
Revista Colombiana de Matemáticas
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Periodic solutions for a model of tumor

volume with anti-angiogenic periodic

treatment
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Abstract. In this work, we consider the dynamics of a model for tumor volume
growth under a drug periodic treatment targeting the process of angiogenesis
within the vascularized cancer tissue. We give sufficient conditions for the
existence and uniqueness of a global attractor consisting of a periodic solution.
This conditions happen to be satisfied by values of the parameters tested for
realistic experimental data. Numerical simulations are provided illustrating
our findings.
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Resumen. En este trabajo, consideramos la dinámica de un modelo para
el crecimiento del volumen de un tumor bajo un tratamiento periódico de
medicamentos dirigido al proceso de angiogénesis dentro del tejido vascular-
izado del cáncer. Damos condiciones suficientes para la existencia y la unicidad
de una solución periódica la cual es globalmente atractora. Estas condiciones
se cumplen con los valores de los parámetros probados en datos experimen-
tales reales. Se proporcionan simulaciones numéricas que ilustran nuestros
resultados.
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1. Introduction

Once tumor spheroids reach the blood stream, the process of vascularization
called angiogenesis begins, see [3]. This stage of tumor development has ma-
jor importance for the process of metastasis. Under this condition the volume
(population), V > 0, of tumor cells, as well as its maximal capacity, K > 0,
are both dynamical variables. The treatment strategy called angiogenic ther-
apy is a chemical therapy by inhibitors targeting this process, see [5]. It has
been successfully modeled by standard pharmacokynetic in [4], for certain in-
hibitor such as TNP-470, Angiostatin and Endostatin. This model consists of
the following system of differential equations:

V̇ = −αV ln(V/K), (1a)

K̇ = −λK + bV − dKV 2/3 − eKg(t). (1b)

Here g(t) > 0 is a T -periodic continuous function that represents the con-
centration of inhibitors administered at a given time, whose maxima and min-
ima are denoted as g∗, g∗ ≥ 0, respectively. In realistic descriptions, λ > 0 is
negligible meaning that constitutive endothelial spontaneous vasculature loss
does not play a major role. The parameter e > 0 stands for the vascular in-
activation rate. The impact depends directly on the vasculature K and due to
volume dimensions carries an exponent V 2/3 while d > 0 is the linear rate of
this impact. Finally b > 0 is the rate of stimulation of cell proliferation induced
by inhibitors. The seminal model [2] was biologically validated by fitting it to
experimental data. For practical applications the search of an ’optimal’ solu-
tion under a treatment cost function is useful, although these problems require
the tools of optimal control approach, see for instance [7, 8]. Notice that the
final treatment outcome according to this model leaves a small oscillating tu-
mor as time flows. This does not imply the desired elimination of cancer cells.
Nevertheless the value of this treatment is to bound the size of the tumor by
reducing vascularization. See further discussions on heuristics and interpreta-
tions for both experimental and modeling work in [1], where it is also important
the use of a periodic treatment simulations for medication.

We extend results presented in [4], proving the existence of periodic dy-
namics for periodical continuous drug dose under certain conditions on the
parameters. One generalization due to d’Onofrio and Gandolfi, [2], differs a
little bit of the original Hahnfeldt et al. model [4]. Namely [2] considers the
proliferative term bK instead of bV as in [4]. Moreover, although [2] considers
periodic treatment, it does not provide general results of existence of periodic
solutions. The tools we use to prove our result arise directly from the Theory
of Cooperative Systems, see [6, 9]. Our aim is to give an analytical justification
for the existence of such solutions.
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2. Results

For the reader’s convenience we first recall some basic facts about cooperative
systems that will be used for proving our results.

For two points u, v ∈ Rn denote the partial order u ≤ v defined by ui ≤
vi for each i, also denote u < v if u ≤ v and u 6= v. Consider a system

ẋ = f(t, x(t), y(t)),

ẏ = g(t, x(t), y(t)),
(2)

where f, g are C1 in an open D ⊂ R2 and continuous T -periodic functions on
t. Recall that (2) is said to be a cooperative system in R×D if

fy(t, x, y) ≥ 0, and gx(t, x, y) ≥ 0, ∀ t ∈ R, (x, y) ∈ D. (3)

Cooperative systems have very important properties, for a brief introduction
to cooperative systems see [9].

