (i+ 1)ei+1, if i = 0, 1, . . . ,m− 1;

2(m+ 1)em, if i = m;

C.ei =

{
(n− i+ 1)di−1 − (i+ 1)di+1, if i = 0, 1, . . . ,m− 1;

2(m+ 1)dm−1, if i = m;

h.di = (n− 2i)ei for all i = 0, 1, . . . ,m− 1;

B.di = (n− i+ 1)di−1 + (i+ 1)di+1 if i = 0, 1, . . . ,m− 1;

C.di = (n− i+ 1)ei−1 − (i+ 1)ei+1 if i = 0, 1, . . . ,m− 1.
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Let V(0,0) = 〈ei | i even〉, V(0,1) = 〈ei | i odd〉, V(1,0) = 〈di | i even 〉, and
V(1,1) = 〈di | i odd〉. One now easily checks the following.

Proposition 3.19. The above formulas provide a Z2
2-grading

Γ : V = V(0,0) ⊕ V(1,0) ⊕ V(0,1) ⊕ V(1,1)

on the highest weight module V = V (n), n even, which is compatible with the
Pauli grading on sl2(C). 2

3.5.2. Gradings on Verma sl2(C)-modules

As we mentioned above, any weight sl2(C)-module has a grading compatible
with the Cartan grading on sl2(C) via the weight decomposition. As a special
case, we will explicitly describe the Cartan gradings on the Verma modules.

Let {v0, v1, . . . , vk, . . .} be a basis of V (λ), as described in Subsection 3.3.2.
Consider the canonical basis {x, y, h} of sl2(C) with the Cartan grading by Z,
that is, deg(x) = 1, deg(y) = −1, deg(h) = 0. The action of sl2(C) on V is the
following:

. v0 v1 v2 . . . vk . . .

h λv0 (λ− 2)v1 (λ− 4)v2 . . . (λ− 2k)vk . . .

x 0 λv0 (λ− 1)v1 . . . (λ− k + 1)vk−1 . . .

y v1 2v2 3v3 . . . (k + 1)vk+1 . . .

Let V−k = 〈vk〉 for k = 0, 1, 2, ..., and Vk = {0} for k = 1, 2, . . ., then the
grading V =

⊕∞
k=0 V−k makes V a graded sl2(C)-module.

Theorem 3.20. Let V be a Verma sl2(C)-module with highest weight λ ∈
C \ 2N0. Then V is not a Z2

2-graded sl2(C)-module.

Proof. Let V =
⊕
µ∈C

Vµ, with a maximal vector v0 ∈ Vλ. Then V has a

basis {v0, v1, v2, . . .} given in Subsection 3.3.2. Assume that V has a grad-
ing compatible with the Pauli grading on sl2(C), so it can written as V =
V(0,0)⊕V(1,0)⊕V(0,1)⊕V(1,1). Now let V 0 = V(0,0)⊕V(1,0), and V 1 = V(0,1)⊕V(1,1).
The modules V 0 and V 1 are thus h-invariant, with the action of B sending V 0

to V 1 and vice versa. By Lemma 3.6, V 0 and V 1 are spanned by weight vectors.
Since Vλ = Cv0, we must have either v0 ∈ V 0 or v0 ∈ V 1.

Without loss of generality, suppose v0 ∈ V 0 (otherwise apply the shift of
grading), then V 1 3 B.v0 = v1, so v1 ∈ V 1. Hence V 0 3 B.v1 = λv0 + 2v2.
Since v0 ∈ V 0 we get v2 ∈ V 0. Again V 1 3 B.v2 = (λ − 1)v1 + 3v3, which
implies v3 ∈ V 1, and so on. We have shown that V 0 is spanned by the set
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{v0, v2, v4, . . .} and V 1 by {v1, v3, v5, . . .}.
Now let 0 6= v ∈ V(0,0) ⊆ V 0. Then v can be written as v = α0v0 + α2v2 +
· · ·+ α2kv2k, for some non-negative integer k, and some αi ∈ C. Since V(0,0) is
h2-invariant, the elements

h2.v = α0λ
2v0 + α2(λ− 4)2v2 + · · ·+ α2k(λ− 4k)2v2k,

h4.v = α0λ
4v0 + α2(λ− 4)4v2 + · · ·+ α2k(λ− 4k)4v2k,

· · ·
h2k.v = α0λ

2kv0 + α2(λ− 4)2kv2 + .....+ α2k(λ− 4k)2kv2k

all belong to V(0,0). In order to use the Vandermonde’s argument, we have to
show that λ2, (λ− 4)2, . . . , (λ− 4k)2 are all distinct. Assume that we have two
different weights, (λ−4n) and (λ−4m) such that (λ−4n)2 = (λ−4m)2. Then
|λ− 4n| = |λ− 4m|. Hence either λ − 4n = λ − 4m or λ − 4n = 4m − λ, the
first case being impossible. This means that λ = 2(n + m) ∈ 2N0, which is a
contradiction. Hence,

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

λ2 (λ− 4)2 . . . (λ− 4k)2

...
... . . .

...

λ2k (λ− 4)2k . . . (λ− 4k)2k

∣∣∣∣∣∣∣∣∣ 6= 0.

It follows that V(0,0) is spanned by the weight vectors, which means that there

is vs ∈ V(0,0) for some s. Then h.vs = (λ− 2s)vs ∈ V(1,0), a contradiction. �X

Corollary 3.21. Let V be a Verma sl2(C)-module with a non-negative even
integer highest weight n. Then V cannot be a Z2

2-graded module.

Proof. Assume that V is Z2
2-graded module. Since the highest weight is an

integer number then V is not simple and has a unique maximal submodule
Z(−n − 2), which therefore must be a graded submodule. But (−n − 2) is a
negative number, so we get a contradiction with Theorem 3.20. �X

3.5.3. Gradings on Anti-Verma sl2(C)-modules

From what we said above about Z-gradings on the weight modules, it fol-
lows that Z(λ) is a Z-graded sl2(C)-module. Let V = Z(λ) with the basis
{v0, v1, . . . , vk, . . .}. Consider the basis {x, y, h} of sl2(C) with the Cartan grad-
ing by Z, that is, deg(x) = 1, deg(y) = −1, deg(h) = 0. The action of sl2(C)
on V is the following:
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. v0 v1 v2 . . . vk . . .

h λv0 (λ+ 2)v1 (λ+ 4)v2 . . . (λ+ 2k)vk . . .

x v1 v2 v3 . . . vk+1 . . .

y 0 −λv0 −2(λ+ 1)v1 . . . −k(λ+ k − 1)vk−1 . . .

Let Vk = Cvk for k = 0, 1, 2, ..., and Vk = 0 for k = −1,−2, . . ., then the
grading V =

⊕∞
k=0 Vk makes V a Z-graded sl2(C)-module.

Theorem 3.22. Let V be an anti-Verma sl2(C)-module with lowest weight
λ ∈ C. Then V cannot be a Z2

2-graded sl2(C)-module.

