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ABsTrACT. The main result of this paper is the proof of the boundedness of the
Maximal Function T of the Ornstein-Uhlenbeck semigroup {7} }:>¢ in R?, on
Gaussian variable Lebesgue spaces L”M('yd), under a condition of regularity
on p(-) following [5] and [8]. As an immediate consequence of that result, the
LPO) (44)-boundedness of the Ornstein-Uhlenbeck semigroup {T;}:>0 in R? is
obtained. Another consequence of that result is the LP()(v,)-boundedness of
the Poisson-Hermite semigroup and the LP()(v4)- boundedness of the Gaus-
sian Bessel potentials of order g > 0.
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REsUMEN. El principal resultado de este articulo es la prueba de la acotacién
de la Funcién Maximal 7™ del semigrupo de Ornstein-Uhlenbeck {7}}+>0 en
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22 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

R? sobre espacios de Lebesgue variables respecto de la medida Gaussiana
LPO) (4), asumiendo una condicién de regularidad en p(-) siguiendo [5] y
[8]. Como consecuencia inmediata de éste resultado se obtiene la acotacién-
LP) (~4) del semigrupo de Ornstein-Uhlenbeck {T}}:>0 en R%. Otras conse-
cuencias del resultado es la acotacién LP() (va) del semigrupo Poisson-Hermite
y la acotacién LP() (va) de los potenciales de Bessel Gaussianos de orden 3 > 0.

Palabras y frases clave. Andlisis Arménico Gaussiano, espacios de Lebesgue
Gaussianos, semigrupo de Ornstein-Uhlenbeck.

1. Introduction and Preliminaries

The Ornstein-Uhlenbeck semigroup {7} };>¢ is the semigroup of operators gen-
erated in L?(v4) by the Ornstein-Uhlenbeck operator

d
1 1 02 0
L:iAx—<x,Vx>:; [5573‘”6@] (1)
as infinitesimal generator, i.e., formally 7, = e *L. In view of the spectral

theorem, for f =377 Jif € L2(R%,~4) and t > 0, T} is defined as

T.f = Z eI By )y = Z otk Z (F )l = Z eI f (2)
v k=0 |v|=k k=0

where {EV},, are the normalized Hermite polynomials in d variables, and

ka: Z <f7ﬁv>'ydﬁy

lv|=k

is the orthogonal projection of L?(R%,~,) onto

C, = span ({E |v] = k})

Using Mehler’s formula, it can be proved that the Ornstein-Uhlenbeck semi-
group has an integral representation as

L?(R? vq)

1 _ ey el )26~ o)
T,f(x) :m /Rd e T—e— f()va(dy)

! =
:Wd/2(1 767215)(1/2 /Rde === f(y)dy, (3)

for all f € L'(R% ~,4). Taking the change of variable s = 1 — e~2!, we obtain
that

Tf(e) = s [ fdy (1
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 23

The maximal function of the Ornstein-Uhlenbeck semigroup is defined by
T* f(z) = sup | To f(x)],
t>0

for all z € R4,

It is well know that the Ornstein-Uhlenbeck semigroup {7;};>0 in R? is a
Markov operator semigroup in LP(R? ~4),1 < p < oo, i.e. a positive conserva-
tive symmetric diffusion semigroup, strongly LP-continuous in LP(R%,~4),1 <
p < oo; with the Ornstein-Uhlenbeck operator L as its infinitesimal generator,
see [2], [1] or [12]. Tts properties can be obtained directly from the general the-
ory of Markov semigroups, see [1] or [11]. It is also well known that the maximal
function T is bounded in LP(R%,v4),1 < p < oco.

