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On the importance of being primitive
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Abstract. We give a brief survey of primitivity in ring theory and in particular
look at characterizations of primitive ideals in the prime spectrum for various
classes of rings.
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Resumen. Hacemos un breve estudio de la primitividad en la teoŕıa de anillos
y, en particular, veremos caracterizaciones de ideales primitivos en el espectro
primo para varias clases de anillos.
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1. Introduction

Given a ring R, an ideal P of R is called left primitive if there is a simple left
R-module M such that P is the ideal of elements r ∈ R that annihilate M ; i.e.,

P = {r ∈M : rm = 0 ∀m ∈M}.

The notion of a right primitive ideal can be defined analogously. Bergman
[12], while still an undergraduate, gave an example of a ring in which (0) is a
right primitive but not a left primitive ideal, so in general the two notions do
not coincide; although, in practice, the collections of left and right primitive
ideals are often the same. For the remainder of this paper, we will speak only
of primitive ideals, with the understanding that we are always working on the
left, and, in any case, for most of the rings considered in this survey, a left/right
symmetric characterization of primitivity is given.
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88 JASON BELL

We note that if P is a primitive ideal that is the annihilator of a simple left
R-module M then M natural inherits a structure as a simple left R/P -module
that is now faithful; i.e., it has zero annihilator as an R/P -module. A ring for
which the (0) ideal is primitive is then called a primitive ring and so we see that
if P is primitive then R/P is a primitive ring. We note that the intersection
of the primitive ideals of a ring is equal to the Jacobson radical—this is true
whether one works with left or right primitive ideals [24, Prop. 3.16].

1.1. Why are primitive ideals important?

Primitive ideals have played a significant role in the development of ring theory
throughout its history. In this brief subsection, we give an overview of the
reasons why primitive ideals are important.

A fundamental tool in understanding finite groups is via their representation
theory. Given a simple module M , by Schur’s theorem ∆ := EndR(M) is a
division ring and there is a map f : R → End∆(M). We call such a map an
irreducible representation of R. The image of R is isomorphic to a subring of
a ring of linear operators of a vector space over a division ring and hence one
can view the image of the ring R as now being a ring of linear transformations.
In general, some information is lost under this procedure and this image gives
an imperfect picture of the ring R. One can think of this process intuitively by
imagining a sculpture and then shining a light against it and seeing the shadow
that is cast. One can gain only an imperfect idea of the original form of the
sculpture from its shadow, but it would not be unreasonable for one to cling
to the vague hope that if one were to shine a light against the sculpture in all
possible manners then one could hope to recover a good idea of its shape from
the totality of the data encoded by the shadows.

Similarly, with irreducible representations one does not generally have all
information about the ring, but one can hope that if one has a sufficiently good
understanding of a large number of irreducible representations of a ring then
one can answer difficult structure-theoretic questions about the ring itself.

In practice, it is very difficult to find all irreducible representations of a ring.
This can be done for group algebras of many finite groups over the complex
numbers, but in general the problem is intractable. Nevertheless, just knowing
the annihilators of the simple modules will often allow one to prove non-trivial
facts about a ring.

As mentioned above, if R is a primitive ring with a faithful simple R-module
M then by Schur’s theorem ∆ = EndR(M) is a division ring and the Jacobson
density theorem gives that there is an embedding f : R→ End∆(M) given by
f(r)(m) = r ·m. Jacobson’s theorem says in fact that this embedding is dense
in the following sense: if v1, . . . , vm are ∆-linearly independent elements of M
and w1, . . . , wm ∈ M then there is some r ∈ R such that f(r)(vi) = wi. If one
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ON THE IMPORTANCE OF BEING PRIMITIVE 89

studies much of Jacobson’s work on the theory of rings, one sees a unifying
philosophy to his approach to many ring theoretic problems.

Jacobson’s method

(i) Given a problem about a ring R show, if possible, that it suffices to
consider R/J(R), where J(R) is the Jacobson radical of R.

(ii) If the first step can be completed, use the fact that J(R) is an intersection
of primitive ideals to obtain that R is a subdirect product of primitive
rings R/P .

(iii) Next, if possible, use the second step to show that one can reduce to the
case when R is primitive.

(iv) Finally, use the the embedding of a primitive ring into a ring of linear
operators described above to reduce the problem to one that is essentially
linear algebra.

Although Jacobson’s method is not a panacea for dealing with all problems
in ring theory, it nevertheless provides an effective means of answering many
types of questions that arise within the discipline. Perhaps the best example of
this method being used in practice is to obtain Jacobson’s famous commuta-
tivity theorem, which says that if R is a ring with the property that for every
x ∈ R there is some positive integer n(x) > 1 such that xn(x) = x then R is
commutative. It is not difficult to show that in such a ring the Jacobson radical
must be zero and since this property is inherited by homomorphic images, it
suffices to prove the primitive case. Then one can use the Jacobson density
theorem and the fact that such a ring can have no nonzero nilpotents to reduce
to the case when R is a division ring. The division ring case is not immediate,
but it is still not so hard to show that a division ring with this property must
be a field (see Jacobson [32]).

A second reason that the primitive ideals are important can be seen via
analogy with commutative algebra. Given a commutative ring R, one can form
an affine scheme X = Spec(R), consisting of the prime ideals of R endowed
with the Zariski topology. We note that if R is commutative then a simple
module is of the form R/P with P maximal and the annihilator of R/P is
P . Thus the primitive ideals of R are just the closed points of X. In general
primitive ideals need not be maximal, but they are always prime ideals: to see
this, observe that if P is a primitive ideal of R and M is a faithful simple left
S := R/P -module then if P is not prime then there exist nonzero a, b ∈ S such
that aSb = (0); but now since b 6= 0 and M is faithful and simple we have
SbM = M and so (0) = aSbM = aM , which is nonzero since a is nonzero,
a contradiction. Thus the primitive ideals form a distinguished subset of the
prime ideals. In the commutative setting, the power of the affine scheme X
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associated to R is that one can think of R as being a ring of functions on X.
In the noncommutative setting, this point of view is necessarily less powerful,
but it is nevertheless still the case that the prime spectrum and the primitive
spectrum, for many classes of rings, encode a lot of valuable information about
the ring. The focus of the remainder of this survey is to study the problem of
determining which prime ideals in the prime spectrum of a ring are primitive.

2. Important background results

There are several necessary and sufficient conditions for prime ideals to be
primitive. We give a brief overview of these results.

2.1. Locally closed prime ideals

We first outline the relationship between a prime ideal being locally closed in
the prime spectrum and being primitive.

Definition 2.1. Let P be a prime ideal of a ring R. We say that P is locally
closed in Spec(R) if the intersection of the prime ideals that properly contain
P is strictly larger than P .

We will often just say that P is locally closed, with the understanding that
we are talking about being locally closed in Spec(R).