Proof. Let V =
⊕∞

k=0 Vk where Vk = Cvk for k = 0, 1, 2, ..., and {v0, v1, v2, . . .}
be the basis of V. Assume that V has a grading compatible with the Pauli grad-
ing on sl2(C), so it can written as V = V(0,0) ⊕ V(1,0) ⊕ V(0,1) ⊕ V(1,1). Now let
V 0 = V(0,0)⊕V(1,0), and V 1 = V(0,1)⊕V(1,1). We have that V 0 and V 1 are thus
h-invariant, with the action of B and C sending V 0 to V 1 and vice versa. By
Lemma 3.6, V 0 and V 1 are spanned by the weight vectors. Since V0 = Cv0, we
must have v0 ∈ V 0 or v0 ∈ V 1.

Without loss of generality, suppose v0 ∈ V 0 (otherwise apply the shift of
grading), then V 1 3 B.v0 = v1, so v1 ∈ V 1. Hence V 0 3 B.v1 = v2 − λv0.
Since v0 ∈ V 0 we get v2 ∈ V 0. Again V 1 3 B.v2 = v3 − 2(λ + 1)v1, which
implies v3 ∈ V 1, and so on. We have shown that V 0 is spanned by the set
{v0, v2, v4, . . .} and V 1 by {v1, v3, v5, . . .}.

Now let 0 6= v ∈ V(0,0) ⊆ V 0. Then v can be written as v = α0v0 + α2v2 +
· · ·+α2kv2k for some non-negative integer k and some αi ∈ C. But since V(0,0)

is h2-invariant, the elements

h2.v = α0λ
2v0 + α2(λ+ 4)2v2 + · · ·+ α2k(λ+ 4k)2v2k,

h4.v = α0λ
4v0 + α2(λ+ 4)4v2 + · · ·+ α2k(λ+ 4k)4v2k,

· · ·
h2k.v = α0λ

2kv0 + α2(λ+ 4)2kv2 + · · ·+ α2k(λ+ 4k)2kv2k,

all belong to V(0,0).

Now we have two cases:

Case 1 Assume that −λ /∈ 2N0. In order to use the Vandermonde’s ar-
gument, we need to show that λ2, (λ + 4)2, . . . , (λ + 4k)2 are all distinct. As-
sume that we have two different weights, (λ + 4n) and (λ + 4m) such that
(λ + 4n)2 = (λ + 4m)2. Then |λ+ 4n| = |λ+ 4m|. Hence either λ + 4n =
λ + 4m or λ + 4n = −4m − λ, but the first case is impossible. Therefore
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−λ = 2(n+m) ∈ 2N0, a contradiction. Hence,∣∣∣∣∣∣∣∣∣
1 1 . . . 1

λ2 (λ+ 4)2 . . . (λ+ 4k)2

...
... . . .

...

λ2k (λ+ 4)2k . . . (λ+ 4k)2k

∣∣∣∣∣∣∣∣∣ 6= 0.

It follows that V(0,0) is spanned by the weight vectors, which means that there
is vs ∈ V(0,0) for some s. Note that h.vs = (λ + 2s)vs ∈ V(1,0), which is a
contradiction.

Case 2 Assume that −λ ∈ 2N0. Then V is not simple and has a unique
maximal submodule Z(−λ + 2). If V is graded by Z2

2, then the unique maxi-
mal submodule of V must be graded. However, this contradicts Case 1 since
(−(−λ+ 2)) /∈ 2N0. �X

3.5.4. Gradings on dense sl2(C)-modules

As usual, the weight modules are graded by Z. Let ξ ∈ C/2Z and τ ∈ C, and
let V = V (ξ, τ) with basis {vµ | µ ∈ ξ} as in Definition 3.3.4, and consider
the basis {x, y, h} of sl2(C) with a Cartan grading by Z, that is, deg(x) =
1, deg(y) = −1, deg(h) = 0. Now, since ξ ∈ C/2Z then ξ = λ + 2Z for some
λ ∈ C and hence, for any µ ∈ ξ, µ = λ + 2i for some i ∈ Z. Let Vi = Cvλ+2i,
i ∈ Z, then the grading V =

⊕
i∈Z Vi makes V a Z-graded sl2(C)-module with

deg(Vi) = i.

As for the grading by Z2
2, some of the dense modules can be graded while

some others can not.

Let us study the case where ξ = 0̄.

Proposition 3.23. Let τ ∈ C be such that the module V = V (0̄, τ) is simple,
then V can be made a Z2

2-graded sl2(C)-module.

Proof. Since ξ = 0̄, we can choose λ = 0 ∈ ξ. Then V =
⊕

i∈Z Vi, where
Vi = Cv2i, being {v2i | i ∈ Z . . .} the basis of V . We set e0 = v0, e−1 = 0 and

ek = 1
4k

(
∏k
j=0(τ−(2j−1)2))v2k+v−2k, and also d0 = 0 and dk = 1

4k
(
∏k
j=0(τ−

(2j−1)2))v2k−v−2k, for k ∈ N. Since V is simple, the set {e0, e1, . . . , d1, d2, . . .}
is a basis for V with a module action given by:

h.ek = 2kdk,

h.dk = 2kek,

B.ek = ek+1 + 1
4 (τ − (2k − 1)2)ek−1,

B.dk = dk+1 + 1
4 (τ − (2k − 1)2)dk−1,

C.ek = dk+1 − 1
4 (τ − (2k − 1)2)dk−1,

C.dk = ek+1 − 1
4 (τ − (2k − 1)2)ek−1,

(20)
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Let V(0,0) = 〈ei | i is even〉, V(0,1) = 〈ei | i is odd〉, V(1,0) = 〈di | i is even 〉, and
V(1,1) = 〈di | i is odd〉. Then Γ : V =

⊕
g∈Z2

2

Vg is a Z2
2-grading of V making V a

graded sl2(C)-module. �X

Theorem 3.24. Let 0̄ 6= ξ ∈ C/2Z and τ ∈ C be such that the module V =
V (ξ, τ) is simple. Then V is not a Z2

2-graded sl2(C)-module.

Proof. If λ ∈ ξ then V =
⊕

k∈Z Vk, where Vk = Cvλ+2k, {vλ+2i | i ∈ Z . . .}
being the basis of V given in Definition 3.3.4. Assume that V has a grading
compatible with the Pauli grading on sl2(C), so it can written as V = V(0,0) ⊕
V(1,0) ⊕ V(0,1) ⊕ V(1,1). Now let V 0 = V(0,0) ⊕ V(1,0), and V 1 = V(0,1) ⊕ V(1,1).
Then V 0 and V 1 are thus h-invariant, with the action of B and C sending V 0

to V 1 and vice versa. By Lemma 3.6, V 0 and V 1 are spanned by the weight
vectors. Since Vλ = Cvλ, we must have vλ ∈ V 0 or vλ ∈ V 1.