Even thought there are some known results about boundedness of operators
on Gaussian variable Lebesgue spaces LP()(v4), see for instance [5], as far as
we know, there is not proof in the literature of boundedness of the Ornstein-
Uhlenbeck semigroup {T; }+>0, nor of the boundedness of the maximal function
of the semigroup. The main result of this paper is the proof that the maximal
function T* of the Ornstein-Uhlenbeck semigroup {T}};>0 on R is bounded
for Gaussian variable Lebesgue spaces Lp(')(Rd,vd), under certain conditions
of regularity on p(-), that will be determined later (see Definitions 1.1, 1.2, 1.5
and 2.1)

Theorem 1.1. Let p(-) € P32 (RY) N LHo(R?) with 1 < p_ < py < oo. Then
there exists a constant C > 0 such that

T Fllpeyva < CllFllp)va
for all f € LPO)(RE ~,).
As a consequence of Theorems 1.1 we obtain,

Corollary 1.2. Let p(-) € P32(R?) N LHo(R?) with 1 < p_ < py < co. Then
there exists a constant C > 0 such that

T flloyva < ClFllpe)va

for all f € LPC)(R?, ~y) and for all t > 0.

An important remark is needed here. Observe that from Theorem 1.1 we can
not conclude, as in the classical case, that the semigroup {7};} is a contraction
semigroup is LP(')(Rd, ~v4). We do not know if that is actually true for this case.
Therefore questions like some form of hypercontractivity for the semigroup in
this context are unknown.
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24 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

Additionally, let us consider the Poisson-Hermite semigroup as the subor-
dinated semigroup to the Ornstein-Uhlenbeck semigroup, using the Bochner’s
subordination formula, see E. Stein [10], defined then as,

Pt \F/ \f t2/4u)f( )

ly—ral?
exp (t?/4logr) ©XP (%) dr p 5
27r(d+1)/2 Rd —logr) 3/2 (1 7,,2)d/2 — f(y)dy. (5)

It is also well known that the Poisson-Hermite semigroup {P, };>¢ is a strongly
continuous, symmetric, conservative semigroup of positive contractions in
LP(v4), 1 < p < oo, with infinitesimal generator (—L)'/2. Additionally, the
maximal function of the Poisson-Hermite semigroup is defined by

Prf(z) = sup |Pf ()],

for all 2 € R4,

As a consequence of the boundedness of {7}, we will prove that {P;};>0
is also bounded for Gaussian variable Lebesgue spaces Lp(‘)(Rd7 ~v4) under the
same conditions of regularity on p(-).

Theorem 1.3. Let p(-) € P32(RY) N LHo(RY) with 1 < p_ < py < oo. Then
there exists a constant C > 0 such that

Py e < CllFMpe) v
for all f € LPO(RY, ~y).

Finally, the Gaussian Bessel potential of order 8 > 0, ¢35 is defined as
1 +oo 51
T) = —— sP7 e Pyf(x) ds 6
sl =575 | /(@) (6)

for all z € R4,

It can be proved, using P. A. Meyer’s multiplier theorem, that the Gaussian
Bessel potentials #g are LP(y4)-bounded 1 < p < co. Moreover we will see
that as consequence of Theorem 1.3 we obtain the boundedness of Gaussian
Bessel potential on LP()(R?, ~4).

Theorem 1.4. Let p(-) € PSS(RY) N LHy(R?) with 1 < p_ < py < co. Then
there exists a constant C > 0 such that

178 lp)va < CUFllpe) va

for all f € LPO)(RY ~4) and B > 0.
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 25

Now, for completeness, let us introduce some basic background on variable
Lebesgue spaces with respect to a Borel measure p.

Any p-measurable function p(-) : R? — [1,00] is an exponent function; the
set of all the exponent functions will be denoted by P(R?, 11). For E C R? we
set

p—(FE) = ess inf p(x) and p; (F) = ess sup p(x).
z€E r€E

We use the abbreviations py = py (R?) and p_ = p_(R?).

Definition 1.5. Let £ C R?. We say that a(-) : £ — R is locally log-Holder
continuous, and denote this by a(-) € LHy(FE), if there exists a constant C; > 0
such that

Cy

1
log(e + 7=571)
for all z,y € E. We say that a(-) is log-Holder continuous at infinity with base

point at xg € RY, and denote this by a(-) € LHu(FE), if there exist constants
s € R and C5 > 0 such that

a(z) — afy)] <

Cs
0 == g e =D

for all x € E. We say that «(-) is log-Holder continuous, and denote this by
a(-) € LH(FE) if both conditions are satisfied. The maximum, max{C1, Cs} is
called the log-Holder constant of «f+).