We say that a pair of T -periodic differentiable functions (a(t), b(t)) is a
sub-solution pair of (2) if

ȧ ≤ f(t, a(t), b(t)),

ḃ ≤ g(t, a(t), b(t)), for all t.
(4)

Analogously a pair of T -periodic differentiable functions (A(t), B(t)) is a super-
solution pair if

Ȧ ≥ f(t, A(t), B(t)),

Ḃ ≥ g(t, A(t), B(t)), for all t.
(5)

We say that sub- and super-solution pairs are ordered if for all t we have
a(t) < A(t) and b(t) < B(t).

An important feature for cooperative system (2) related to periodic orbits
was established in [6], Theorem 2.1.

Theorem 2.1 (Korman (2016)). Assume that the system (2) is cooperative and
has ordered sub- and super-solution pairs (a(t), b(t)) and (A(t), B(t)). Then
the system has a T -periodic solution (x(t), y(t)), satisfying a(t) < x(t) <
A(t), b(t) < y(t) < B(t), for all t. Furthermore, any solution of (2), with
initial condition (x(0), y(0)) satisfying a(0) < x(0) < A(0) and b(0) < y(0) <
B(0), converges to the product of the strips

(x̌(t), x̂(t))× (y̌(t), ŷ(t)) ,

where (x̌(t), y̌(t)), (x̂(t), ŷ(t)) are the minimal, maximal T -periodic solution, re-
spectively.
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Lemma 2.2. Any solution of (1) starting in the positive quadrant R2
+ either

approach, enter, or remain in the subset defined by

D := {(V,K) ∈ R2 : 0 < V, 0 < K ≤ 3b

2d
V

1
3 }.

Proof. Indeed, for any initial condition (V (0),K(0)) in the region

K >
2b

3d
V 1/3, V > 0,

K is decreasing while V is increasing, thus any solution with initial conditions
in R2

+ remains or eventually enters into region D. �X

Thus, it suffices to consider solutions in the region D. The following result
gives sufficient conditions for the existence of periodic orbits in D. It is expected
that the periodicity of the medication g of period T induces a periodic orbit of
the same period T , whenever such periodic orbits exists. There is a bounded
behavior of the system which yields a periodic orbit. This follows from the
positive invariance of D under the flow. Thus the existence claim stated in
Theorem 2.3 below, asserts that for a suitable choice of the parameter, the
resulting drug treatment is provided with at least one periodic limit orbit which
is not merely a fixed point. The other non-trivial fact, stated in Theorem 2.4
is that the periodic orbit is a global attractor, i.e., that the limiting orbit is
stable and there is no dependence of the initial conditions that are chosen.

Theorem 2.3 (Existence). Assume α, λ, b, d, e > 0 and g(t) is a non negative,
non constant continuous T -periodic function. If

b > λ+ eg∗, (6)

then there exists at least one T -periodic solution (V (t),K(t)) of (1) whose
components are positive.

Proof. We consider the positively invariant region D defined in the previous
Lemma. In this domain (1) describes a cooperative system.

For a super-solution pair take the fixed point solution,

Ȧ =0, A(0) = M, (7a)

Ḃ =0, B(0) = M, (7b)

with M > 0 to be chosen; replacing in (5) we can see that the first equation in
(5) is clearly satisfied. For the second relation we need

Ḃ(t) = 0 ≥M(−λ+ b− dM2/3 − eg(t)). (8)
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We choose M with
(
b
d

)3/2 ≤ M ≤ V0 :=
(

3b
2d

)3/2
then inequality (8) is satis-

fied. We immediately have that these functions satisfy the inequalities in (5).
Therefore they constitute a super-solution pair in D.

For constructing a sub-solution pair (a(t), b(t)) in D, we take

ȧ =0, a(0) = m, (9a)

ḃ =0, b(0) = m. (9b)

In order to satisfy both inequalities in (4), we choose 0 < m < M sufficiently
small so that the following inequality holds

0 < m <

(
b− λ− eg∗

d

)3/2

.

Consequently, (a(t), b(t)) form a sub-solution pair.

Therefore Theorem 2.1 applies, so there exists at least one T -periodic solu-
tion for system (1), which proves the result. �X

We say that a solution (u(t), w(t)) of (2) is globally attracting on a positively
invariant set Ω ⊆ R2 if all solutions (x(t), y(t)) with (x(0), y(0)) ∈ Ω satisfy

(x(t), y(t))− (u(t), w(t))→ 0, t→∞.