Without loss of generality, suppose vλ ∈ V 0 (otherwise apply the shift of
grading). Then V 1 3 B.vλ = 1

4 (τ − (λ + 1)2)vλ+2 + vλ−2 and V 1 3 C.vλ =
1
4 (τ−(λ+1)2)vλ+2−vλ−2. Since V is simple, we have (τ−(λ+1)2 6= 0 and hence
vλ+2, vλ−2 ∈ V 1. Now B.vλ+2 = 1

4 (τ − (λ+ 3)2)vλ+4 + vλ and B.vλ−2 = 1
4 (τ −

(λ−1)2)vλ+vλ−4 are both in V 0. Since V is simple and vλ∈V 0 then vλ+4, vλ−4 ∈
V 0. Apply B again to vλ+4, vλ−4 to get that vλ+6, vλ−6 ∈ V 1, and so on. We
have shown that V 0 is spanned by the set {. . . , vλ−8, vλ−4, vλ, vλ+4, vλ+8, . . .}
and V 1 by {. . . , vλ−6, vλ−2, vλ+2, vλ+6, . . .}.

Now let 0 6= v ∈ V(0,0) ⊆ V 0. Then v can be written as v = α−mvλ−4m +
· · ·+α−1vλ−4 +α0vλ + · · ·+αnvλ+4n for some non-negative integers m,n and
some αi ∈ C. Since V(0,0) is h2-invariant, the elements

h2.v = α−m(λ− 4m)2vλ−4m + · · ·+ α0λ
2vλ + · · ·+ αn(λ+ 4n)2vλ+4n,

h4.v = α−m(λ− 4m)4vλ−4m + · · ·+ α0λ
4vλ + · · ·+ αn(λ+ 4n)4vλ+4n,

· · ·
h2(m+n).v = α−m(λ− 4m)2(m+n)vλ−4m + · · ·+ α0λ

2(m+n)vλ + · · ·
+ αn(λ+ 4n)2(m+n)vλ+4n

are in V(0,0). Now, to use the Vandermonde’s determinant, we have to show that
(λ− 4m)2, . . . , λ2, (λ+ 4)2, . . . , (λ+ 4n)2 are all distinct. Assume that we have
two different weights, (λ+4k1) and (λ+4k2), such that (λ+4k1)2 = (λ+4k2)2,
that is, |λ+ 4k1| = |λ+ 4k2|. Hence either λ + 4k1 = λ + 4k2 or λ + 4k1 =
−4k2−λ, but the first one is impossible. This means that λ = −2(k1+k2) ∈ 2Z,
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which is not the case since ξ 6= 0̄. Hence,∣∣∣∣∣∣∣∣∣
1 . . . 1 . . . 1

(λ− 4m)2 . . . λ2 . . . (λ+ 4n)2

...
... . . .

...

(λ− 4m)2(m+n) . . . λ2(m+n) . . . (λ+ 4n)2(m+n)

∣∣∣∣∣∣∣∣∣ 6= 0.

It follows that V(0,0) is spanned by weight vectors, which means that there is
vλ+4s ∈ V(0,0) for some s ∈ Z. At the same time, h.vs = (λ + 4s)vs ∈ V(1,0),

which is a contradiction. �X

Corollary 3.25. Let 0̄ 6= ξ ∈ C/2Z and τ ∈ C. Then the module V = V (ξ, τ)
cannot be a Z2

2-graded sl2(C)-module.

Proof. Theorem 3.24 covers the case where V is simple, so it is enough to
prove this fact when V is non-simple. Suppose that V is a non-simple Z2

2-
graded sl2(C)-module; then V has a unique maximal Verma submodule (see
e.g. [17, Theorem 3.29]), which has to be graded; this is a contradiction since
Verma modules cannot be a Z2

2-graded sl2(C)-modules. �X

3.6. Gradings on torsion-free modules

Let V be a G-graded vector space, U a G-graded subspace of V , then V/U is
canonically G-graded with V/U =

⊕
g∈G(V/U)g, where (V/U)g = (Vg + U)/U .

Lemma 3.26. Let V be a G-graded vector space, U a subspace of V such that
V/U is canonically G-graded. Then U is graded.

Proof. Let V =
⊕

g∈G Vg be G-graded, and V/U =
⊕

g∈G(V/U)g, where
(V/U)g = Vg + U/U . Now let u ∈ U , then u can be written as u = v1 + v2 +
· · ·+ vm, where vi ∈ Vgi for some gi ∈ G. Now

U = u+ U = (v1 + v2 + · · · vm) + U
= (v1 + U) + (v2 + U) + · · ·+ (vm + U),

but v̄i = (vi + U) ∈ (V/U)gi , so in the algebra (V/U)

v1 + v̄2 + · · ·+ v̄m = 0̄,

and since the sum is direct, then vi = 0̄ for all 1 ≤ i ≤ m, and hence vi ∈ U
for all 1 ≤ i ≤ m, showing that U is graded. �X

We will study now the canonical gradings of the modules described in The-
orem 3.13. These gradings depend on the degree of the polynomial p(t). Since
the gradings of M(p(t), g(t), λ) and M ′(p(t), g(t), λ) are similar, we will study
only one of them.
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Theorem 3.27. Let M(p(t), g(t), λ) be as in Theorem 3.13, with p(t) = µ a
non-zero constant. Then M(p(t), g(t), λ) is not a canonically Z2

2-graded sl2(C)-
module.

Proof. Suppose that the left ideal I = U(Iλ)(g(h)x+µ) is graded by Z2
2, then

the element g(h)x+µ = g(h)(B+C
2 )+µ = g(h)B2 +g(h)C2 +µ belongs to I. The

polynomial g(h) has a linear combination of elements of degrees (0, 0) or (1, 0),
so the term g(h)B2 is a linear combination of elements of degrees (0, 1) or (1, 1);

similarly g(h)C2 is a linear combination of elements of degrees (0, 1) or (1, 1).
Since only µ has degree (0, 0) it follows that µ ∈ I or, in other words, 1 ∈ I,
which means that I = U(Iλ), so M(p(t), g(t), λ) is trivial, a contradiction. As
a result, I is not graded. Using Lemma 3.26, we conclude that M(p(t), g(t), λ)
is not canonically graded. �X

Theorem 3.28. Let M(p(t), g(t), λ) be as in Theorem 3.13, with p(t) = µ, a
non-zero constant. Then M(p(t), g(t), λ) is not a canonically Z-graded sl2(C)-
module.

Proof. Suppose that the left ideal I = U(Iλ)(g(h)x + µ) is graded by Z, so
that the element g(h)x+µ ∈ I. Then the polynomial g(h) has degree 0, so the
term g(h)x has degree 1. As before, µ is the only element of degree 0, which
implies that µ ∈ I, a contradiction. Using Lemma 3.26 again, we can see that
M(p(t), g(t), λ) is not canonically graded by Z. �X

Theorem 3.29. Let M(p(t), g(t), λ) be as in Theorem 3.13, with deg p(t) ≥ 1.
Then M(p(t), g(t), λ) is not a canonically Z-graded sl2(C)-module.