We recall that a subset Y of a topological space X is locally closed if Y is
the intersection of an open set of X with a closed subset of X. We observe that
our definition of P being locally closed coincides with the topological definition
for {P} being a closed point of the prime spectrum. To see this, if I denotes
the intersection of the prime ideals that properly contain P and I 6= P then
{P} = CP \ CI , where given a two-sided ideal J of R we let CJ denote the
closed subset of Spec(R) consisting of the prime ideals that contain J . Thus
{P} is locally closed if it is equal to the intersection of the closed set CP and
the open set Cc

I . On the other hand, if {P} = C ∩U for some closed set C and
some open set U then C = CJ for some J and U = Cc

I for some ideal I so P
is the unique prime that contains J and does not contain I and so we see that
the intersection of the prime ideals of R that properly contain P is an ideal
that properly contains P .

In the case that R is noetherian, if P is locally closed and one lets I denote
the intersection of the prime ideals that contain P then I is a finite intersection
of prime ideals by Noether’s theorem. Hence in this setting being locally closed
is equivalent to saying that the poset of prime ideals that properly contain P
has a finite set of minimal elements.

The connection between being locally closed and being primitive is as fol-
lows.

Volumen 53, Año 2019



ON THE IMPORTANCE OF BEING PRIMITIVE 91

Proposition 2.2. Let R be a ring and let P be a locally closed prime ideal of
R. Then P is primitive if and only if the Jacobson radical of R/P is zero.

Proof. By replacing R by R/P , we may assume that P = (0). Let I 6= (0)
denote the intersection of the nonzero prime ideals of R. If J(R) = (0) then
since I is not contained in the Jacobson radical, there exists some x ∈ I such
that 1 + x is not a (left) unit. Let L = R(1 + x). Then L is a proper left ideal
of R and hence by Zorn’s lemma there is some maximal left ideal J of R that
contains L. Let M = R/J . Then M is simple and notice that if M is not faithful
then its annihilator must be some nonzero prime ideal Q that contains I. But
this means x ∈ Q and so xM = (0). But by construction (1 + x) · (1 + J) = 0
since 1 + x ∈ L ⊆ J and so x and 1 + x both annihilate 1 + J ∈ M . But this
means 1 = (1 + x)− x annihilates 1 + J and so 1 + J = 0 + J , a contradiction.
Thus M is faithful and so R is primitive. Conversely if the Jacobson radical of
R is nonzero then since the Jacobson radical is the intersection of the primitive
ideals, we see that (0) is not primitive and so R is not primitive. �X

There is also a general connection between a ring being primitive and the
centre of the ring being small, although there are examples of primitive rings
with big centres (see for example, Irving [31]). A general principle, however, is
that being primitive is in some sense orthogonal to being commutative. This can
be seen to some degree from the fact that we showed earlier: a commutative
ring is primitive if and only if it is a field. Kaplansky [53, Theorem 23.31]
generalized this and showed that a primitive ring satisfying a polynomial ring
is isomorphic to a matrix ring over a division ring with the division ring being
finite-dimensional over its centre.

2.2. Noncommutative localization and the Nullstellensatz

An immensely useful construction in commutative algebra is that of forming
the field of fractions of an integral domain. In general, there are many subtleties
that arise when one tries to mimic this construction in the noncommutative
setting, the most obvious obstruction being the fact that if one multiplies two
“left fractions,” s−1

1 r1 and s−1
2 r2, together, then there is no obvious way to

rewrite this product as a left fraction s−1r. Indeed, one cannot always do this
and rings with sets of left denominators for which one can do this are said to
satisfy the Ore condition. If R is a semiprime noetherian ring then a remarkable
result of Goldie [24, Theorem 6.15] shows that if we let S denote the set of
regular elements of R; that is, the elements of R that are neither left nor right
zero divisors of R, then we can localize at S and form a quotient ring S−1R
that is a semisimple Artinian ring, which we denote by Q(R). This can then
be regarded as being a “noncommutative field of fractions” of R. It is of course
not a field unless R is a commutative domain, but it is the next best thing: a
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92 JASON BELL

ring that is isomorphic to a finite product of matrix rings over division rings.
In the case that R is prime noetherian, the quotient ring is in fact a simple
Artinian ring.

If R is a prime noetherian k-algebra then Q(R) is again a k-algebra and
its centre, Z(Q(R)) is a field extension of k. We call this field the extended
centre of R. If R is a primitive noetherian ring then Z(Q(R)) embeds in the
endomorphism ring of a faithful simple module M [17, Lemma II.7.13], and so
if the endomorphism ring is small then the centre of the Goldie quotient ring
is necessarily small, too. In the case that R is a noetherian k-algebra, with k
a field, and P is a prime ideal with the property that Z(Q(R)) is an algebraic
extension of k then we say that P is rational.

Notice that in the case that R is commutative, EndR(M) is just the field
R/Ann(M). For many commutative algebras, one shows that the surjective
homomorphisms onto fields are constrained via the Nullstellensatz. More pre-
cisely, there is a strong Nullstellensatz for commutative Jacobson rings. We
recall that a ring R is Jacobson if every prime ideal is the intersection of the
primitive ideals above it; equivalently, being Jacobson is the same as saying that
the Jacobson radical of R/P is zero for all prime ideals P of R. Notice in light
of Proposition 2.2, we have that if R is a Jacobson ring then a locally closed
prime ideal is primitive. For commutative rings we have the following version
of the Nullstellensatz [22, Theorem 4.19]: if R is a commutative Jacobson ring
and S is a finitely generated R-algebra then S is Jacobson and whenever P is
a maximal ideal of S we have R∩P is a maximal ideal of R and S/P is a finite
extension of R/(P ∩R). In particular, when R is a field this gives the classical
Nullstellensatz: that if S is a finitely generated R-algebra and if P is a maximal
ideal of S then S/P is a finite extension of R.

In analogy with the commutative setting, we say that a noncommutative
noetherian k-algebra R satisfies the Nullstellensatz if the following hold:

(i) R is a Jacobson ring;

(ii) if P is a primitive ideal of R and M is a faithful simple left R/P -module,
then EndR/P (M) is an algebraic k-algebra.

Then it is immediate that if R is a left noetherian algebra that satisfies the
Nullstellensatz then we have the following

Theorem 2.3. Let k be a field and let R be a left noetherian k-algebra that
satisfies the Nullstellensatz. Then we have:

(i) a locally closed prime ideal is primitive;

(ii) a primitive ideal is rational.
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Proof. Since R is Jacobson, J(R/P ) = (0) and so if P is locally closed, it is
primitive by Proposition 2.2. If P is primitive and M is a faithful simple R/P -
module then there is a k-algebra embedding of Z(Q(R/P )) into EndR/P (M)
[17, Lemma II.7.13] and so Z(Q(R/P )) is an algebra k-algebra that is an inte-
gral domain and hence it is an algebraic extension of k. Thus P is rational. �X

The Nullstellensatz, as it turns out, is a rather broad phenomenon that
holds in many settings. We give an overview.