Definition 1.6. We denote p(-) € Plog(Rd), if ﬁ is log-Holder continuous
and denote by Cjog(p) or Ciog the log-Holder constant of ﬁ.

We will need the following technical result; for its proof see Lemma 3.26 in

[4].

Lemma 1.7. Let p(-) : R? — [0,00) be such that p(-) € LHL(R?), 0 < poo <
oo, and let R(z) = (e + |z|)™™, N > d/p_. Then there exists a constant C
depending on d, N and the LH, constant of p(-) such that given any set E
and any function F with 0 < F(y) <1 fory € E,

/ FPO)(y)dy <C / Fly)dy + / P (y)dy, (7)
/F”‘x’ dy<0/ Fr)( dy—|—/Rp y)dy. (8)

Definition 1.8. For a p-measurable function f : R — R, we define the
modular

)= [ PR o )
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26 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

and the norm
||fHLp(-)(Rd’H) = inf {/\ >0: pp(,)’#(f//\) < 1} . (10)

Definition 1.9. The variable exponent Lebesgue space on RY, Lp(')(Rd,,u)
consists on those p-measurable functions f for which there exists A > 0 such

that pp) ({) < 00, ie.,

Lp(‘)(Rd,,u): {f: R? — R: f measurable and Pp().u ({) < o0, for some A\ > 0} .
If B is a family of balls (or cubes) in R, we say that B is N-finite if it has

bounded overlappings for N, that is Z xB(z) < N for all z € R in other
BeB

words, there are at most IV balls (resp. cubes) that intersect at the same time.

The following definition was introduced for the first time by Berezhnoi in [3],

defined for a family of disjoint balls or cubes. In the context of variable spaces,

it has been considered in [6], allowing the family to have bounded overlappings.

Definition 1.10. Given an exponent p(-) € P(R?), we will say that p() € G,
if for every family of balls (or cubes) B which is N-finite, there is a constant C

> Ixallpolloxslly ¢ < Ol Aol
BeB

for all functions f € LP()(R%) and g € Lpl(')(Rd). The constant only depends
on N.

Lemma 1.11 (Teorema 7.3.22 in [6]). If p(-) € LH(R?), then p(-) € G.

As usual, in what follows C' represents a constant that is not necessarily
the same in each occurrence; also we will use the following notation: given two
functions f, g, the symbols < and 2 denote, that there is a constant ¢ such
that f < cg and cf > g, respectively. When both inequalities are satisfied, that
is, f < g < f, we will denote f ~ g.

2. Proofs of the main results.

In this section we are going to consider Lebesgue variable spaces with respect
to the Gaussian measure 74, Lp(')(Rd, v4). The next condition was introduced
by E. Dalmasso and R. Scotto in [5].

Definition 2.1. Let p(-) € P(R%, 4), we say that p(-) € P32 (R) if there exist
constants C,, > 0 and po, > 1 such that

Ip(z) = poc| < E;T; (11)
for x € R4\ {(0,0,...,0)}.
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 27
Observation 2.2. If p(-) € P32(R?), then p(-) € LHy(R)

Lemma 2.3. If1 <p_ <p; < o0, the following statements are equivalent
(i) p() € PE(RY)
(i1) There exists poo > 1 such that
Crl < e llPe@ /et < 0 and Oyt < e PO @D < 0,
for all z € R%, where C, = eCralP= and Cy = eCWd(p*)//p“‘.
Definition 2.1 with Observation 2.2 and Lemma 2.3 end up strengthening

the regularity conditions on the exponent functions p(-) to obtain the bound-
edness of the maximal function T*. As a consequence of Lemma 1.11, we have

Corollary 2.4. If p(-) € PS2(RY) N LHo(R?), then p(-) € G.

Lemma 2.5. Let p(-) € P(R%,,), then

N 2 .
I loyma 2 IFe PO 0.

=-1?/p()
_ . !
B=<A>0: ppiyqg X <1;,.