Proof. Suppose that the left ideal I = U(Iλ)(g(h)x+µ) is graded by Z. Since
g(h)x has degree 1, p(h) is the only term of degree 0, which implies p(h) ∈ I,
so for any nonzero generator v of M(p(t), g(t), λ), p(h).v = 0. Now let we have
that p(h) = (h−β1)(h−β2) · · · (h−βk), and let (h−βj) be the last term with
(h − βj+1)(h − βj+2) · · · (h − βk).v 6= 0, then (h − βj) annihilates a nonzero
vector and hence h has an eigenvector, which implies that M(p(t), g(t), λ) has
a weight vector. So M(p(t), g(t), λ) now is a simple Z-graded weight module,
which is a contradiction. �X

Theorem 3.30. Let M(p(t), g(t), λ) be as in Theorem 3.13, with deg p(t) ≥ 1.
Then M(p(t), g(t), λ) is not a canonically Z2

2-graded sl2(C)-module.

Proof. Since g(h)x is a linear combination of elements of degrees (0, 0) and
(1, 1), and p(h) is a linear combination of elements of degrees (0, 0) and (1, 0),
it follows that p(h) ∈ I = U(Iλ)(g(h)x + p(h). We can factor the polynomial
p(t) = (t−β1)(t−β2) · · · (t−βk), for a generator u ∈M(p(t), g(t), λ), p(h).u =
(h− β1)(h− β2) · · · (h− βk).u = 0. Now let (h− βj) be the last term with (h−
βj+1)(h−βj+2) · · · (h−βk).u 6= 0, which implies that h−βj annihilates a nonzero
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vector and hence h has an eigenvector, which means that M(p(t), g(t), λ) is a
weight module of sl2(C), a contradiction. �X

Now we will study the gradings of the torsion-free modules of rank 1.

Lemma 3.31. Let M be a G-graded torsion-free sl2(C)-module, p(h) ∈ C[h] a
homogeneous element in U(sl2(C)), and v ∈ M a non-homogeneous element.
Then the element p(h).v ∈M is non-homogeneous.

Proof. Since p(h) is homogeneous, then p(h) ∈ (U(sl2(C)))g for some g ∈ G.
Since v is non-homogeneous, then v = vg1

+ vg2
+ · · ·+ vgk for some k > 1 and

g1, g2, . . . , gk are distinct in G, where vgi ∈Mgi , with at least two of them non-
zero (say vg1

, vg2
are non-zero). Now p(h).v = p(h).vg1

+p(h).vg2
+· · ·+p(h).vgk ,

where p(h).vgi ∈ Mgi+g. But g1 + g, g2 + g, . . . , gk + g are distinct in G. Since
M is torsion-free, p(h).vg1 , p(h).vg2 are non-zero, which means that p(h).v is
non-homogeneous. �X

Theorem 3.32. Torsion free sl2(C)-modules of rank 1 cannot be Z or Z2
2-

graded.

We will prove this theorem for every kind of torsion-free module of rank 1
separately. A useful property is the following.

Proposition 3.33. Let M be a torsion-free sl2(C)-module, and 0 6= v ∈ M .
Then one of x.v or y.v is non-zero.

Proof. Assume that x.v = 0 and y.v = 0, then 0 = (xy − yx).v = h.v, which
means that h.v = 0, a contradiction. �X

Proposition 3.34. The module N(α, β), as in Definition 3.15, is not a Z2
2-

graded sl2(C)-module.

Proof. Assume that N = N(α, β) is a Z2
2-graded sl2(C)-module, so that

N = N(0,0) + N(1,0) + N(0,1) + N(1,1). Given a non-zero homogeneous element

f(h) ∈ N , we define f(h) to be the same as f(h) but computed in the alge-
bra U(sl2(C)). Now f(h) can be written as the sum of a linear combination
of monomials in h2k+1, for k = 0, 1, 2, . . ., and a linear combination of the
monomials h2k, for k = 0, 1, 2, . . ., of degrees (1, 0) and (0, 0), respectively. As
a result, f(h) is a homogeneous element in U(sl2) of degree 0 with respect to
the Z2-grading on U(sl2) given by

U(sl2) = (U(sl2))0 ⊕ (U(sl2))1,

where

(U(sl2))0 = (U(sl2))(0,0) ⊕ (U(sl2))(1,0)
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and
(U(sl2))1 = (U(sl2))(0,1) ⊕ (U(sl2))(1,1).

Since f(h) is homogeneous with respect to the Z2
2-grading, it will be ho-

mogeneous in the coarsening grading over Z2, where N = N0 ⊕ N1, being
N0 = N(0,0) + N(1,0) and N1 = N(0,1) + N(1,1). Thus either f(h) ∈ N0 or

f(h) ∈ N1. But f(h).1 = f(h). Since f(h) is homogeneous in U(sl2(C)), with
respect to the Z2-grading, and f(h) is homogeneous in N with respect to the
Z2-grading, using Lemma 3.31 we conclude that 1 is homogeneous in N with
respect to the Z2-grading. Now either 1 ∈ N0 or 1 ∈ N1. Without loss of gen-
erality assume that 1 ∈ N0, which means that N = N0 and N1 is trivial. But
using Proposition 3.33, we have either B.1 6= 0 or C.1 6= 0. These elements
belong to N1, which provides the desired contradiction. �X

Proposition 3.35. The module N(α, β) as in Definition 3.15 is not a Z-graded
sl2(C)-module.

Proof. Assume that N = N(α, β) is a Z-graded sl2(C)-module, hence N =⊕
i∈ZNi. Let f(h) ∈ N be a non-zero homogeneous element, define f(h) to

be the same as f(h) but computed in the algebra U(sl2(C)). Now f(h) is a
homogeneous element in U(sl2(C)) of degree 0 with respect to the Z-grading
on U(sl2(C)). Now f(h).1 = f(h). Since f(h) is homogeneous in U(sl2) and f(h)
is homogeneous in N , it follows that 1 is homogeneous in N . Hence 1 ∈ Nk
for some k ∈ Z, which means that N = Nk and N i is trivial for all i 6= k. But
using Proposition 3.33, we have either 0 6= x.1 ∈ Nk−1 or 0 6= y.1 ∈ Nk+1, a
contradiction in any case. �X

Proposition 3.36. The module N ′(α, β) as in Definition 3.16 is not a Z2
2-

graded sl2(C)-module.

