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ABsTrACT. We present a basis of p—adic wavelets for Sobolev-type spaces
consisting of eigenvectors of certain pseudodifferential operators. Our result
extends a well-known result due to S. Kozyrev.

Key words and phrases. p— Adic numbers, p—Adic wavelets, Sobolev-type spaces.

2020 Mathematics Subject Classification. 53C21, 53C42.

RESUMEN. Presentamos una base de wavelets p—adica para espacios de tipo
Sobolev que consiste de vectores propios de ciertos operadores pseudodiferen-
ciales. Nuestro resultado extiende un conocido resultado debido a S. Kozyrev.

Palabras y frases clave. Nimeros p—adicos, wavelets p—adicos, espacios tipo
Sobolev.

1. Introduction

The field of p-adic numbers was introduced by the German mathematician
Kurt Hensel in 1897. The construction of the field of p-adic numbers Q, (here
p is a fixed prime number) is very similar to the construction of the field of
real numbers R starting from Q. The field Q, is constructed from the rational
numbers Q as the completation with respect to the p-adic norm |-|,. The p—adic

norm is non-Archimedean, ie. |z +y[, < max{|a:|p , |y\p}. As a consequence

of this property the geometry of Q, is completely different from the geometry
of R.

The theory of p-adic numbers has received great attention in the several
areas of mathematics, including number theory, algebraic geometry, algebraic
topology and analysis, among others. In the recent literature there are many
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articles where p-adic analysis is applied to other branches of the science, such
as, physics, biology and psychology, among others.

The conventional description of the physical space-time uses the field R
of real numbers, and there are many mathematical models based on R that
successfully describe physical reality. Nevertheless, there are general arguments
that suggest that one cannot make measurements in regions of extent smaller
than the Planck length ~ 10733 cm, see e.g. [8]. This hypothesis conducts
naturally to consider models involving geometry and analysis over QQ, instead
of R, as a possible alternative to describe the structure of space-time. In [13]-
[14], 1. Volovich posed the conjecture of the non-Archimedean nature of the
space-time at the level of the Planck scale. This conjecture has originated a
lot of research, for instance, in quantum mechanics, see e.g. [5], [10], [11], in
string theory, see e.g. [4], [9]. For a further discussion on non-Archimedean
mathematical physics, the reader may consult [5],[6],[12], [15] and the references
therein.

In this article we present a basis of p—adic wavelets for Sobolev-type spaces
H, (C) with [ € N, see Theorem 3.6. For [ = 0 we have H; (C) = L?, and in this
case our basis of wavelets agrees with the basis introduced by Albeverio and
Kozyrev in [2]. Additionaly we show that these functions are eigenfunctions for
a pseudodifferential operator with a radial symbol, see Theorem 3.8.

The spaces H;(C) were introduced in [16], these spaces are the completion
of the C-vector space of Bruhat-Schwartz functions with respect to an inner
product (-,-), , I € N, (which coincides with the product of L? when [ = 0).
Furthermore, these spaces are very important in the construction of the non-
Archimedean versions of the Kondratiev and Hida spaces, which in turn are
useful in the construction of quantum field theories over a p—adic space-time,
see [3].

This article is organized as follows. In Section 2, we present a brief review of
the p—adic analysis necessary in this article. In Section 3, we introduce spaces
H; (C) and give wavelets bases for them, see Theorem 3.6. We finally show that

the functions ’z,/),(yl)n ¢ are eigenfunctions for a pseudodifferential operator with

a radial symbol.

2. The field of p-adic numbers

In this section we collect some basic results about p-adic analysis that will be
used along this article. For an in-depth review of the p-adic analysis the reader
may consult [1], [7], [12].

Let p be fixed prime number. The field of p—adic numbers Q,, is defined as
the completion of the field of rational numbers Q with respect to the p—adic
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norm | - |, which is defined as

0 if =0

|z, = (1)
p7 it x=p7g,

where a and b are integers coprime with p. The integer v := ord(x), with
ord(0) := 400, is called the p—adic order of x.

Any p—adic number z # 0 has an unique expansion of the form

2= DS g, (2)

Jj=0

where z; € {0,...,p — 1} and z¢ # 0. By using this expansion, we define the
fractional part of = € Q,, denoted {z},, as the rational number

0 if z=0orord(z)>0

{z}, = | (3)
perd@ S gl i ord(x) < 0.