We will prove that inf(A) < inf(B) and inf(B) < inf(A4). In fact, taking A € A

then
Fe—l2/p0)
Pp(-) by - /Rd

which implies

Proof. Let

and

p(w) )
e dr <1

f(z)

f 1
Pp() 4 ()\ < ) <1
and then A € B. Therefore, A C B, and then inf B < inf A.
On the other hand, taking A € B then

f B p(x) e—\w\Q
Pr()va\ 'y | = e

f(z)

A
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28 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

which implies

Fz)e—leP /) [P0

ferl B
Pp(-) \rd/2 = Jpa /2

p(z) —|z|? f
€
= /Rd —a7z = () (/\) <1

and therefore A € 7=%2A. Thus inf A < 7%/2inf B, and then inf(A) ~ inf(B).

Hence, we get

(z)

A

R 2 .
1 fllpyiva = [1Fe7TPO 40
el

2.1. Boundedness of the maximal function of Ornstein-Uhlenbeck
semigroup with the condition P;’:(Rd)

For # € R? let us consider admissible (or hyperbolic) balls,

Bi() = {y € R : | — y| < d(1 A 1/]a])}. (12)
It is well known that the Gaussian measure is essentially constant on Bp(x),
see [12, Chapter 1].

As it is nowadays a standard technique in Gaussian harmonic analysis, we
split T} into its local part and its global part,

Tif(w) = TY f () + T} f(2),

for + € R?, where, using the integral representation (4) and the change of
variables s = 1 — e~ % we will write

e_\mww
0 o o
Ts f(.’L‘) T /Bh(z) (71'8)‘1/2 f(y)dya

the local part, which is the restriction of T} to the admissible ball By (), and

o V(A=s9)z—y|?
1 e N
ne= [ S

the global part, which is the restriction of T to the complement of admissible
ball Bh (JL‘)

Therefore the maximal function of the Ornstein-Uhlenbeck semigroup will
be bounded by the sum of the operators,

W (—s)z—y? )x y|?

T f(z) == su ‘/ dyl, 13
of 5P, P e T/ f(y)dy (13)
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 29

and
W (=—s)z-y|? c)z y|?
ris@ = s | [ ) (14
0<s<1 e ( 7T8

which we call the local and global max1ma1 operators respectively.

Next, we will need the following technical lemma to handle the proof of
boundedness of the local part, for the proof see [12], for an earlier formulation
see also [7].

Lemma 2.6. Let us define the secuence x, = vk for k € N. For this strictly
increasing secuence, we obtain a family of disjoint balls Bf, for k € N and
1 < j < Ny with the following properties:

@) If BN;f = 2B, the colection F = {B(0,1), {B~J’“}]k} is a covering of R%;
(ii) F has bounded overlappings;

(iii) The center y¥ of BY, satisfies |y¥| = (xr11 + zx)/2;

(iv) diam(B}) = z11 — zx = 1/(2|y});

(v) For all ball B € F, and all x,y € B, vq(x) =~ v4(y) with constants inde-
pendents on B;

(vi) There exists a uniform constant, C, > 0, such that, if x € B € F, then
By(x) € C,B := B. Moreover, the colection F = {B}BeF, also verifies

properties (ii)-(v).
Now, we present the boundedness of the local maximal operator 7.

Theorem 2.7. Let p(-) € P (RY) N LHo(R?) with 1 < p_ < py < co. There
exists a constant C' > 0 such that

LG oy va < ClHllp)
for all function f € Lp(')(Rd77d)~

Proof. We follow the proof of Theorem 3.3. in [5]. Without lost of generality
let us assume that f > 0.

- V(A=s)z—y|? o—u(s)
TO = 75 d = - d
= g0 = [ e W

= RdM(s,%y)f(y)XBh(x)(y)dy

—u(s) 1_ 2
where M (s, z,y) = (ewsw, and u(s) = |\/@$ Yl .