Proof. Assume that N = N ′(α, β) is a Z2
2-graded sl2(C)-module. Let f(h) ∈ N

be a non-zero homogeneous element, and define f(h) to be the same as f(h) but
computed in the algebra U(sl2). It follows that f(h) is a homogeneous element
in U(sl2(C)) of degree 0 with respect to the Z2-grading on U(sl2(C)). Then
f(h)f(h).1 = f(h) is homogeneous with respect to the coarsening grading by
Z2. Either f(h) ∈ N0 or f(h) ∈ N1. But f(h) is homogeneous in U(sl2(C))
with respect to the Z2-grading, and f(h) is homogeneous in N with respect
to the Z2-grading. Using Theorem 3.31, it follows that 1 is homogeneous in N
with respect to the Z2-grading. Hence either 1 ∈ N0 or 1 ∈ N1. Without loss
of generality assume that 1 ∈ N0, which means that N = N0 and N1 is trivial.
But using Proposition 3.33, we have either 0 6= B.1 ∈ N1 or 0 6= C.1 ∈ N1, a
contradiction in both cases. �X

Proposition 3.37. The module N ′(α, β), as in Definition 3.16, is not a Z-
graded sl2(C)-module.

Volumen 53, Año 2019



GRADED MODULES OVER SIMPLE LIE ALGEBRAS 75

Proof. Assume that N = N ′(α, β) is a Z-graded sl2(C)-module. Let f(h) ∈ N
be a non-zero homogeneous element, and let f(h) be the same as f(h) but
computed in the algebra U(sl2(C)). Now f(h) is a homogeneous element in
U(sl2(C)) of degree 0 with respect to the Z-grading on U(sl2(C)). Now f(h).1 =
f(h), and since f(h) is homogeneous in U(sl2(C)) and f(h) is homogeneous in
N then 1 is homogeneous in N . Hence 1 ∈ Nk for some k ∈ Z, which means
that N = Nk and N i is trivial for all i 6= k. But using Proposition 3.33, we
have either 0 6= x.1 ∈ Nk−1 or 0 6= y.1 ∈ Nk+1, which is a contradiction in any
case. �X

Proposition 3.38. The module N̄(α, β) is not a Z2
2-graded sl2(C)-module.

Proof. Use the arguments from the proof of Propositions 3.34 and 3.36. �X

Proposition 3.39. The module N̄(α, β) is not a Z-graded sl2(C)-module.

Proof. Use the arguments from the proof of Propositions 3.35 3.37. �X

In view of Theorem 3.18, the above propositions complete the proof of
Theorem 3.32.

Corollary 3.40. The Whittaker modules cannot be Z-graded sl2(C)-modules.

Corollary 3.41. The Whittaker modules cannot be Z2
2-graded sl2(C)-modules.

3.7. Transition to graded-simple modules

In conclusion, we remark that it is easy to construct a graded U(Iλ)-module.
For example one might consider the module M = U(Iλ)/U(Iλ)α for some
homogeneous element 0 6= α ∈ U(Iλ). For instance, one could take α = C, in
which case also U(Iλ)α 6= U(Iλ). Of course, such modules need not be simple.
At the same time, using Theorem 3.5, one can construct the series

{0} 6= U(Iλ)α = J0 ⊂ J1 ⊂ · · · ⊂ Jn = U(Iλ)

of graded left ideals, where the quotients Ji+1/Ji are graded-simple sl2-modules.
The technique developed for the study of graded-simple modules (the loop
construction) is provided in the next section of this paper. It describes the
connection between graded-simple and simple graded modules.

4. Graded-simple modules via the loop construction

Let G be an abelian group and let R be a G-graded unital associative algebra,
for example, R = U(L), where L is a G-graded Lie algebra. In this section, we
review the relation between simple R-modules and graded-simple R-modules
given by the so-called loop construction. Under some restrictions, this construc-
tion reduces the classification of graded-simple R-modules to that of gradings
by certain quotient groups of G on simple R-modules.
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4.1. Loop algebras and loop modules

Let π : G→ G be an epimorphism of abelian groups and let H be the kernel of
π. Any G-graded vector space W (in particular, a G-graded algebra or module)
over a field F can be regarded as G-graded using the grading induced by π, i.e.,
Wg =

⊕
g∈π−1(g)Wg for any g ∈ G, and this gives us a ‘forgetful’ functor from

the category of G-graded vector spaces (respectively, algebras or modules) to
the category of G-graded vector spaces (respectively, algebras or modules). The
loop construction, defined as follows, is the right adjoint of this functor (see
[14, Remark 3.3]). For a given G-graded vector space V , consider the tensor
product V ⊗FG, where FG denotes the group algebra of G with coefficients in
F. Define Lπ(V ) as the following subspace of V ⊗ FG:

Lπ(V ) :=
⊕
g∈G

Vπ(g)⊗ g,

which is naturally G-graded: Lπ(V )g = Vπ(g)⊗ g.

If A is a G-graded algebra (not necessarily associative) then Lπ(A) is a
G-graded algebra with respect to the usual product on A⊗FG, defined by
(a1⊗ g1)(a2⊗ g2) := a1a2⊗ g1g2. If F is infinite, then Lπ(A) belongs to a
given variety of algebras (for example, associative or Lie) if and only if so
does A. A classical example is the so-called twisted loop algebra L(g,Γ) in
Lie theory: given a semisimple complex Lie algebra g and a Z/mZ-grading
Γ : g =

⊕
k̄∈Z/mZ gk̄, one defines L(g,Γ) :=

⊕
k∈Z gk̄ ⊗ tk, which is a subal-

gebra of g[t, t−1] := g⊗C[t, t−1], so in our notation L(g,Γ) = Lπ(g), where
π : Z→ Z/mZ is the natural homomorphism.

Similarly, if R is a G-graded associative algebra and V is a G-graded left R-
module (where we regard R as a G-graded algebra) then Lπ(V ) is a G-graded
left R-module through r(v⊗ g) := rv⊗ g′g for all g, g′ ∈ G, v ∈ Vπ(g), r ∈ Rg′ .

Moreover, if ψ : V → V ′ is a homomorphism of G-graded vector spaces (re-
spectively, algebras or modules) then the linear map Lπ(ψ) : Lπ(V ) → Lπ(V )
that sends v ⊗ g 7→ ψ(v)⊗ g, for all g ∈ G and v ∈ Vπ(g), is a homomorphism
of G-graded vector spaces (respectively, algebras or modules).

If H is finite and F is sufficiently good then there is an alternative definition
of the loop functor as follows. Recall that the group of characters Ĝ acts on any
G-graded vector space (see Equation (3)). Similarly, a G-graded vector space
V becomes a module over the group algebra F(H⊥), where the subgroup

H⊥ := {χ ∈ Ĝ : χ(h) = 1 ∀h ∈ H}

is naturally isomorphic to the group of characters of G. Assume for now that
|H| = n <∞ and that F is algebraically closed and its characteristic does not

divide n. Then we have |Ĥ| = n and, moreover, any character of H extends
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to a character of G. Fix such extensions, χ1, . . . , χn, for all characters of H, so
Ĥ = {χ1|H , . . . , χn|H}. Then {χ1, . . . , χn} is a transversal of H⊥ in Ĝ (i.e., a

set of coset representatives of H⊥ in Ĝ), hence FĜ = χ1F(H⊥)⊕· · ·⊕χnF(H⊥).