In addition, any non-zero p—adic number can be represented uniquely as x =
p° @) e (x) where ac (z) = Z;io z;p’, xo # 0, is called the angular component
of z. Notice that |ac (z)[, = 1.

We extend the p—adic norm to Q;)V by taking

[lz]], == 1r_<nizg)§v |zi|p, for = (z1,... ,:cN)QI]jV. (4)
We define ord(r) = minj<;<y{ord(z;)}, then ||z||, = p~°"¥®). The met-
ric space (Qf,v K ||p) is a complete ultrametric space. For r € Z, denote
by BN(a) = {z € Q);llz — all, < p"} the ball of radius p" with center
at a = (ay,...,ay) € QF, and take BN(0) := BYN. Note that BN(a) =
B,(a1) x -+ x By(an), where By(a;) := {& € Qp;|zi — a;|p, < p"} is the
one-dimensional ball of radius p” with center at a; € Q,. The ball BY equals
the product of N copies of By = Zj, the ring of p—adic integers of Q,. We
also denote by SN (a) = {z € Q):||z — all, = p"} the sphere of radius p"

with center at a = (ay,...,ay) € QY, and take SN (0) := SY. We notice that

S = Z (the group of units of Z,), but (Z;)N C SY. The balls and spheres
are both open and closed subsets in Qév . In addition, two balls in QZI)V are either
disjoint or one is contained in the other.

As a topological space (Q),||-|lp) is totally disconnected, i.c., the only
connected subsets of QZZ)V are the empty set and the points. A subset of Qév is
compact if and only if it is closed and bounded in QZJ,\/7 see e.g. [12, Section 1.3],
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or [1, Section 1.8]. The balls and spheres are compact subsets. Thus ( é,v, || - ||p)
is a locally compact topological space.

We use Q(p~"||x —al||p) to denote the characteristic function of the ball
BN (a). For other sets, we use the notation 14 for the characteristic function
of a set A. Along the article dV2 will denote a Haar measure on ( i,v ,+)
normalized by the condition fzg dVe =1.

2.1. Some function spaces
2.1.1. The Bruhat-Schwartz space

A complex-valued function ¢ defined on QZI,V is called locally constant if for
any z € Q) there exist a positive integer I(x) € Z such that

p(x+a') = p(x) for any 2’ € B, (5)

Denote by & (Qév ) the linear space of locally constant C-valued functions on
@é\’. A function ¢ : Qi,v — C is called a Bruhat-Schwartz function (or a test
function) if it is locally constant with compact support. Any test function can
be represented as a linear combination, with complex coefficients, of charac-
teristic functions of balls. The C-vector space of Bruhat-Schwartz functions is
denoted by D := Dc(Q)) := D(Q)).

Definition 2.1. For ¢ € D(Q)), the largest number I = I(¢p) satisfying (5) is
called the parameter of constancy of the function ¢. Let us denote by DY, (sz)v )

the finite-dimensional space of test functions having supports in the ball B
and with parameters of constancy > .

Given p € [0,00), we denote by L* := L? (Q)) := L (Q),dNz), the
C—vector space of all the complex valued functions g satisfying f@ ~ g (@) dNx
< o0o. The corresponding R-vector spaces are denoted as L§ := L (Qg ) =
LH%( év,dN:r), 1<p<oo.

2.2. The Fourier transform of test functions

Set xp(y) := exp(2mi{y},) for y € Q,. The map x,(-) is an additive character
on Q,, ie., a continuous map from (Q,,+) into S (the unit circle considered
as multiplicative group) satisfying x,(zo + 1) = Xp(zo)Xxp(z1), 0,21 € Qp.
The additive characters of QQ, form an Abelian group which is isomorphic to
(Qp,+). The isomorphism is given by & — x,(£x), see e.g. [1, Section 2.3].

Given & = (&,...,&y) and y = (21,...,2N) € (Q)é,v, we set £ - x =
Z;V:l &jxj. The Fourier transform of ¢ € D(Q))) is defined as

Fo©) = [ (e ae@as for s (©

P
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where dVx is the normalized Haar measure on Qg’ . The Fourier transform is
a linear isomorphism from D(Q}) onto itself satisfying (F(F))(&) = ¢(—£),
see e.g. [1], [12].