Theorem 2.4. Let k be a field and let R be a k-algebra. Then the following
hold:

(i) if there is a chain k ⊆ R1 ⊆ · · · ⊆ Rd = R of k-algebras such that for
i = 0, 1, . . . , d − 1, each Ri+1 is either a finitely generated left and right
Ri-module or there is some x ∈ Ri+1 such that Ri+1 is generated by Ri

and x and Rix+Ri = xRi +Ri then R satisfies the Nullstellensatz;

(ii) if dimk(R) < |k| then R satisfies the Nullstellensatz;

(iii) if R is a finitely generated algebra satisfying a polynomial identity then
R satisfies the Nullstellensatz;

(iv) if R is the group algebra of a polycyclic-by-finite group G then R satisfies
the Nullstellensatz.

Proof. See Brown and Goodearl [17, II.7] for (i)–(ii). The fact that affine PI
algebras satisfy the Nullstellensatz is a result of Amitsur and Procesi (see [52,
Theorem 6.3.3]). Finally, Brown [14] proved the Nullstellensatz holds for the
group algebra of a polycyclic-by-finite group. �X

2.3. Primitivity of skew polynomial rings

One of the most basic constructions of noncommutative rings comes via skew
polynomial rings. In this setting we have a base ring R, an automorphism σ of R
and a σ-derivation δ of R; that is, for a, b ∈ R we have δ(ab) = σ(a)δ(b)+δ(a)b.
Then we can construct a ring R[x;σ, δ], called a skew polynomial ring, which,
as a set, is just R[x] but with multiplication extending R given by

x · r = σ(r)x+ δ(r).

In the case when δ = 0, it is customary to omit the σ-derivation and write
R[x;σ]; and when σ is the identity, δ is just a derivation and it is customary
to write R[x; δ]. A natural question is: when is a ring of the form R[x;σ, δ]
primitive? For the case of a commutative noetherian base ring R, Goodearl
and Warfield [23] characterized when R[x; δ] is primitive. Specializing to the
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case when R is a finitely generated commutative domain over a field k of char-
acteristic zero, their result shows that R[x; δ] is primitive if and only if there is
some maximal ideal P of R that does not contain a nonzero prime ideal Q of
R that is invariant under the derivation δ. In general this is a sufficient condi-
tion to be primitive: indeed, Jordan [34] shows that if R is a right noetherian
ring with a derivation δ, then R[x; δ] is primitive if there is a maximal right
ideal M of R containing no nonzero δ-invariant two-sided ideal of R, but in
general counterexamples exist, and the Goodearl Warfield characterization is
necessarily more complicated to deal with these examples.

In the case of automorphisms there are similar characterizations of primi-
tivity. When R is a noetherian ring satisfying a polynomial identity with auto-
morphism σ a result of Leroy and Matzcuk [40] characterizes when R[x;σ] is
primitive. Given a ring R with an automorphism σ, we say that R is σ-special
if there is some a ∈ R such that rσ(r) · · ·σn(r) is nonzero for all n ≥ 1 and such
that every nonzero σ-stable ideal I of R contains rσ(r) · · ·σn(r) for some n ≥ 1,
depending upon I. Then Leroy and Matzcuk [40, Theorem 3.10] show that if R
is a commutative noetherian ring with automorphism σ, then R[x;σ] is primi-
tive if and only if σ has infinite order and R is σ-special. Jordan [35] has done
work on the skew Laurent case and has given an analogous characterization for
commutative base rings R.

3. The Dixmier-Moeglin equivalence

One of the most appealing results in terms of characterizing primitive ideals
in rings is the work of Dixmier and Moeglin [21, 47], who showed that if L
is a finite-dimensional complex Lie algebra then the primitive ideals of the
enveloping algebra U(L) are just the prime ideals of Spec(U(L)) that are locally
closed in the Zariski topology. Furthermore, they proved that a prime ideal P
of U(L) is primitive if and only if the Goldie ring of quotients of U(L)/P has
the property that its centre is just the base field of the complex numbers. In
general, for a field k and a left noetherian k-algebra R, prime ideals P for which
the centre of the Goldie ring of quotients Q(R/P ) of R/P has the property that
its centre is an algebraic extension of k are called rational prime ideals. Hence
Dixmier and Moeglin’s result can be regarded as saying that for primes P of
Spec(U(L)) we have the following equivalences:

P locally closed ⇐⇒ P primitive ⇐⇒ P rational.

In light of their work, we now say that a noetherian k-algebra R satisfies the
Dixmier-Moeglin equivalence if we have the equivalence of the three above
properties—primitivity, rationality, and local closedness—for primes in the
spectrum of R. The Dixmier-Moeglin equivalence is now known to be a very
general phenomenon that holds for many classes of algebras beyond just en-
veloping algebras of finite-dimensional Lie algebras.

Volumen 53, Año 2019



ON THE IMPORTANCE OF BEING PRIMITIVE 95

Some additional examples include affine PI algebras [55, 2.6], group al-
gebras of nilpotent-by-finite groups [59] (see Theorem 5.3), various quantum
algebras [27] (and see [17, II.8.5]), affine cocommutative Hopf algebras of finite
Gelfand-Kirillov dimension in characteristic zero [9], Hopf Ore extensions of
affine commutative Hopf algebras [7], twisted homogeneous coordinate rings
of surfaces [6], Hopf algebras of Gelfand-Kirillov dimension two (under mild
homological assumptions) [28], finitely generated connected graded domains of
GK dimension two that are generated in degree one (cf. Artin and Stafford [2]),
and even in settings where the noetherian property does not hold [1, 45, 44]
(see Section 6) and generalizations involving stronger properties [4].

On the other hand, the equivalence is not universal and there are several
finitely generated noetherian counterexamples are now known [5, 15, 29, 43].

3.1. History

The history of the Dixmier-Moeglin equivalence is as follows. Dixmier [21, Theo-
rem C] proved a weaker version of what is now the Dixmier-Moeglin equivalence
for enveloping algebras of complex finite-dimensional Lie algebras. He showed
in this case that for prime ideals P , the properties: primitivity, rationality, and
the property of there being a countable set of elements an 6∈ P such that every
prime ideal strictly containing P must contain some an, are equivalent. It is
known that in the case of affine prime noetherian algebras over uncountable
base fields, having z ∈ Z(Q(R)) that is transcendental over the base field gives
rise to an uncountable set of height one prime ideals of R, by localizing at a
suitable countable Ore set in which one obtains a ring with a non-algebraic
centre and then employing a result of Jategaonkar [33]; conversely, having an
uncountable set of height one prime ideals gives that Z(Q(R)) is not algebraic
over the base field (see [30]). This countability condition was later strengthened
to the condition of P being locally closed by Moeglin [47].