Revista Colombiana de Matemaéticas



30 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

_lz—y)?
S

Following [8] we obtain that if y € Bj(z) then e="() < Cye and
therefore
_le—vl?
e s
M(s,z,y) < CdW- (15)

Now, given z € R?, by Lemma 2.6, there exists B € F such that z € B and
By (z) C B, so we get,

_lz—y|?
s

M(s,2,9)F ()X 5y ) (@)dy < /B ( )cd‘f(mwf@)dy

_lz—y?

<Cu |ty

Rd

2
|z

Set ¢5(2) = e;% and since {¢s}s>0 is an approximation of identity, we have

[ M) £, 000y < o+ ) o)
< CaMu_r(fxg) ().

Therefore,

TP f(2) S Mu—r(fxp) (@) = Mu_r(fxp)(x)xs(z) ifz € B.

Thus,
TOf(x) S D Mu_r(fxp)(z)xs(=), (16)

BeF

for all z € R?. Since, the right hand side is independent of s we immediately
get

T f(@) S D Mu—r(fxp)(@)xs(), (17)

BeF

for all z € R%. Let f € LPC)(R?, ~,). Using the characterization of the norm by
duality,

173 s <2, s [ T3 f@)la(@)hada)

19117 (g <1
from (17) and following again [5] we obtain that
| T f@la@hatdn) £ 3 e [ Mas(fg)@late) @)ds
BeF
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 31

where ¢ is the center of the balls B and B. Using Holder’s inequality and the
boundedness of the maximal operator My 7, on LPC)(RY), we get

1

[t s@la@hatn) £ 3 e g gl vl

BeF
lepl? _M
S e = xslooe ™ gl
BeF

since p(-) € P53 (R9), by Lemma 2.3, we obtain that

| 2

_leB

e e ([ fxglloey S INXBIp0) A
and ,
_leBl

e "o laxglly o) S loxsly o)

By Lemma 2.5, we have that

=I-?/p(- *\-Iz/p'(-)”

X allp) e = X5 )”p(-) and  [lgxplly (), = ll9xpe 140)

and therefore,

* 1.2 . 12 0.
| T f@la@hatde) $ 3 1xse /7 s laxge™ 07 Ol
BeF

Since the family of balls F has bounded overlags; applying Corollary 2.4, to

the functions fe=I*/P() ¢ LPO(R?) and ge~I'7/P' () ¢ LP'O)(R?) and again
applying Lemma 2.5, we get

/Rd Ty £ (@)lg (@) yaldz) SN fllpe)mallglly ) va-

Taking supremum on all the functions g € Lpl(')(Rd,’yd) with
l9llp(),va < 1, we obtain that

5 fllp()ve S sup /Ta‘f(w)lg(w)\vd(dw)
<1 JRra

N9llp7 (-)1vg

S osup [l mallglly e = 1oy ma

S
91 () g 1

]

Finally, we will obtain the boundedness of the global maximal operator
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Theorem 2.8. Let p(-) € PY(RY) N LHo(RY) con 1 < p_ < py < co. Then
there exists a constant C > 0 such that

NTT fllp)va < ClHlpe) va
for all the function f € LPO) (R4, ~y).

Proof. Suppose that f > 0. Again, we follow the proof of Theorem 3.5 in [5].

e_l\/ﬁﬂﬂ*y\2
T!f(z) = — ——f(y)dy = M dy.
M@= [ g 0= [ M)

For z € R? fix, set E, = {y : b(x,y) > 0} where b := b(z,y) = 2 (z,y). Given
y € Bf(z), the following inequalities are satisfied:

(i) If b <0, then

M(s,z,y) S e W7, (18)
(ii) If b > 0, then
M(s,2,y) S < 7 (19)

where a = [z]? + [y[?, to = 2va® — b?/(a + Va? — b?) and uo = 3(|y]* — |z]* +

|z + yl||z — y|). For details see [8] or [12, Chapter 4].

Let f € LPO(RY, yy) with f > 0 and || f|lp(),4, = 1. If b < 0, applying (18)
and Holder’s inequality for the exponent p_ we obtain that

I= / (T3 (Fxms) (@)@ (da)

( sup ‘/ M(s,z,y)f dy‘) ~Ya(dx)
0<s<1 ! JBs (@)nES

) p(x)/p-
( yP-e Il dy) ~a(dx).