We will also use the notation F,_,¢¢ and @ for the Fourier transform of ¢.

If f € L' its Fourier transform is defined as

FN© = [ wle ni@ae el @

D

If f € L?, its Fourier transform is defined as

(F)(E) = lim Xp(€ - 2)f(2)dx, for & € Q) (8)

k=00 J)|z||, <p*

where the limit is taken in L2. We recall that the Fourier transform is unitary
on L2, ie. ||f||lrz = || Ffllrz for f € L? and (F(Fp))(&) = o(—£) is also valid
in L2, see e.g. [7, Chapter III, Section 2].

3. A Wavelet basis for the spaces H,; (C)
3.1. The spaces H; (C)

We denote the set of non-negative integers by N, and set [¢], := [max(1, [|£[|»)]

for £ € Q]]jv. We define for ¢, 0 € D(Qév), and [ € N, the following scalar
product:

= [ I e Q

where the overbar denotes the complex conjugate. We also set ||<,0||l2 = (p, 9),-
Notice that |||, < [|-|l,, for I < m. We denote by H;(C) := H;(Q),C) t

complex Hilbert space obtained by completing D(QZI,V ) with respect to (-, -),.

Remark 3.1. The spaces H;(C), for any [ € N, are nuclear and consequently
they are separable. The spaces H,( é,v ,C) were introduced in [16], see also [3].
3.2. A Wavelet basis for the spaces #; (C)

In this section we introduce orthonormal bases for the spaces H; (C), where [
is a non-negative integer.

Let us consider the following set of functions

0O () = P X7 (7 — )P = nllp)

: N
max(1, pl—7)] ,with x € Q) , v € Z,

(10)
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1
neQ) /2y, n=n"n®, . ™), O =>"nlyp, Bez,
=0

771(1):0713"'7;0717 CZ(Cl)CQ"")CN)’ G=01,....,p—1,

where at least one of (; is not equal to zero.

Remark 3.2. In the case [ = 0, the set of functions w,(y?zl ¢ coincides with the

N-dimensional basis of p-adic wavelets of QV, introduced by Albeverio and
Kozyrev in [2].

Proposition 3.3. The Fourier transform of ¢$,)n, ¢ 1s given by

N~

PO (&) = XPTE QP+ ). (1)

[max(1,p'=7)]

Proof. It is sufficient to compute the Fourier transform of function of type
o) = x(p71¢-2)Q(]|z]|,). Now for the calculation of the formula (11) we use
the above function and the result presented in ([12], VII, 2.17). vf

Remark 3.4. Let us [,k € Z with [ < k. We remember that the product of
indicators is either an indicator or zero see e.g. [1] and [12]:

Q' — all,)U|Ip"x = bllp) = QIp'z — allp,) Q" a = bllp),  (12)
with z,a,b € Qév.

Lemma 3.5.

(1) The support of the function z/nylz%C 18

/l-\ B B

—

(2) The product @%mc(@w(l)’v*m*ﬂ (€) is non-zero if v =1 and ¢ = (.

Proof. (1) It follows from observation:

L —

e supp(i/),(ylz],c) & |[p 7€+ p (||, <1< There exists w € Z;,V, and

pE+p K =we e —p T+ pZl.
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(2) Consider & € supp (w§l7)777<> M supp (w,(ylf))nw‘,g‘r>7 then § € supp (1/1£,l7)777g)

and £ = —p7'¢ + pTw for some w € Z. Using the formula (11) we have

w(l)y,n,((g)w(l)'y*,nﬂc* (f)
N('v;rvf)

~ [max(1,p' )] fmax(1 pl—v*)]lx(_pflC'n)x(w~77)x(—p”*”t1<-nT)><

o ot _ _~T
@™ w nhQwll,) (P~ w4+ p7i¢t = g ).

Since [|p" =" wll, < p' 7, p7 ¢l = p and [[p? = Q)| = p7' FL, then if
7 # 1 we have Q([[p7~" w +p~ ¢t — p 1)) = 0.
If v = 4T and ¢ # ¢, for the above Q(||w +p~*¢F —p~1¢)|,) = 0.