Much of the work on the Dixmier-Moeglin equivalence relates to Hopf al-
gebras or Hopf-like algebras (e.g., bialgebras and deformations of bialgebras).
Predating the Dixmier-Moeglin equivalence were results such as Kaplansky’s
theorem, which says that a primitive algebras satisfying a polynomial identity
is isomorphic to a matrix ring over a division ring D with [D : Z(D)] <∞ and
Zalesskĭı’s theorem [59], which states that if G is the group algebra of a finitely
generated torsion-free nilpotent group then a primitive ideal P of the group
algebra of G is maximal. Both of these results characterize primitive ideals as
being precisely the maximal ideals, and both of these algebras are known to
satisfy the Dixmier-Moglin equivalence (see Theorem 3.2). Snider [54] showed
that for a polycyclic group G the group algebra of G over a field that is not
algebraic over a finite field has all primitive ideals maximal if and only if G
is nilpotent-by-finite, and Lorenz [43] shortly thereafter gave an example of
a polycyclic group that is not nilpotent-by finite whose group algebra does
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not satisfy the Dixmier-Moeglin equivalence. In his example, (0) is a primitive
ideal of the group algebra that is not locally closed. We now give the key re-
sult in showing that the Dixmier-Moeglin equivalence holds for affine algebras
satisfying a polynomial identity as well as for certain group algebras.

Theorem 3.1. Let k be a field and let A be a noetherian k-algebra and suppose
that A satisfies the Nullstellensatz. If every P in Spec(A) has the property that
every nonzero ideal of A/P intersects the centre of A/P non-trivially then A
satisfies the Dixmier-Moeglin equivalence and all primitive ideals are maximal.

Proof. Since A satisfies the Nullstellensatz, to prove the Dixmier-Moeglin
equivalence it suffices to prove that rational ideals are locally closed. If P is ra-
tional then Z(A/P ) is a field and since every nonzero ideal intersects the centre
non-trivially, we see that A/P is simple. In particular, we have rational ideals
are maximal and these are necessarily locally closed. The result follows. �X

Theorem 3.2. Let k be a field and let A be either a finitely generated k-
algebra satisfying a polynomial identity or the group algebra over k of a finitely
generated nilpotent group. Then A satisfies the Dixmier-Moeglin equivalence.

Remark 3.3. We note that the group algebra of a polycyclic-by-finite group
is noetherian, but a finitlely generated prime algebra satisfying a polynomial
identity need not be; however, it is the case that such algebras satisfy the
Goldie conditions required for localization and so one can still make sense of
the rationality property in this setting.

Proof of Theorem 3.2. The fact that A satisfies the Nullstellensatz follows from
Theorem 2.3. We first consider the polynomial identity case. Here, a theorem
of Posner [53, Theorem 23.33] shows that every nonzero ideal of A/P intersects
the centre of A/P non-trivially and hence A/P is simple. In particular P is
locally closed since it is maximal. In the case of a group algebra of a finitely
generated nilpotent group, we have the same result that every nonzero ideal of
A/P intersects the centre of A/P (this result is well known and probably very
old—see [9, Proposition 3.3] for a proof of a more general result). Thus in both
cases we obtain the result from Theorem 3.1. �X

After the work of Dixmier and Moeglin, Goodearl and Letzter [27] showed
that the Dixmier-Moeglin equivalence was a truly general phenomenon that
applied to a large class of algebras. Their groundbreaking paper, in particular
showed that it applied to many classes of quantized enveloping algebras and
quantized coordinate rings of affine varieties. In particular, many of these alge-
bras also enjoy a Hopf structure and the author and Leung [9] asked whether
the Dixmier-Moeglin equivalence holds for a complex noetherian fintiely gener-
ated Hopf algebra of finite Gelfand-Kirillov dimension. In addition, this paper
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proves the result in the cocommutative case, which in light of Gromov’s theo-
rem on groups of polynomial growth (see [38, Theroem 11.1]) can be seen as
a unification of the results of Dixmier and Moeglin and work on the Dixmier-
Moeglin equivalence for finitely generated nilpotent-by-finite groups (although,
the proof is done via an induction, in which the enveloping algebra case is the
base case). Brown and Gilmartin [16] ask a more modest question: does the
Dixmier-Moeglin equivalence hold for pointed affine noetherian Hopf algebras
of finite Gelfand-Kirillov dimension over an algebraically closed field k? As far
as Hopf algebras outside of these examples given above, the Dixmier-Moeglin
equivalence has been proved for many Hopf algebras of small Gelfand-Kirillov
dimension [28]. In addition, Brown, O’Hagan, Zhang, and Zhuang [13] give the
notion of an iterated Hopf Ore extension and it is known [7] that if R is an
affine commutative Hopf algebra that is an integral domain and S = R[x;σ, δ]
has a Hopf algebra structure extending that of R then S satisfies the Dixmier-
Moeglin equivalence.

4. Goodearl-Letzter stratification and quantum algebras

Arguably the greatest leap forward in work around the Dixmier-Moeglin equiv-
alence was work of Goodearl and Letzter [27], who showed that the Dixmier-
Moeglin equivalence is a truly general phenomenon that holds for many classes
of algebras. In particular, they showed that algebras with a suitable rational
algebraic group action will satisfy the equivalence provided that the collec-
tion of G-invariant prime ideals is finite. Many quantum algebras fall into this
framework.

We let k be a field, let A be a k-algebra, and let G be an algebraic group
over k that acts as k-algebra automorphisms of A. If for every a ∈ A there is a
finite-dimensional k-vector subspace V of A that contains a such that g ·V = V
for every g ∈ G such that the induced map g 7→ Φg : V → V is a morphism
from G→ GL(V ), then we say that G acts rationally on A.

Given a prime ideal P ∈ Spec(A), we let

J(P ) :=
⋂
g∈G

gP.

Then J(P ) is an intersection of prime ideals and if A is left noetherian, we then
see that J(P ) is a finite intersection of prime ideals Q1 ∩ · · · ∩Qd. Notice that
G acts transitively on the set {Q1, . . . , Qd} and since each g ∈ G permutes the
Qi, and so this ideal J(P ) is G-invariant and a G-prime ideal; that is, if L and
I are G-invariant ideals that contain J(P ) and LI ⊆ J(P ) then either L or I
is equal to J(P ).

Remark 4.1. Let A be a left noetherian k-algebra with a rational action of
an algebraic group G and let V be a finite-dimensional G-invariant subspace
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of A that contains a generating set for an ideal Q and let W = Q ∩ V . Then
{g ∈ G : g ·W = W} is a Zariski closed subset of G. In particular, the set of
g ∈ G such that g ·Q = Q is a Zariski closed subset of G, and if G is connected
then a G-prime ideal is prime.

Proof. Let w1, . . . , wd be a basis for W . Then we have map fi : G→ ∧d+1(V )
given by fi(g) = g · wi ∧ w1 ∧ w2 ∧ · · · ∧ wd. Then each fi is a morphism of
algebraic varieties and X := {g ∈ G : g ·W = W} is just the intersection of
f−1
i (0) for i = 1, . . . , d. In particular X is Zariski closed. Then we see that
X = {g ∈ G : g ·W = W} and so the set of g ∈ G which preserve Q is Zariski
closed. If J is a G-prime ideal of A then it is semiprime and since A is left
noetherian, J is a finite intersection of prime ideals:

J = Q1 ∩ · · · ∩Qd.

