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Certain Properties of Square Matrices

over Fields with Applications to Rings

Algunas propiedades de matrices cuadradas sobre cuerpos con
aplicaciones a anillos
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Abstract. We prove that any square nilpotent matrix over a field is a dif-
ference of two idempotent matrices as well as that any square matrix over
an algebraically closed field is a sum of a nilpotent square-zero matrix and
a diagonalizable matrix. We further apply these two assertions to a variation
of π-regular rings. These results somewhat improve on establishments due to
Breaz from Linear Algebra & Appl. (2018) and Abyzov from Siberian Math.
J. (2019) as well as they also refine two recent achievements due to the present
author, published in Vest. St. Petersburg Univ. - Ser. Math., Mech. & Astr.
(2019) and Chebyshevskii Sb. (2019), respectively.

Key words and phrases. Nilpotent matrices, idempotent matrices, Jordan canon-
ical form, algebraically closed fields, super π-regular rings.

2020 Mathematics Subject Classification. 16U99; 16E50; 16W10; 13B99.

Resumen. Probamos que toda matriz cuadrada nilpotente sobre un cuerpo es
igual a la resta de dos matrices idempotentes, también probamos que toda
matriz cuadrada con coeficientes en un cuerpo algebraicamente cerrado es
la suma de una matriz nilpotente cuyo cuadrado es nulo y una matriz dia-
gonalizable. También aplicamos estos resultados en una variante de anillos
π-regulares. Estos resultados mejoran los resultados presentados por Breaz en
Linear Algebra & Appl. (2018) y aquellos de Abyzov presentados en Siberian
Math. J. (2019) al igual que aquellos publicados por el autor del presente
art́ıculo en Vest. St. Petersburg Univ. - Ser. Math., Mech. & Astr. (2019) y
en Chebyshevskii Sb. (2019), respectivamente.

Palabras y frases clave. Matrices nilpotentes, matrices idempotentes, forma
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1. Introduction and Fundamentals

All rings R are assumed here to be associative, containing the identity element
1 which differs from the zero element 0 of R. Recall that a ring R is said to
be π-regular, provided every element r is π-regular, that is, there exists n ∈ N
depending on r such that rn ∈ rnRrn, and we call a ring R super π-regular,
provided that rm ∈ rmRrm for each m ∈ N – thus it is pretty clear that super π-
regularity implies π-regularity, an irreversible implication. An important class
of super π-regular rings is the class of von Neumann regular rings in the sense
that they are π-regular with n = 1 for all r. On another vein, the class of π-
regular rings was considerably extended in [9] to the class of so-called regularly
nil clean rings, that are rings R for which, for any a ∈ R, there is an idempotent
e ∈ aR such that (1 − e)a is nilpotent (equivalently, there is an idempotent
f ∈ Ra with (1− f)a nilpotent).

The presentation of a matrix over a ring as a sum/difference of some special
elements like units, nilpotents, idempotents, potents, etc., always plays a central
role in matrix ring theory. A brief collection of principally known historical facts
in this branch are as follows: In [6] was shown that any square matrix over the
finite two elements field Z2 is a sum of a nilpotent matrix and an idempotent
matrix; thereby the full matrix n × n ring Mn(Z2) is called nil-clean. This
important fact was strengthened in [23] by showing that, for any n ∈ N and
for every n × n matrix A over Z2, there exists an idempotent matrix E such
that (A − E)4 = 0, while over the finite indecomposable ring Z4 consisting of
four elements this relation is precisely (A− E)8 = 0 (see [2] and [22] for some
further generalizations and specifications, too). In [23] is showed also that the
ring

∏∞
n=1 Mn(Z2) is both nil-clean and von Neumann regular but not strongly

π-regular, whereas the ring
∏∞

n=1 Mn(Z4) is both nil-clean and regularly nil
clean but not π-regular (see [9], as well). Likewise, in [10] was established that
the ring

∏∞
n=1 Mn(K) over an algebraically closed field K is regularly nil clean

even in a more thin setting by viewing that the required nilpotent is of exponent
2.