We conclude that for £ in supp <1/1,(yl,)m<), the product WW’C(@JN\)WMT@ €3

is non-zero if v = 4t and ¢ = ¢t. A similar result is obtained when considering
l
& € supp (qﬁf(ﬂ),nt,gf) o

Theorem 3.6. The set of functions
—N~

Vo) = e X e =) —l), (13)

with v, (, n as before, is an orthonormal basis of H; (C).

Proof. We first show that the functions (13) are orthonormal, with respect to
the scalar product (-,-), given above:

<w'(yl,)17,g’ w,(y?’nT,CT >l = \/QN [é‘]il @fy,n,((g)/‘mqf77]T7CT7(§)dN§

N(y++h
2

- [max (1, p'=7)]!max(1, p!—7")]! /QIPV [g]il x(p7E- n)X(_p_’YTg ")

x Q€+ p )P e+ p ) dVe,

By part 2 of Lemma 3.5, the scalar product can be non-zero only when v = 77,
and ¢ = ¢T. Then the previous integral equals
Ny

(ym,¢ Pyttt = Oy 5t 0¢ ¢t m

<[ RO (=R e
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Suppose that & € supp w( ) . Then & € —p"~ ¢+ p ZY, and ||€]|, = p' 7.
7156 D P

N~

— 1—vyy12l
<¢’Y!"’C? "/}'yT,nT,gT>l = 57771‘ 6@‘7@ W[max(l,p 'y)]

x / @€ (= )QIpE + p e p)dE.
QN

P

By changing variables as z = p~7¢ +p~1¢, dVN¢ = p~N7dVz, in the previous
integral, we obtain

(¢ Yttt
=0yt | @) (27 0Pl

P

= dytfcex(=p~ m=n")- Q) | Xl ') - 2101 2lp)d"N =

D

=0, 16ccix(=p " (=) - OQIn—n'l,). (14)

If n # nf, then ||n — 1|, > p > 1 and so the previous integral is zero. Conse-
quently we have
(Vyimcs Pyttt ¢t = Oy iyt O¢ 1Oyt
We can conclude that the system of functions (13) is orthonormal.
To prove the completeness of the system of functions (13), we use fact that

the space Dc(Q)) is dense in 7;(C) and that the set of functions 1/1( cn
invariant under dllatlons and translations, therefore, it is sufficient to Verlfy
the Parseval identity for the characteristic function Q(||x|\ E

1l 0 = Gt i oy oy 15 B (010

~ max(1 1pm>]zl /Q /@ €13 il )p ™= X emQlp e+ ¢ll)d
D P (15)

Suppose that 0 < —v (v < 0). By using (12), we obtain that the product of
indicators is zero:

QlIgllp) ™€ +p7<Clp) = Qg 2P~ <)-

Suppose that —y < 0 (0 < 7). By using (12), we obtain that the product of
indicators is non-zero:

Qllp™7€ +p7Cllp) €N = Qlp™E + 27 Cllp) 2l = 7 ¢lp), iy 2 1.
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Therefore we have that

@), w0, o = p* Tt oy Ly 6 7€ el
ol mp*cn e

= [max(1,pt™7 1 2 7
[[?1,(plpv>12)l] 7 [ [ )

X Qlp~ "+ Cllp ng
= Q( - "7 ¢llp) /@N X" (2 — p71Q)) - Q|| 2llp)p NN 2

D

=pF O = x| x(e madlel

P

Ny

p

= p T x(=p - mQ|nlly), for v > 1. (16)

If n # 0, then the previous product is zero. Therefore if n = 0, and v > 1 we
have

_ Ny
Qlallp), v i=p7
We remember that the number of vectors  is |¢| = p©¥ — 1.
Finally,
pN -1
> Ol )45, i = 3 Z
Y€EZ, n€QN /2L, ¢|=1 =1 [¢|=1
=Y 0N =DV = 1=zl 7. (17)

~y=1
vf

Definition 3.7. Let a : RT — C be a fixed function. We define the pseudodi-
fferential operators A with symbol a (||€]|) as follows:
D(Qi}' ) — L?
e = (Ag)(z),

where
(Ap) (z) = F falll€llp) Fooep}- (18)
Theorem 3.8. The set of functions
p

Wl (x) = ”ﬂ@ @ —m)QpYe = ally),  (19)

[max(1,p'—
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with v,(, n as before, are eigenfunctions of the pseudodifferential operator A
defined in Definition 3.7. The corresponding eigenvalues are A = a(p'=7).