Then G acts transitively on the Qi and if we let hi ∈ G be such that hi ·Q1 = Qi

and we let X = {g ∈ G : g · Q1 = Q1}, then we see that Xi := hiX is Zariski
closed for i = 1, . . . , d and Xi = {g ∈ G : g · Q1 = Qi}. In particular, G is
a disjoint union of d non-empty Zariski closed sets and since G is connected,
d = 1; thus J is prime. �X

We let G-Spec(A) denote the set of G-invariant G-prime ideals, and for each
G-invariant prime ideal J we let

SpecJ(A) = {P ∈ Spec(A) : J(P ) = J}.

Theorem 4.2. (Goodearl-Letzter [27]) Let k be an algebraically closed field
and let A be a noetherian k-algebra and that G is a k-affine algebraic group
that acts rationally on A. If G-Spec(A) is finite then A satisfies the Dixmier-
Moeglin equivalence and for a G-invariant prime ideal J , the primitive ideals
in SpecJ(A) are precisely the prime ideals that are maximal in SpecJ(A).

We note that work of Moeglin-Rentschler [48, 49] and Vonessen [55, 56]
shows that under these hypotheses thatG acts transitively on the rational prime
ideals in each stratum. As an example of a quick application of the Goodearl-
Letzter thoerem and its great power, we observe that if A is a connected affine
noetherian N-graded k-algebra over an algebraically closed field k, then A has
a k∗-action. Suppose that the collection of homogeneous prime ideals of A is
finite. Then A has a rational k∗-action, by declaring that λ ·a = λda for λ ∈ k∗
and a homogeneous of degree d. Then we see that if A has only finitely many
homogeneous prime ideals then A satisfies the Dixmier-Moeglin equivalence.

We illustrate the Goodearl-Letzter stratification process in the case of the
quantum affine n-space, A = Cq[x1, . . . , xn]; that is, the algebra generated by
x1, . . . , xn with xixj = qxjxi. We assume that q ∈ C is nonzero and not a root
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of unity. In this case we have an action of (C∗)n given by (λ1, . . . , λn)·xi = λixi.
Notice that since the variables skew commute, every element of A can be writ-
ten as a linear combination of monomials xp1

1 · · ·xpn
n and these monomials form

a C-basis for A. Notice that given a monomial m = xp1

1 · · ·xpn
n we have Cm

is G-invariant and the torus action induces a Zn-grading of A and xp1

1 · · ·xpn
n

has degree (p1, . . . , pn). In particular, the only homogeneous elements of A
are scalar multiples of monomials and so any G-invariant ideal is generated
by monomials. Moreover, since the variables x1, . . . , xn are normal (that is,
xiA = Axi for i = 1, . . . , n), we see that if P is a G-invariant prime ideal and
xp1

1 · · ·xpn
n ∈ P then there is some i with pi > 0 such that xi ∈ P . In par-

ticular, each G-invariant prime ideal is generated by a subset of {x1, . . . , xn}.
It is straightforward to check that each ideal generated by a subset of these
variables is prime, since the quotient is isomorphic to a smaller quantum affine
space. Thus there are precisely 2n G-invariant prime ideals and so the Goodearl-
Letzter theorem shows that A satisfies the Dixmier-Moeglin equivalence. Ob-
serve that if J = 〈{xs : s ∈ S}〉 for some subset S of {1, . . . , n} then a prime
ideal P is in SpecJ(A) if P contains J and if xi 6∈ P for i 6∈ S. Since A/J
is a quantum affine space, it suffices to consider the case when J = (0) in
Cq[x1, . . . , xm]. Then by the above remarks, SpecJ(A) is homeomorphic to the
prime spectrum of Cq[x±1

1 , . . . , x±1
m ]. In this case, they are able to show more.

Namely that the centre of this localization controls the spectrum; that is, each
stratum is homeomorphic to a complex torus.

In fact, these results apply to a large class of quantum groups (see [17,
Chapter II.8] for more details).

4.1. CGL extensions

The work of Goodearl and Letzter shows that many iterated skew polyno-
mial extensions, today called CGL extensions, where CGL stands for Cauchon-
Goodearl-Letzter, satisfy the Dixmier-Moeglin equivalence. An iterated skew
polynomial extension

k[x1][x2;σ2, δ2] · · · [xn;σn; δn]

is called a CGL extension if the following conditions hold:

(i) If we let Am = k[x1][x2;σ2, δ2] · · · [xm;σm; δm] for m ≤ n, then each σm is
a k-algebra automorphism of Am−1 and δm is a k-linear locally nilpotent
σm-derivation of Am−1;

(ii) for m = 1, . . . , n, σm ◦ δm = qmδm ◦ σm for some qm ∈ k∗;

(iii) for i < j, σj(xi) = ci,jxi for some ci,j ∈ k∗;
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(iv) there is a torus G = (k∗)p that acts rationally on A by k-algebra auto-
morphisms;

(v) the xi are G-eigenvectors; that is, g · xi = λi(g)xi for some character
λi : G→ k∗ of G for i = 1, . . . , n;

(vi) there are elements gi ∈ G for i = 1, . . . , n such that gj · xi = σj(xi) for
j > i.

This is a broad class of algebras that includes many quantum algebras at
non-roots of unity. For example, the quantized coordinate ring of 2×2 matrices,
Oq(M2), is the C-algebra with generators a, b, c, d and relations

ab = qba, cd = qdc, ac = qca, bd = qdb, bc = cb, ad− da = (q − q−1)bc.

Then we can write this as k[b][c][d;σ][a; τ, δ], where σ(b) = qb, σ(c) = qc,
τ(b) = qb, τ(c) = qc, τ(d) = d and δ(b) = δ(c) = 0 and δ(d) = (q − q−1)bc.
Then δ2(d) = 0 and so we see that δ is locally nilpotent since δ2 annihilates
a generating set for k[b][c][d;σ]. We have a torus action of (k∗)4 on A given
by (α1, α2, β1, β2) · ui,j = αiβjui,j for i, j = 1, 2, where u1,1, u1,2, u2,1, u2,2

are respectively a, b, c, d. (This can be thought of as coming from putting our
generators in a 2× 2 matrix (

a b

c d

)
and notice that relations still hold after scaling a given row by a scalar or a
given column by a scalar.) We note that this action is morally a (k∗)3-action
since the 1-dimensional subgroup {(α, α, α−1, α−1) : α ∈ k∗} acts trivially on
A. Then with this torus action it is easily seen that the ring of quantum 2× 2
matrices is a CGL extension.