Moreover, pp(.).,(f) < 1, implies that,

p(z)/p-
p— o~ lyl? P o—lyl? z
= ( [, e ays [ ) dy> Ta(d)

< Ol + [ ) ada)
/Rd ( R /Rd )

< / (2)P)/P=yy(da) = Cayp.
R4
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ON THE BOUNDEDNESS OF MAXIMAL FUNCTION ... 33

With this we obtain that ||Tf‘(fXE(c_))||p(,),7d < Cqp.

Now, if b > 0 by (19) and for all f € LPO)(R? ~y) with ||f],,, = 1, we
have that

1T = /Rd(Tf(fXEm)(x))p(m)’yd(dm)
p(w)
:/Rd (0251’/C(ME’M(&w,y)f(y)dy‘) va(d)

()
1 e—u0 el /p(y) o~ l* /() o P
< d/2/ / 7 f(ye lwI™/p(y) gy dr.
™ R4 B (z)NEq t,

Since p(+) € ’PEY’j(Rd), we obtain that elvl”/P()=12*/p(@) ~ ¢(yl*=I21*)/P and by
the Cauchy-Schwartz inequality we have, ||y[> —|z|?| < |z + y|lz — y], for all
z,y € R%. On the other hand, for b > 0, |z + y||z — y| > d wherever y € B (x).
In fact, since b > 0

|z +y| > |z —y| and |x + y| > |z|.

Now, since y € B§(x), we consider two cases:

Case 1: If |z| < 1, applying (2.1), we obtain that |x —y| > d (1 A |71‘) =d
and then
|z —yl|lz +y| > d* > d.

Case 2: If |z| > 1, applying (2.1), we obtain that |z —y| > d (1 A ITI\) = I%\
and then
[z —yllz +yl = [z —yllz] > d.

Moreover, to ~ |z + y||z — y|/(|z|> + |y|?). Since |z|> + [y =a < a+b=
|z + y|?, we have that

t > el +2y||w —2y| >0 i
|2 + |y] |z +yl
thus
a2 < x4yl
to
Therefore,
e—welyl*/p(y) g—l2?/p() i
/ 7 f(y)e~ /P gy
B (z)NEy tg

< / P(z,y)f(y)e” W P®ay,
BeNE,
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34 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA

where
P({E7y) = |{L‘—|—y|de_aoo|w+y||l‘—y‘ and Qoo = ( _ ‘ _ ‘) > 0.

It can be proved that P(z,y) is integrable on each variable (for details see [8])
and the value of each integral is independent on z and .

SetAz:{y: % <|ly—z| < %}andCI:BC(x,l/Q):{y: ly —z| > 1},
thus it follows, By, (z) C A, U C,. Define

le/ P(a, ) f(y)e-*/?0) dy and J2:/ Pla, ) f(y)e= /70 gy,
AsNE, C

W NE,

We will estimate J; first. Observe that, if y € A,, 2|z| < |y| < §|z| and then
|z = |y| hence |z| ~ |z + y|, and thus

J1 5/ |x|de—%o\Z‘HI—ZJ\f(y)e—\y\Q/p(y)dy
T <le—yl
< MH,L(fe_Hz/p('))(m).
From the hypothesis on p(-) we get
— 1.2 . 1.2 .
[Me—r(fe7 TPy S UL PON0 = 1 llp) 7e = 1

therefore

— 2 .
ooy (M- (fe P/ < 1. (20)
In order to estimate .J5, we have
J2 < |1P(@,)xe.lly ) < C

for details see [5]. This implies that there exists a constant independent on z
such that,

Jo = / P(z,y)f(y)e W /PWay < ¢
C.NE,

thus
1

a P(z, y)f(y)€—|y|2/p(y)dy <1.
C.NE,
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We set g(y) = f(y)e W*/P®) = gi(y) + ga(y), where g1 = gx(y>1) and go =
9X{g<1}- Applying (20), we have

p(x)
IT< / (/ P(x,wf(y)ey'z/p@)dy) da
R\ J BS (2)NE,

< / (1)@ da + / ()@ dr
R

Rd

2 1 p(x)
S ooy (M- (fe™ 170 +/Rd (C/c . P(x,y)gl(y)dy> da

1 p(:v)
+/ (0/ P(x,y)gz(y)dy> dx
R4 C.NE,
<1416+ 1.