Moreover, a rather actual question is the following one: Is every matrix
over each field presentable as the direct sum of a nilpotent and a potent? In
that aspect, it was proved in [5] that every n× n matrix M over a field of odd
cardinality q has a decomposition of the form M = P + N , where P q = P is
q-potent and N is nilpotent with N3 = 0 but N2 6= 0 in general (compare also
with the results obtained in [1]).

We, however, conjecture that this is not always true; it is rather a sum of a
non-singular matrix and a nilpotent matrix – see, e.g., [19]. But over the four
element field F4, which case is in sharp contrast to the aforementioned result
from [5], this surely implies that it is a sum of a potent and a nilpotent, not
knowing what are the exact degrees neither of the potent nor the nilpotent,
however. In this way, a rather eluding question is whether or not for all n ∈ N
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each element from the matrix ring Mn(Z4) is the sum of a (square) nilpotent
and a potent? We just refer for the more general case of rings of the kind Zpm ,
where p is an arbitrary prime and m is an arbitrary natural, to the good source
[2] (Lemma 1 and Theorem 4), in which it is proved that any element from
Mn(Zpm) is a sum of a nilpotent (not necessarily of order 2) and a potent.

So, we come to the following basic and intriguing problem, whose complete
resolution seems to be extremely difficult:

Conjecture. Every square matrix A over a field F with at least four elements
can be represented as A = D+Q with Q2 = 0 and D being diagonalizable over
F .

It is worthwhile noticing that, for fields of three elements (i.e., over F3 =
Z3), the conjecture fails as illustrated in [5, Example 6]. Nevertheless, concern-
ing the fields with |F | = 3, we are believing that the same conjecture holds, but
only for matrices A such that the exceptional 3 × 3 matrix from [5] does not
appear as a rational normal form block of A, A+ I and A− I, where I stands
for the standard matrix identity, and also it may be the case that the matrices
with such a block have to require index three nilpotents instead of these in the
stated above conjecture.

The aim of this short article is to settle this conjecture in the case of al-
gebraically closed fields. This will be successfully done in the sequel (compare
with [12] and [8] as well). Further eventual applications of such decompositions
could be realized in coding theory and, in particular, in noncommutative coding
theory (cf. [4], [7], [14], [16], [15], [17] and [20]).

2. Results and Questions

Before proceeding to prove our first chief results, we will show the validity
of the next technicality, which sounds rather effectible and is of independent
interest as well (to keep a record straight, we notice that it was originally
established at first in [18, Proposition 1] as well as it somewhat also appeared
in an unpublished draft [21] – however, our approach will be totally direct and
rather more easy).

Lemma 2.1. Any square nilpotent matrix over a field is the difference of two
idempotent matrices.

Proof. Take a nilpotent matrix N over a field F . Standardly, put N in Jordan
form, possible because all its eigenvalues (0) lie in F . The only property we
really need now of N is that it is strictly upper triangular with all its nonzero
entries in the first super-diagonal. In fact, even much more weaker than that
– nonzero entries have odd-parity of positions (i, j), meaning if i is even, then
j is odd, and the other way round. Let E be the diagonal idempotent matrix
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with diagonal entries the sequence 1, 0, 1, 0, 1, · · · as follows

E =



1 0 0 . . . 0

0 0 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . 1


.

Observe at once that for a general matrix A, the matrix EAE retains the
entries of A in the odd, odd positions and sets everything else to 0. Similarly,
(I − E)A(I − E) keeps the even, even elements and wipes out the rest, where
I is the identity matrix. Hence, it is immediate that

ENE = (I − E)N(I − E) = 0.

Therefore,

N = ENE + EN(I − E) + (I − E)NE + (I − E)N(I − E)

= EN(I − E) + (I − E)NE

= [E + EN(I − E)]− [E − (I − E)NE],

which gives N as the difference of the two square-bracketed idempotents, as
required. �X

So, we are ready to establish the following statement, which is an acceptable
reminiscent of [11, Proposition 2.1] and is also proved in [21] (note that the
proof there depends entirely on Lemma 2.1, whereas we here will give a more
conceptual proof which entirely relies on already known results).

Theorem 2.2. Let R be a super π-regular ring. Then every nilpotent is the
difference of two idempotents.