Much of the literature involving skew polynomial extensions R[x;σ, δ] fo-
cuses on the case when either δ = 0 (i.e., the automorphism/endomorphism
case) or the case when σ is the identity (i.e., the pure derivation case). The
main reason for this is that when one leaves these cases, understanding the
structure theory of the skew polynomial ring becomes considerably more dif-
ficult. One of the amazing features of CGL extensions, despite the fact that
they involve both automorphisms and σ-derivations, is that, for the purposes
of understanding their spectra, one can pass to the pure automorphism case
via the so-called deleting derivations algorithm, which was first given by Cau-
chon [20]; the main idea behind this algorithm is that by passing to a suitable
localization one can show that the resulting algebra is isomorphic to a skew
polynomial algebra in which one has only automorphisms and no derivations;
then, by working backwards, one can reconstruct the spectrum in a step-by-step
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manner. This, in particular, has allowed one to go in many cases well beyond
the understanding of the prime and primitive spectrum affording by knowing
the Dixmier-Moeglin equivalence and this technique has since been used to
great effect by numerous authors—for a small sample, see [19, 26, 41, 57, 58].

5. The Dixmier-Moeglin equivalence for related algebras

One of the signs of how robust an algebraic property is the extent to which the
property is stable when one passes to closely related algebras. We study a few
of these properties.

5.1. Letzter’s work

One of the earliest results in this direction with the Dixmier-Moeglin equiva-
lence is work of Letzter [42], which is of huge importance in understanding the
Dixmier-Moeglin equivalence. In his setting, he studies algebras R ⊆ S in which
S is a finite left or right R-module. Here we can ask to what extent properties
of the zero ideal being rational, locally closed, and being primitive (when R
and S are both prime) can be transferred from one ring to the other. Letzter’s
paper is a great resource for anyone dealing with relating the rationality, locally
closed, or primitive properties to rings where one ring is a finite module over
the other; but we focus our attention on two of the main highlights of his work.

Theorem 5.1. (Letzter [42]) Let k be a field and let R ⊆ S be k-algebras with
S finitely generated on both sides as an R-module. If primitive ideals of R are
rational then primitive ideals of S are rational and if rational ideals of R are
primitive then rational ideals of S are primitive.

Theorem 5.2. (Letzter [42]) Let k be a field and let R ⊆ S be k-algebras with
S finitely generated and free as a left and right R-module. If S has finite GK
dimension then all primitive ideals of R are locally closed in Spec(R) if and
only if all primitive ideals of S are locally closed in Spec(S).

Notice that in the case that R ⊆ S are k-algebras with S a finitely generated
free left and right R-module and S noetherian of finite GK dimension and R and
S satisfy the Nullstellensatz then we have that R satisfies the Dixmier-Moeglin
equivalence if and only if S does.

As an application of Letzter’s results, we prove the following folklore the-
orem, which we attributed to Zalesskĭı, although it was apparently not stated
in this form.

Theorem 5.3. Let G be a finitely generated nilpotent-by-finite group and let
k be a field. Then k[G] satisfies the Dixmier-Moeglin equivalence.
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Proof. Let N be a finite-index nilpotent subgroup of G. Then S = k[G] is a
finitely generated free left and right R = k[N ]-module. Then S is noetherian
and satisfies the Nullstellensatz and has finite GK dimension by the Bass-
Guivarch theorem (see Krause and Lenagan [38, Theorem 11.14]). Then by
Theorem 3.2 we have R satisfies the Dixmier-Moeglin equivalence, so by Let-
zter’s thoerems we have that S does too. �X

5.2. Irving-Small reduction

When studying algebras over a field k it is often much simpler to deal with
the case that k is algebraically closed. Let A be a k-algebra and let k̄ denote
the algebraic closure of A. Suppose that A⊗k k̄ is noetherian and satisfies the
Nullstellensatz.

Theorem 5.4. (Irving-Small) Let k be a field of characteristic zero, let A be
a finitely generated k-algebra, and suppose that A ⊗k K is left noetherian and
satisfies the Nullstellensatz for every extension K of k. If rational ideals are
primitive in A⊗k k̄ and primitive ideals are locally closed in A⊗k K for some
algebraically closed uncountable field extension of k then the Dixmier-Moeglin
equivalence holds for A.

Proof. This exact form is not found in Irving-Small and one should see Rowen
[52, Theorem 8.4.27]. �X

This argument was how Irving-Small showed that the Dixmier-Moeglin
equivalence holds for U(L) when L is a finite-dimensional Lie algebra over a
field k of characteristic zero. The original work of Dixmier and Moeglin applies
to the complex case, although their argument applies to finite-dimensional Lie
algebras over an uncountable algebraically closed field of characteristic zero.
Since enveloping algebras behave well under base change, one can then invoke
the Irving-Small result above to get that the Dixmier-Moeglin equivalence holds
over a field of characteristic zero. We note that in positive characteristic, en-
veloping algebras of finite-dimensional Lie algebras satisfy a polynomial identity
[3], and so the Dixmier-Moeglin equivalence holds here too, by Theorem 3.2.

5.3. Other closure properties

Bell, Wu, Wu [11] gave general closure properties under certain classes of Ore
extensions and extension of scalars. In particular if k is an uncountable al-
gebraically closed field of characteristic zero and if A is a finitely generated
noetherian k-algebra of finite GK dimension such that all prime ideals of A are
completely prime, then if A satisfies the Dixmier-Moeglin equivalence then so
do the Ore extensions A[x;σ], A[x; δ], where σ is a k-algebra automorphism
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of A and δ is a k-linear derivation of A, provided σ and δ preserve a finite-
dimensional generating subspace of A. It would be good to remove the hy-
potheses on the base field and the completely prime hypothesis on prime ideals
in this result, although the completely prime hypothesis does cover the cases
of a commutative base ring, which is perhaps the most interesting case when
dealing with skew polynomial rings.

In terms of extensions of scalars, the authors show that if k is an uncountable
algebraically closed field of characteristic zero, then if A is a noetherian algebra
that satisfies the Dixmier-Moeglin equivalence then so is A ⊗k F for every
extension of F , provided dimk(A) ≤ ℵ0. We note that in general one does
not have that the noetherian property is preserved under extension of scalars,
so this result does require some sort of base field hypothesis. Extending this,
recent work of Bell, Wang, and Yee [10] shows that if R and S are prime
noetherian algebras that satisfy the Dixmier-Moeglin equivalence and if R⊗kS
is prime noetherian and satisfies the Nullstellensatz then R ⊗k S satisfies the
Dixmier-Moeglin equivalence. This then extends the result of [11]. In addition
to this, [10] shows that satisfying the Dixmier-Moeglin equivalence is a Morita
invariant and that if R satisfies the Dixmier-Moeglin equivalence and e is an
idempotent of R then eRe satisfies the Dixmier-Moeglin equivalence.

6. Lorenz’ extension to the non-noetherian setting

One very interesting development in the study of the Dixmier-Moeglin equiv-
alence has been work of Lorenz [44, 45], extending this to the non-noetherian
case. We note that the definition of rationality requires the ability to form some
sort of localization and this is not available in general. Lorenz works around
this issue, by working with the extended centroid, which has the advantage of
being something that can be formed in any associative algebra and coincides
with the centre of the Goldie ring of quotients in the prime Goldie case.