We consider the region

R :=

{
(V,K) ∈ D : 0 < V < V0 :=

(
3b

2d

)3/2

, 0 < K ≤ 3b

2d
V

1
3

}
.

Notice that R remains positively invariant under the system (1). The following
result establishes the uniqueness of the periodic orbit as well as that it is a
global attractor.

Theorem 2.4 (Uniqueness). Under the same conditions as in Theorem 2.3,
there exists a unique T -periodic solution of (1) in R2

+ which attracts all other
positive solutions, when t→∞.

Proof. Given any T−periodic solution we can chose 0 < m < M ≤ V0 and
a solution of (7) with A(0) = M = B(0) large enough, and a(0) = m = b(0)
small enough so that we can consider the periodic solution as dominated by
this super-solution and simultaneously dominating its sub-solution. According
to Theorem 2.1, the set of periodic solutions of (1) is ordered, i.e., we can take
the maximal periodic solution, (V̂ (t), K̂(t)), as well as the minimal periodic
solution, (V̌ (t), Ǩ(t)), so that for any other periodic solution, (V (t),K(t)), we
have V̌ (t) ≤ V (t) ≤ V̂ (t) and Ǩ(t) ≤ K(t) ≤ K̂(t). Our strategy is to prove
that we actually have (V̂ (t), K̂(t)) = (V̌ (t), Ǩ(t)).
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Under the change of coordinates p = V K, q = V/K, the system (1) becomes(
p+ q

2

)′
=− α ln q,(

p− q
2

)′
=λ+ bq − d(pq)1/3 − eg(t).

(10)

Substitute q̂ = V̂ /K̂, q̌ = V̌ /Ǩ and p̂ = V̂ K̂, p̌ = V̌ Ǩ in the first equation of
(10). Integrating over [0, T ] we get

0 =

∫ T

0

ln q̂ − ln q̌ ds =

∫ T

0

ln
q̂

q̌
ds.

Since by its very definition we have q̂/q̌ ≥ 1, then q̂ = q̌.

Now, integrating over [0, T ] the second equation of (10) we get

0 =

∫ T

0

(
p̂1/3 − p̌1/3

)
q̂1/3 ds.

Since p̂ ≥ p̌, hence p̂ = p̌. This proves the uniqueness of periodic solutions for
initial conditions in R ⊆ D ⊆ R2

+.

For the rest of the domain D, we just observe that V is decreasing for any
V (0) ≥ V0 and K(0) ≤ 2b

3dV
1/3. Therefore R is attracting for any solution in

D, by Lemma 2.2 any solution with initial conditions in R2
+ eventually enters

region D and consequently to R. This concludes the proof. �X

3. Applications

In the previous section, we analyzed the existence of periodic solutions model
(1) for a tumor’s volume growth. The object of this section is to show numerical
evidence of the existence of periodic solutions, we numerically solved these
equations using Mathematica. We will use the estimated parameters given in
[4].

Example. Consider the system

V̇ = −αV ln(V/K), (11a)

K̇ = −λK + bV − dKV 2/3 − eKg(t). (11b)

The parameter values for the angiogenic inhibitors Angiostatin are as in [4],

which are given by α = 0.192/day, b = 5.85/day, d = 0.0087/(day vol−
2
3 )

and e = 0.15/(day conc) where conc ≡ mg/kg and vol ≡ mm3, since λ is
negligible we consider λ = 0.001/day. The concentration of inhibitors function
is determined by g(t) = 5 + sin(2πt). Notice that b > λ+ eg∗ so by Theorems
2.3 and 2.4 the system has a periodic solution which is globally attractive. To
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illustrate this fact, we consider different initial conditions for the system (11)
and we observe that the corresponding solutions (the components K) tend
the corresponding numerical approximation of the periodic orbit. See Figure
1. Recall that biologically forbidden initial conditions arise from the region,
V0 > K0.

20 40 60 80 100
12 000

13 000

14 000

15 000

16 000

Figure 1. Plots for the solutions (V,K) of model (11), with different initial condi-
tions (V0,K0) such as (12000, 12000) in blue, (15000, 15000) in red and
(14250, 13000) in green. We observed that the corresponding numerical
approximation of the periodic orbit behaves like a globally attractive or-
bit.
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