If V is a G-graded vector space then we can consider the induced FĜ-
module,

Iπ(V ) := IndĜH⊥(V ) = FĜ⊗F(H⊥) V = χ1 ⊗ V ⊕ · · · ⊕ χn ⊗ V,

which is clearly G-graded, with the homogeneous component of degree ḡ being
χ1 ⊗ Vḡ ⊕ · · · ⊕ χn ⊗ Vḡ. In fact, this G-grading on Iπ(V ) can be refined to a
G-grading:

Iπ(V )g := {x ∈ χ1 ⊗ Vπ(g) ⊕ · · · ⊕ χn ⊗ Vπ(g) : χ · x = χ(g)x ∀χ ∈ Ĝ}.

Now, if A is a G-graded algebra then Iπ(A) is a G-graded algebra with mul-
tiplication defined by (χi ⊗ a′)(χj ⊗ a′′) := δijχi ⊗ a′a′′ for 1 ≤ i, j ≤ n and
a′, a′′ ∈ A, so each of the direct summands χj ⊗A is a G-graded ideal isomor-
phic to A as a G-graded algebra. If R is a G-graded associative algebra and V
is a G-graded left R-module then Iπ(V ) is a G-graded left R-module by means
of

r(χj ⊗ v) = χj(g
′)−1χj ⊗ rv ∀r ∈ Rg′ , v ∈ Vπ(g), g, g

′ ∈ G, 1 ≤ j ≤ n. (21)

Note that the direct summands χj ⊗ V are G-graded R-submodules, but they
are not necessarily isomorphic. In fact, Equation (21) tells us that, as a left R-

module, χj⊗V is isomorphic to V twisted by α−1
χj , where αχ, for any χ ∈ Ĝ, are

the automorphisms of R given by the action of Ĝ, and the twists of a module
are defined as follows:

Definition 4.1. Given an automorphism α of R and a left R-module V , we
define a new left R-module V α = (V, ∗) which equals V as a vector space, but
with the new action given by r ∗ v = α(r)v. This module V α is referred to as
V twisted by α.

It turns out that, under the above assumptions on H and F, Iπ(V ) is iso-
morphic to Lπ(V ) as a G-graded vector space (respectively, algebra or module).
An isomorphism Lπ(V )→ Iπ(V ) is given by

v ⊗ g 7→
n∑
j=1

χj(g)−1χj ⊗ v for all v ∈ Vπ(g), g ∈ G,

it does not depend on the choice of the transversal {χ1, . . . , χn}, and its inverse
Iπ(V )→ Lπ(V ) is given by

χj ⊗ v 7→
1

n

∑
h∈H

χj(gh)v ⊗ gh for all v ∈ Vπ(g), g ∈ G, 1 ≤ j ≤ n

(see [14, Proposition 3.8] for the case of R-modules).
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4.2. Correspondence Theorem

The loop functor Lπ associated to an epimorphism π : G→ G, as described in
the previous subsection, can be used to establish a correspondence between, on
the one hand, the class A(π) of G-graded algebras that are simple and central
(disregarding the grading) and, on the other hand, the class B(π) of G-graded
algebras that are graded-simple and whose centroid is isomorphic to FH as a
graded algebra, where H is the kernel of π. This correspondence was established
in [1, Theorem 7.1.1] over an arbitrary field F, but the result is easier to state
if F is algebraically closed (thanks to [1, Lemmas 4.3.8 and 6.3.4(v)]). Then the
above condition on the centroid is equivalent to its identity component being
F (i.e., the algebra being graded-central) and its support being H, while the
Correspondence Theorem says that Lπ is a functor A(π)→ B(π) that gives a
bijection between the isomorphism classes in these categories. (Under some re-
strictions, the surjectivity was already established in [3, Theorem 7].) Thus, the
classification of G-graded-central-simple algebras reduces to the classification
of gradings on central simple algebras by the quotient groups of G.

A similar approach works for graded modules, although with some addi-
tional difficulties arising from the fact that the centralizer of a graded-simple
module, unlike the centroid of a graded-simple algebra, need not be commuta-
tive. The use of the loop construction in this context was started in [18] and
the Correspondence Theorem was obtained in [14]. Before we state the result,
we need to introduce some terminology and notation.

Let R be a G-graded unital associateive algebra. We denote the centralizer
of a left R-module V by C(V ) := EndR(V ) and apply the elements of C(V )
to the elements of V on the right. Recall that a linear map W → W ′ of G-
graded vector spaces is said to be homogeneous of degree g if it sends Wk to
W ′gk for all k ∈ G. In particular, for a G-graded left R-module W , let C(W )g
be the set of all elements of C(W ) that are homogeneous of degree g. It is clear
from the definition that Cgr(W ) :=

⊕
g∈G C(W )g is a G-graded algebra and

W is a G-graded right Cgr(W )-module. Moreover, if W is graded-simple then
Cgr(W ) = C(W ) (see [14, Proposition 2.1]).

Note that if V is a G-graded left R-module then Cgr(V ) is a G-graded
algebra, so Lπ(Cgr(V )) is a G-graded algebra, which acts naturally on the
G-graded left R-module Lπ(V ):

(v⊗ g)(δ⊗ g′) := vδ⊗ gg′ ∀v ∈ Vπ(g), δ ∈ C(V )π(g′), g, g
′ ∈ G,

and this action centralizes that of R. Thus, we can identify Lπ(Cgr(V )) with a
G-graded subalgebra of Cgr(Lπ(V )).

The classical Schur’s Lemma, which says that the centralizer of a simple
module is a division algebra, has a graded analog: the centralizer of a graded-
simple module is a graded-division algebra (see, for instance, [11, Lemma
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2.4]), and hence the module is free over its centralizer. Commutative graded-
division algebras are called graded-fields (not to be confused with fields that
are graded!).

A module V is called central (or Schurian) if C(V ) = F1, i.e., C(V ) consists
of the scalar multiples of the identity map. Similarly, a graded module W is
called graded-central if C(W )e = F1.

We need one more concept, which is a generalization of G-grading and is
called G-pregrading or G-covering (see [21] and [6]).

Definition 4.2. Let V be a left R-module.

(1) A family of subspaces Σ = {Vg : g ∈ G} is called a G-pregrading on V if
V =

∑
g∈G Vg and RgVk ⊂ Vgk for all g, k ∈ G.

(2) Given two pregradings Σi = {V ig : g ∈ G}, i = 1, 2, Σ1 is said to be a
refinement of Σ2 (or Σ2 a coarsening of Σ1) if V 1

g ⊂ V 2
g for all g ∈ G.

If at least one of these inclusions is strict, the refinement is said to be
proper.

(3) A G-pregrading Σ is called thin if it admits no proper refinement.

Example 4.3. Let S be a subgroup of G and suppose V =
⊕

ḡ∈G/S Vḡ is

a G/S-graded left R-module. Then the family Σ := {V ′g : g ∈ G}, where
V ′g = VgS for all g ∈ G, is a G-pregrading on V , which will be referred to as
the G-pregrading associated to the given G/S-grading on V .