To do this, one constructs the Amitsur-Martindale ring of quotients of R,
which we denote QAM (R). We give an overview of the construction, but only
in the case of a prime ring. For more details about the general construction
and its properties, we refer the reader to [44].

Given a prime ringR and a nonzero two sided ideal I ofR, we let Hom(IR, RR)
denote the set of all right R-module homomorphisms from I to R. Then we
take X to be the union of the hom-sets Hom(IR, RR) as I ranges over nonzero
two-sided ideals of R and we put an equivalence relation ∼ on X by declaring
that f : I → R and g : J → R are equivalent if the restrictions of f and g
to some nonzero ideal L ⊆ I ∩ J agree. Since R is prime, the intersection of
two nonzero ideals is again nonzero. Then we take QAM (R) to be X/ ∼. Then
we can add elements f : I → R and g : J → R of QAM (R) by adding their
restrictions to I ∩ J and multiplication is given by composition, where to form
f ◦g, we restrict g to g−1(I). It is straightforward, although somewhat tedious,
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to check that these operations respect ∼ and that QAM (R) is a ring under
these operations.

We observe that R embeds in QAM (R) via the homomorphism r 7→ fr :
RR → RR, fr(x) = rx. This is an embedding, because if it were not then we
would necessarily have fr ∼ 0 and so there would be a nonzero two-sided ideal
I such that fr(I) = 0. But this cannot occur unless r = 0 since R is prime. We
then define the extended centroid, C(R), of R to be Z(QAM (R)). Observe that
C(R) is a field when R is a prime ring since if z : IR → RR is a nonzero central
element of QAM (R), then we first note that z is 1-1 since if z(a) = 0 for some
nonzero a ∈ I then z vanishes on the right ideal aR; since z commutes with
the maps fr above then one can show that z vanishes on a two-sided ideal,
which contradicts the fact that it is nonzero. If we now let J = z−1(I) and
define y : JR → RR via y(r) = a where a ∈ R is the unique element such that
z(a) = x then we see that y is a right R-module homomorphism that is the
inverse of z.

Thus C(R) is a field and we say that a prime k-algebra is rational if C(R) is
an algebraic extension of R. When R is prime right Goldie (in particular, if R is
prime noetherian) then Z(Q(R)) coincides with C(R) (see [44, 1.4.2]). We note
that in the prime noetherian case, if z = ab−1 ∈ Z(Q(R)), with b regular, then
the fact that [z, b] = 0 gives that a and b commute and so ab−1 = b−1a and
then [z, r] = 0 gives arb = bra for all r ∈ R. In particular if we let J = RbR
then the map fz : JR → RR given by fz(xby) = xay is a right R-module
homomorphism, since if

∑
xibyi = 0 then

∑
xibyia = 0, which then gives∑

xiayib = 0 using the fact that arb = bra for all r ∈ R. Finally, since b is
regular, this gives

∑
xiayi = 0 and so we see that fz is indeed a well-defined

homomorphism from JR to RR. Then the map z 7→ fz gives an injection from
Z(Q(R)) → C(R). Moreover, given g : JR → RR in C(R) we can pick some
regular b ∈ JR if R is prime noetherian and if we let z = g(b)b−1 then the fact
that g is central in QAM (R) gives that

∑
xibyi = 0 =⇒

∑
xig(b)yi = 0.

Lorenz works in this setting of having a potentially non-noetherian k-algebra
R over an algebraically closed field k endowed with a rational action of an
algebraic group G over k, acting by k-algebra automorphisms of R. Then G
acts on Spec(R), and one can see that the action of G preserves the set of
locally closed ideals, the set of primitive ideals, and the set of rational prime
ideals of R. As before, we let G-Spec(R) denote the set of G-prime ideals;
that is, G-invariant ideals I such that if JL ⊆ I with J, L G-invariant ideals
containing I then either J = I or L = I. Then we have a map Φ from Spec(R)
to G-Spec(R) given by

P 7→
⋂
g∈G

g · P.
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We note that Φ(P ) is a semiprime ideal of R and since Φ(P ) is G-invariant,
G acts on R/Φ(P ) and this induces an action of G on the extended centroid
of R/Φ(P ). We then say that Φ(P ) is G-rational if the G-invariant elements
of C(R/Φ(P )) is an algebraic extension of k. We deal with the case when k is
algebraically closed, and so in this case the G-invariants should just be k.

Remarkably, Lorenz [44] shows that this map takes rational prime ideals of
R to G-rational G-prime ideals and even more striking is that this map gives
a bijection between G-orbits of rational prime ideals of R and G-rational G-
prime ideals of R. In a sequel to this paper, Lorenz [45] shows that when R
satisfies the Nullstellensatz, we have that the collection of G-prime ideals is
finite if and only if R satisfies the Dixmier-Moeglin equivalence. What is truly
remarkable about this result is how general it is: for example, it applies to any
affine algebra over the complexes that is endowed with a rational action of an
algebraic group. In a later paper, Lorenz [46] shows that when the group is
a torus then one has that the prime spectrum can be expressed as a disjoint
union of spaces that are homeomorphic to tori, which is a generalization of an
important result of Goodearl and Letzter [27]. Lorenz’ extension of the Dixmier-
Moeglin equivalence to not-necessarily-noetherian algebras is used in work of
Abrams, Rangaswamy, and the author [1] to show that the Dixmier-Moeglin
equivalence holds, in the above sense, for Leavitt path algebras of finite directed
graphs, by exploiting a natural torus action.

6.1. The Poisson Dixmier-Moeglin equivalence

Quantum algebras and Poisson algebras share an intimate connection. This
comes from the fact that if one has a quantized coordinate ring of an affine
variety Oq(V ) with q a transcendental indeterminate then when one specializes
q to be 1, one recovers the ordinary coordinate ring of V , a commutative ring.
In particular, it is convenient to think of Oq(V ) as a faithfully flat Z[q, q−1]-
algebra tensored up to C, where we can then specialize q at nonzero complex
values, and we concentrate now on this setting. Then for x, y ∈ Oq(V ), one has
[x, y] = (q− 1)f(x, y) for some f(x, y) ∈ Oq(V ) and so we can create a bracket
{· , ·} : O(V ) × O(V ) → O(V ) by declaring that {x, y} = f(x, y)|q=1; i.e., the
image of f(x, y) in O(V ) after specializing at q = 1. For example, if we take
the ring of 2×2 quantum matrices, which has generators a, b, c, d and relations
ab = qba, ac = qca, cd = qdc, bd = qdb, bc = cb, ad − da = (q − q−1)bc, then if
we apply the procedure given above, we find

ab− ba = (q − 1)ba, ac− ca = (q − 1)ca, cd− dc = (q − 1)dc,

bd− db = (q − 1)db, bc− cb = (q − 1) · 0, ad− da = (q − 1)(q + 1)q−1bc,

and so

{a, b} = ba, {a, c} = ca, {c, d} = dc, {b, d} = db, {b, c} = 0, {a, d} = 2bc.
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As it turns out, knowing what the bracket does to generators tells you how
to compute the bracket for any two elements of the algebra. The reason for
this is that the bracket is easily seen to be k-bilinear, anti-symmetric, and one
can check that for f, g, h ∈ O(V ) and {fg, h} = {f, h}g + f{g, h}. In fact,
this bracket is a Poisson bracket, meaning that it is a Lie bracket and has the
property that for each fixed f ∈ O(V ) the maps Lf , Rf : O(V )→ O(V ) given
by Lf (g) = {f, g} and Rf (g) = {g, f} are k-linear derivations of O(V ). Thus we
have the principle that quantizations of classical (commutative) objects should
generally yield a Poisson bracket on the commutative object. A remarkable
result due to Kontsevich [37] shows that a type of reverse principle holds:
Given a Poisson manifold one can create a family of deformations of the space
of smooth functions on the manifold parametrized by a variable ~.