Proof. Let us prove that the functions in (19) are eigenfunctions of the oper-

ator (18), i.e. (A(W!).))(x) = a(p' =)yl By using that

(AWHN @) =F Aalllelp) Faorerrl) = / Ja(ll€]lp) 0D, (€)de

and the proposition 3.3, we obtain

AW )(@)
___pr_ / x(=€- Da(l€l)x (7€ - Q€ + p ¢|l,)de
Q

= —r / (™ = 2) - Oa(llell) 2~ +p¢ll)aNe

N
P

Suppose that £ € supp < o, <>. Then £ € —p'~1¢ erVZé,V and ||£]|, = p* .

Now we have

%a 1=y
(0@ = s [ 3= 0007+ e

By changing variables as z = p~7¢ +p~1¢, dVN¢ = p~N7dNz, in the previous
integral, we obtain

(AW (@)

= i o X =) = Il

= MX[—W”(VW —x)-(] /N XIp" (077 — x) - 2] 2l)d" 2
%Ma 1—~
- M“WW” =) Ul (0~ o))

- WX[}?% "z = )"z — ) = alp' )l (2).

Volumen 55, Numero 1, Afio 2021



[1]

[13]

[14]

A NOTE ON THE P—ADIC KOZYREV WAVELETS BASIS 11

References

S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-adic
distributions: linear and nonlinear models, Cambridge University Press,
2010.

S. Albeverio and S. V. Kozyrev, Multidimensional basis of p-adic wavelets
and representation theory, p-Adic Numbers Ultrametric Anal. Appl 1(3)
(2009), 181-189.

E. Arroyo-Ortiz and W. A. Zuiiga-Galindo, Construction of p—adic co-
variant quantum fields in the framework of white noise analysis, Reports
on Mathematical Physics 84 (2019), no. (1), 1-34.

L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, Nonarchimedean
string dynamics, Nucl. Phys B302 (1988), no. (3), 365-402.

A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dy-
namical Systems and Biological Models, Kluwer Academics, Dordrecht,
1997.

A. Yu. Khrennikov, S. V. Kozyrev, and W. A. Zuniga-Galindo, Ultramet-
ric Equations and its Applications, Encyclopedia of Mathematics and its
Applications, Cambridge University Press, 2018.

M. H. Taibleson, Fourier analysis on local fields, Princeton University
Press, 1975.

V. S. Varadarajan, Non-archimedean models for space-time, Modern Phys.
Lett. A 16 (2001), no. 4-6, 387-395.

V. S. Vladimirov, On the equations for p—adic closed and open strings,
p—Adic Numbers Ultrametr. Anal. Appl. 1 (2009), no. 1, 79-87.

V. S. Vladimirov and I. V. Volovich, p—adic quantum mechanics, Comm.
Math. Phys. 123 (1989), no. 4, 659-676.

V. S. Vladimirov, I. V. Volovich, and E. 1. Zelenov, Spectral theory in
p—adic quantum mechanics and representation theory, Mathematics of the
USSR-Izvestiya 36 (1991), no. 2, 281-3009.

, p-adic analysis and mathematical physics, Series On Soviet And
East European Mathematics, World Scientific, 1994.

1. V. Volovich, p—adic string, Clas. Quant. Gravity 4 (1987), no. 1, L83—
L87.

, Number theory as the ultimate physical theory, p—Adic Numbers
Ultrametr. Anal. Appl. 2 (2010), no. 1, 77-87.

Revista Colombiana de Matemaéticas



12 EDILBERTO ARROYO-ORTIZ

[15] W. A. Ziniga-Galindo, Pseudodifferential equations over non-archimedean
spaces, Lectures Notes in Mathematics, Springer, 2016.

[16] , Non-archimedean white noise, pseudodifferential stochastic equa-

tions, and massive euclidean fields, J. Fourier Anal. Appl. 23 (2017), no. 2,

288-323.

(Recibido en mayo de 2019. Aceptado en abril de 2020)

DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD DE SUCRE

CrA 28. No. 5-267 BARRIO PUERTA ROJA

SINCELEJO, COLOMBIA

e-mail: edilberto.arroyo@unisucrevirtual.edu.co, ediarroyol7@gmail.com

Volumen 55, Numero 1, Afio 2021