The importance of thin coverings in our context stems from the next result:

Proposition 4.4 ([18, Lemma 27]). Let π : G→ G/S be the natural homomor-
phism and let V be a G/S-graded left R-module. The following are equivalent:

(i) Lπ(V ) is G-graded-simple;

(ii) V is G/S-graded-simple and the G-pregrading on V associated to its G/S-
grading is thin. �X

The Correspondence Theorem we are about to state relates the following
two categories.

Definition 4.5. Fix a subgroup S of G and let π : G → G = G/S be the
natural homomorphism.

(1) M(π) is the category whose objects are the simple, central, G-graded
left R-modules such that the G-pregrading associated to the G-grading is
thin, and whose morphisms are the isomorphisms of G-graded modules.
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(2) N(π) is the category whose objects are the pairs (W,F), where W is
a G-graded-simple left R-module and F is a maximal graded-subfield
of C(W ), which is isomorphic to the group algebra FS as a G-graded
algebra, and the morphisms (W,F) → (W ′,F ′) are the isomorphism of
G-graded modules φ :W →W ′ such that φFφ−1 = F ′.

Theorem 4.6. [14, Proposition 4.5 and Theorem 4.14] If V is an object of
M(π) then

(
Lπ(V), Lπ(F1)

)
is an object of N(π), and if ϕ : V → V ′ is a

morphism in M(π), then Lπ(ϕ) is a morphism in N(π), so we have the loop
functor Lπ : M(π)→ N(π). This functor has the following properties:

(i) Lπ is faithful, i.e., injective on the set of morphisms V → V ′, for any
objects V and V ′ in M(π).

(ii) Lπ is essentially surjective, i.e., any object (W,F) in N(π) is isomorphic
to
(
Lπ(V ), Lπ(F1)

)
for some object V in M(π).

(iii) If V and V ′ are objects in M(π) such that their images under Lπ are

isomorphic in N(π), then there is a character χ ∈ Ŝ such that V ′ is
isomorphic to V χ in M(π). �X

The definition of the twisted module V χ, χ ∈ Ŝ, is technical (see [14, Defini-
tion 4.10], which is analogous to [1, Definition 6.3.1]), but if χ can be extended
to a character of G (which is guaranteed if F is algebraically closed) then V χ

is isomorphic to V αχ , where αχ is the automorphism of R given by the action
of the extended χ (see [14, Proposition 4.11]).

If F is algebraically closed, this Correspondence Theorem gives a classifica-
tion of G-graded-central-simple R-modules up to isomorphism as follows. The
centralizer of any such module contains a maximal graded-subfield F isomor-
phic to FS for some subgroup S of G (see [14, Proposition 3.5]). We partition
all G-graded-central-simple modules according to the graded isomorphism class
of their centralizer and, for each class, make a choice of F (equivalently, of S)
and let π : G → G = G/S be the natural homomorphism. Then for every
G-graded-central-simple W with a fixed centralizer, there exists a simple, cen-
tral, G-graded module V such that W ' Lπ(V ), and this V is unique up to

isomorphism of G-graded modules and twisting by the action of Ĝ on R. Thus,
we can obtain the classification of G-graded-central-simple modules if we know
the classification of gradings on central-simple modules by the quotient groups
of G. Finally, we observe that, assuming F is algebraically closed, the condition
of graded-centrality is automatic for graded-simple modules whose dimension
(as a vector space) is less than the cardinality of F (see [18, Theorem 14]).
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4.3. Graded Brauer invariants of graded-simple modules with a
semisimple finite-dimensional centralizer

The Brauer invariants that we are going to define belong to the graded version
of Brauer group introduced in [20]. Given a field F and an abelian group G, the
group BG(F) consists of the equivalence classes of finite-dimensional associative
F-algebras that are central, simple, and G-graded, where A1 ∼ A2 if and only
if there exist finite-dimensional G-graded F-vector spaces V1 and V2 such that
A1 ⊗ EndF(V1) ' A2 ⊗ EndF(V2) as G-graded algebras. Here, unlike for some
more general versions of the graded Brauer group, A ⊗ B denotes the usual
(untwisted) tensor product of F-algebras, equipped with the natural G-grading:
(a1⊗ b1)(a2⊗ b2) := a1a2⊗ b1b2 and deg(a⊗ b) := deg(a) deg(b) for nonzero
homogeneous a ∈ A and b ∈ B. This tensor product induces a group structure
on the set of equivalence classes: [A][B] := [A⊗B].

Every class [A] contains a unique graded-division algebra (up to isomor-
phism). Indeed, recall that there exist a graded-division algebra D and a graded
right D-module V such that A is isomorphic to EndD(V) as a G-graded algebra,
where D is unique up to graded isomorphism and V up to graded isomorphism
and shift of grading. Pick a D-basis {v1, . . . , vk} of V that consists of homoge-

neous elements. Let Ṽ = Fv1 ⊕ · · · ⊕ Fvk. Then Ṽ is a G-graded vector space,
and the map

Ṽ ⊗ D → V, v ⊗ d 7→ vd,

is a graded isomorphism. Thus we can assume V = Ṽ ⊗ D and hence identify

EndD(V) ' EndF(Ṽ)⊗D.

Now the isomorphism A ' EndF(Ṽ) ⊗ D implies that D is central simple and
that [A] = [D], while the uniqueness of D mentioned above implies that [D1] =
[D2] if and only if D1 ' D2 as graded algebras.

In general, the graded Brauer group BG(F) can be complicated because
it contains the classical Brauer group B(F) as the classes of central division
algebras with trivial G-grading. But if F is algebraically closed then, for any
abelian group G, BG(F) is isomorphic to the group of alternating continuous

bicharacters of the pro-finite group Ĝ0, where G0 is the torsion subgroup of G
if charF = 0 and the p′-torsion subgroup of G if charF = p > 0 (i.e., the set of
all elements whose order is finite and coprime with p) —see [12, §2]. By means
of duality, each such bicharacter corresponds to a pair (T, β) where T is a finite
subgroup of G and β : T ×T → F× is a nondegenerate alternating bicharacter.
This pair is connected with the corresponding unique graded-division algebra
D as follows: T is the support of D and β is defined by Equation (4).

From now on, we assume that F is algebraically closed and restrict our
attention to G-graded-simple left R-modules W such that dimC(W ) is finite
and not divisible by charF. This is necessary and sufficient to guarantee that
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D := C(W ) contains a maximal graded-subfield F isomorphic to FS where |S|
is finite and not divisible by charF; it also implies that W is semisimple as an
ungraded module (see [14, Corollary 5.4]). Let T be the support of D and let
β : T × T → F× be the alternating bicharacter defined by Equation (4). It is
not necessarily nondegenerate: its radical is precisely the support of the center
of D, which we denote by H. The subgroup S is a maximal isotropic subgroup
of T (i.e., a maximal subgroup with the property β|S×S = 1), and it contains
H (see [14, Proposition 5.3], where our H is denoted by Z and our S by H;
here we follow the notation of [12]).