In light of this correspondence and the work of Goodearl and Letzter men-
tioned earlier, it is natural to ask whether there is a Poisson Dixmier-Moeglin
equivalence for affine commutative algebras equipped with a Poisson bracket.
To make sense of this, we must define the notions of rationality, primitivity,
and being locally closed in the Poisson setting. Let k be a field of characteristic
zero, and let A be a finitely generated commutative k-algebra equipped with
a Poisson bracket {· , ·}. We call such an algebra a Poisson algebra. Then an
ideal I of A is a Poisson ideal if for f ∈ I and g ∈ A we have {f, g} ∈ A. We
note that if I is a Poisson ideal then it is not difficult to show that so is its
radical and so is every minimal prime ideal above I. We call a prime ideal that
is a Poisson ideal a Poisson prime ideal. Then if P is a Poisson prime ideal,
we can form the quotient ring B = A/P and the Poisson bracket will induce a
Poisson bracket on B, and we can extend this bracket to the field of fractions of
B via the rule {fg−1, h} = {f, h}g−1− fg−2{g, h} for f, g, h ∈ B and then use
the anti-symmetric property to extend this in the case when h is in Frac(B).
Given an algebra R with a Poisson bracket, we call the Poisson centre of R the
set of f ∈ R such that {f, g} = 0 for all g ∈ R. Then P is Poisson rational if
the Poisson centre of Frac(B) is a finite extension of k; P is Poisson primitive
if there is a maximal ideal of Q of B that does not contain any nonzero Pois-
son prime ideals; finally, P is Poisson locally closed if the intersection of the
nonzero Poisson prime ideals that strictly contain P is an ideal that properly
contains P .

Armed with these notions, we can then define the Poisson Dixmier-Moeglin
equivalence for a Poisson algebra, as being an algebra for which the notions
of Poisson rationality, Poisson primitivity, and being Poisson locally closed are
equivalent for all Poisson prime ideals of the algebra. Brown and Gordon [18,
Question 3.2] whether the Poisson Dixmier-Moeglin equivalence holds for all
affine complex Poisson algebras, and it has been shown to hold in numerous
cases: mainly those coming via the semiclassical limit construction applied to
a quantum algebra and closely related algebras (see, for example, [39, 36, 51,
50, 25]). A negative answer to the question of Brown and Gordan was given in
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[5] although it is shown in this paper that the answer is affirmative when the
Krull dimension is at most two.

7. Counterexamples

As has been pointed out already, there are counterexamples to the Dixmier-
Moeglin equivalence for affine noetherian algebras. In the non-affine case it
is quite easy to construct counterexamples. Nevertheless, there are no “easy”
affine counterexamples, in the sense that it generally requires some effort to
show that a given ring does not satisfy the Dixmier-Moeglin equivalence—
especially for algebras which satisfy the Nullstellensatz. The reason for this is
that rational prime ideals, even when not locally closed, are in some sense close
to being locally closed. In the affine case there are at most countably many
height one primes when (0) is a rational prime ideal of a noetherian ring (cf.
Irving [30]). And showing that there are indeed infinitely many such primes
can be non-trivial.

Most counterexamples rely on characterizations of primitivity in skew poly-
nomial rings given in §2.3, and are generally expressible as a skew polynomial
extension of an commutative ring. The first counterexample is due to Lorenz
[43]. Lorenz constructed an algebra R = C[x±1, y±1][z±1;σ] where σ is an au-
tomorphism of the form x 7→ xayb, y 7→ xcyd, where

A :=

(
a b

c d

)
is a matrix in SL2(Z) whose eigenvalues are not roots of unity. Then R is the
complex group algebra of a polycyclic group of the form Z2 o Z. Then Lorenz
shows that (0) is a rational prime ideal in this case, but that it is not locally
closed. Characterizations of primitivity in skew Laurent polynomial rings give
that R is primitive. So his example shows that

rational, primitive =⇒/ locally closed

in general.

Irving [31] constructed an example of a primitive noetherian algebra with
centre not equal to a field. In particular, this algebra does not satisfy the
Nullstellensatz and it is immediate that for such a ring (0) is a primitive ideal
that is not rational. Thus we see that

primitive =⇒/ rational

in general for affine noetherian algebras. Earlier counterexamples due to Irving
can be round in [29]
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Jordan [35, 7.10–7.14] gives the following construction. Let S = R[t;σ],
where R = C[x, x−1, y, y−1] and where σ is the C-algebra automorphism given
by x 7→ yx−1, y 7→ x. Jordan claims that the ring R is not σ-special and so
the Léroy-Matczuk theorem then gives that S is not primitive. On the other
hand, it is not hard to show that (0) is a rational prime ideal that is not locally
closed. It should be noted that there is a gap in Jordan’s argument, which is
filled in a paper of Brown, Carvalho, and Matczuk [15], using an argument due
to Goodearl that relies on deep techniques from the field of “unlikely intersec-
tions”. A sketch of a more elementary argument is also provided by the authors
and a proof of a more general result appears in [8]. Thus we see that

rational =⇒/ primitive.

Bell, Launois, León Sánchez, and Moosa [5] constructed a counterexample to
the Poisson Dixmier-Moeglin equivalence, which also yields a counterexample
to the ordinary Dixmier-Moeglin equivalence with a ring of the form R[x; δ]
with R a finitely generated complex commutative algebra of Krull dimension
three. This example is notable in that it has finite Gelfand-Kirillov dimension.
We are unaware of any counterexamples to the Dixmier-Moeglin equivalence
that are affine noetherian algebras with Gelfand-Kirillov dimension at most 3.

We end this survey with a question. Notice that the above examples show
that in the affine noetherian case, that none of the various implications com-
prising the Dixmier-Moeglin equivalence hold in general, with the possible ex-
ception that locally closed might imply primitive or rational. We ask whether
it is the case that a prime P of an affine noetherian ring being locally closed
in the prime spectrum implies that it is either rational or primitive?
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