Proof. In the context of a ∈ R being a nilpotent element with as regular for
each s, from [13, Corollary 2.10], it must be that a can be expressed as an
orthogonal sum of Jordan blocks (each of them, a matrix of certain size n× n
with 1’s in its second diagonal).

Let A be one of those Jordan blocks: A =
∑

k ek+1,k. Then A = E−F with

E = (e11 + e12) + (e33 + e34) + (e55 + e56) + . . .

F = e11 + (−e23 + e33) + (−e45 + e55) + . . .

where both E and F are idempotents, because they consist on 1 × 1 or 2 × 2
idempotent blocks.

Repeating this process for each of the Jordan blocks, we will obtain that
the original element a can be expressed as the difference of two idempotents,
as expected. �X
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We now come to our second main result, resolving the stated above “Con-
jecture” in the case of algebraically closed fields (which are necessarily infinite
fields).

Theorem 2.3. Any square matrix over an algebraically closed field is a sum
of a nilpotent square-zero matrix and a diagonalizable matrix.

Proof. Assume that the matrix is in Jordan canonical form, and so one can
just work with (upper-triangular) Jordan blocks. From each such Jordan block
A (of size at least 3× 3) subtract a matrix B of the same size, having nonzero
entries only in every other slot on the diagonal below the main diagonal, with
those entries being distinct (and zeros elsewhere). Then B is clearly nilpotent
of index 2 and, moreover, A−B is diagonalizable.

Concretely, in the 3× 3 case, the nilpotent matrix B would be as follows: 0 0 0

1 0 0

0 0 0

 .

In the 4× 4 case, the nilpotent matrix B would be as follows:
0 0 0 0

1 0 0 0

0 0 0 0

0 0 2 0

 .

And so on, by using the same technique. Specifically, in terms of unit matrices,
we define

B = a1e21 + a2e43 + a3e65 + · · · ,

where the elements a1, a2, a3, . . . are distinct. That is, we chose algebraically
closed fields, so that one could use the Jordan canonical form and have infinitely
many distinct elements in the field.

Alternatively, if zeros and non-zeros alternate, then such a matrix B is
indeed square-zero. At first look, it seems harder to see why A−B is diagonal-
izable; however, it is easier to see the property of A − B being diagonalizable
if we just take B to be the bottom left matrix unit, which is obviously square-
zero. �X

We finish off our work with the following two challenging queries:

Problem 2.4. Extend the considered above property from Theorem 2.3 for any
field F which is not necessarily algebraically closed.

Problem 2.5. Examine those rings R for which, for any a ∈ R, there exists an
idempotent e ∈ aRa such that a(1− e)a is a nilpotent.

Revista Colombiana de Matemáticas
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As a valuable non-trivial example of such a class of rings we can visualize
the class of strongly π-regular regular rings, that are rings R such that, for
each a ∈ R, there is n ∈ N which depends on a and possesses the property
an ∈ an+1R∩Ran+1. In fact, in an equivalent form this means that an = a2nx =
anxan for some n ∈ N and some x ∈ R with xa = ax. Thus, anx = e ∈ Id(R)
and by squaring we deduce that e = a2nx2 = anx2an ∈ aRa. Furthermore,
(1− e)a = a(1− e) = a(1− anx) ∈ Nil(R) since one sees that

[a(1− e)]n = [a(1− anx)]n = an(1− anx)n = an(1− anx)(1− anx)n−1 =

= (an − a2nx)(1− anx)n−1 = 0.

So, one finds that a(1− e)a = a2(1− e) = [a(1− e)]2 ∈ Nil(R), as promised.

On the other side, as already showed in [3], this lastly demonstrated as-
sertion could also be attacked by virtue of both Theorems 2.2 and 2.3, since
we may interpret the nilpotent and idempotent elements in such rings as their
corresponding elements in matrix rings.
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Volumen 54, Número 2, Año 2020



MATRICES OVER FIELDS AND APPLICATIONS 115

[5] S. Breaz, Matrices over finite fields as sums of periodic and nilpotent ele-
ments, Lin. Alg. & Appl. 555 (2018), 92–97.
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