Definition 4.7. Assume that W is a G-graded-simple left R-module such that
dimC(W ) is finite and not divisible by charF.

(1) The inertia group of W is KW := H⊥ ⊂ Ĝ, where H is the support of
the center of D := C(W ).

(2) The (graded) Brauer invariant of W is the class of the G/H-graded-
division algebra Dε in BG/H(F), where ε is any primitive central idem-
potent of D.

(3) The (graded) Schur index of W is the degree of the matrix algebra Dε.

We note that Dε is a G/H-graded-division algebra that is central simple
(disregarding the grading), so [Dε] is indeed an element of BG/H(F), and this
element does not depend on the choice of ε (see [14, Theorem 5.7]). It cor-
responds to the pair (T ′, β′), where T ′ = T/H and β′ is the nondegenerate
bicharacter T ′ × T ′ → F× induced by β (i.e., β′(sH, tH) := β(s, t) for all
s, t ∈ T ). The Schur index equals |S/H| =

√
|T/H| and has the meaning of

the multiplicity of any simple constituent of W . The number of non-isomorphic
simple constituents is |H|, they form an orbit under the action of Ĝ on the iso-
morphism classes of R-modules by twisting, and the inertia group KW is the
stabilizer of each point in this orbit (see [14, Proposition 5.12]). By the Corre-
spondence Theorem, W ' Lπ(V ) ' Iπ(V ) for some object V of M(π), where
π : G→ G/S is the natural homomorphism. Disregarding the G/S-grading, V
is isomorphic to a simple constituent of W . In fact, any of these constituents
can serve as V , since they are twists of each other.

4.4. Finite-dimensional graded-simple modules

We have already seen that the inertia group of a G-graded-simple left R-module
W can be expressed in terms of any (ungraded) simple constituent V of W :
KW = KV , where

KV := {χ ∈ Ĝ : V αχ is isomorphic to V }.

If W is finite-dimensional then also its Brauer invariant can be expressed in
terms of V . In fact, this is the way Brauer invariants were defined in [12] (for the
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case R = U(L), where L is a semisimple finite-dimensional Lie algebra equipped
with a G-grading). We continue assuming that F is algebraically closed.

Theorem 4.8. [14, Corollary 6.4] Let W be a finite-dimensional G-graded-
simple left R-module such that charF does not divide the dimension of C(W ).
Let V be a simple (ungraded) submodule of W and let %V : R→ EndF(V ) be the
associated representation. Let H be the support of the center of C(W ). Then
there is a unique G/H-grading on EndF(V ) that makes %V a homomorphism
of G/H-graded algebras. With respect to this grading, the class of EndF(V ) is
precisely the Brauer invariant of W . �X

The G-graded-simple module W can be reconstructed from V if we compute
the pair (T ′, β′) corresponding to the unique G/H-graded-division algebra D′
in [EndF(V )] ∈ BG/H(F). As mentioned in the previous subsection, the support
T and bicharacter β : T×T → F× of the G-graded-division algebra D := C(W )
are given by T = (π′)−1(T ′) and β = β′ ◦ (π′×π′), where π′ : G→ G/H is the
natural homomorphism. In fact, D ' Lπ′(D′) by [14, Remark 5.10]. Now fix any
maximal isotropic subgroup S′ of T ′ (with respect to β′), then S := (π′)−1(S′)
is a maximal isotropic subgroup of T (with respect to β), so F :=

⊕
s∈S Ds is

a maximal graded-subfield of D isomorphic to FS. Hence, it follows from the
Correspondence Theorem that V admits a structure of G/S-graded R-module
such that V becomes an object in M(π) and W ' Lπ(V ), where π : G→ G/S
is the natural homomorphism.

Remark 4.9. All G/S-gradings that make V a graded R-module are shifts of
each other.

Proof. Suppose we have two such gradings, Γ and Γ′. Since R acts on V
through %V and the simple, G/S-graded algebra EndF(V ) admits a unique
G/S-simple-graded module up to isomorphism and shift, there exist g ∈ G and
an isomorphism of G/S-graded modules f : (V,Γ)[g] → (V,Γ′). Forgetting the
gradings, f is an element of EndR(V ), so f is a scalar multiple of the identity
map and thus Γ′ = Γ[g]. �X

Remark 4.10. W can be obtained from V by a two-step loop construction:
first we get the G/H-graded module W ′ := Lπ′′(V ), where π′′ : G/H → G/S
is the natural homomorphism (so π = π′′ ◦ π′), and then W ' Lπ′(W

′) (see
[14, p. 83]). The centralizer of W ′ is isomorphic to D′ (the Brauer invariant)
as a G/H-graded algebra, and V is the only simple constituent of W ′, with
multiplicity equal to the Schur index. This two-step approach was taken in
[12].

There remains the question which simple R-modules appear as simple con-
stituents of G-graded-simple modules. Assume charF = 0.
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Theorem 4.11. [14, Theorem 7.1] A finite-dimensional simple left R-module
V is isomorphic to a simple submodule of a finite-dimensional G-graded-simple
left R-module if and only if the index [Ĝ : KV ] is finite. �X

Thus, the loop functor gives a bijection between, on the one hand, the classes
of finite-dimensional G-graded-simple R-modules under isomorphism and shift
and, on the other hand, the finite Ĝ-orbits of isomorphism classes of finite-
dimensional simple R-modules. (Note that W and W [g] are isomorphic if and
only if g ∈ T .)

Knowing the structure of G-graded-simple modules allows us to determine
which semisimple modules admit a G-grading that makes them graded modules
because, with such a grading, the module must be isomorphic to a direct sum of
graded-simple modules. Hence, assuming F is algebraically closed and charF =
0, a finite-dimensional semisimple R-module M admits a G-grading if and only
if, for each of its simple constituents V , the Ĝ-orbit is finite and all simple
modules in the orbit occur in M with the same multiplicity that is divisible by
the Schur index of V .

In the case R = U(L), where L is a semisimple finite-dimensional Lie al-
gebra, all orbits are finite because V α is isomorphic to V for any inner au-
tomorphism α of L, and the outer automorphism group is finite. The Brauer
invariants of finite-dimensional simple modules for all simple finite-dimensional
Lie algebras, endowed with all possibleG-gradings, were computed in [12, 13, 8].
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86 YURI BAHTURIN, MIKHAIL KOCHETOV & ABDALLAH SHIHADEH

[22] J. Yu, Maximal abelian subgroups of compact simple Lie groups of type E,
Geom. Dedicata 185 (2016), 205–269.

(Recibido en septiembre de 2018. Aceptado en febrero de 2019)

Department of Mathematics

Memorial University of Newfoundland

St. John’s, NL, A1C5S7, Canada

e-mail: bahturin@mun.ca

e-mail: mikhail@mun.ca

e-mail: aaks47@mun.ca

Volumen 53, Año 2019