Now, we study the integrals 117 y Ils.

1 p(z) 1 p-
m=[ (& [  resawa) ws<[ (5] Pepama) o
Rd ConE, Rd CoNE,

On the other hand, using Lemma 1.7 with

1

Y7 Joon
=Ny

P(z,y)g2(y)dy < 1

and applying the inequality (7), we obtain that

m=[ ([ e y>gg<y>dy)p(w) in = [ (G

1 Poo
:/ <C/ P(w,y)gz(y)dy) + Ca,p,
Rd C.NE,

therefore

b= Poo
115 / (/ P(x,y)gl(y)dy> dx+/ (/ P(x,y)g2(y)dy) dz+Cyp.
R4\ CoNE, ri\JC,NE,
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Now, in order to estimate the last two integrals, we apply Holder’s inequality.
p- N N P
/ (/ P($7y)91(y)dy> dx < / ( P(z,y)" P(x,y)" 91 (y)dy> dx
R \JC,NE, Rd \JRd

<[.(] d(P(x,w)p'—/p'—dy)p/p/ ([ pwar-rd o) a

= /Rd ( -y P(x,y)dy>p/p/ ( 9 P(z,y)g7~ (y)dy) de
< /Rd » P(z,y)g; (y)dydz.

Then, by Fubbini’s theorem we get,

/Rd </0er P(w7y)gl(y)dy>p dr < /Rd /Rd P(z,9)d0" (y)dydz

Now, we need to estimate the integral

/Rd (/CmEm Pz, y)gz(y)dy) s

We proceed in an analogous way, but applying the Holder’s inequality to the
exponent p.o, and applying the inequality (8) in Lemma 1.7. Thus, it follows

Poo
/ ( [ re y>92<y>dy) w5 [ APy +Ca,
R4 C,NE,; Rd
S pp(‘)ﬁd (f) + Ca

therefore,

P Poo
I 5/ (/ P(x,y)g1(y)dy> dx+/ </ P(x,y)gg(y)dy) dx + Cqayp
RINJC.NE, ri \JC,NE,
< 2pp() 70 () + Cap

With this we obtain that || 77 (fx£,)llp(),va < Cdp, then by homogenity of the
norm the result holds for all function f € LPC)(R9, ~4).
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Hence
ITT fllpeyva S NTT (X p0) 7 + 1T (FXEE ()70 S 1 lp)7a-

v

Now, the proof of the LP()(v,4)-boundedness of the maximal function T* of
the Ornstein-Uhlenbeck semigroup, Theorem 1.1, is a immediate consequence
of Theorems 2.7 and 2.8, since we have

T Flloyva < NI Floeyva + 1T5 Florva < CllFlpr e ©

On the other hand, the LP()(y4)-boundedness of the Ornstein-Uhlenbeck semi-
group, Corollary 1.2 is immediate from Theorem 1.1. Moreover, one can get a
direct proof of it repeating the proof of Theorems 2.7 and 2.8 by simply using
(16), (18) and (19).

Additionally, from the LP()(R?, ~4)-boundedness of T* we obtain
Theorem 2.9. Let p(-) € P2(RY) N LHy(RY) with 1 < p_ < py < oo,
and f € LPC)(RY,v,). The application t — Tyf is continuous from [0,00) to
Lrt) (Rd7 ’Yd) :

Proof. We have to prove that Ty f — Ty, f on LPO(R? ~,) if t — to. By the
property of semigroup, it is enough to prove that T;f — f in LPO)(RY, ~,) if
t— 0T,

As f € LPO(R?,4y), then f(z) < 00 a.e. # € R and f € L' (R%, v4). Let

fi(x) = [Ty f(z) — f(x)|p(m), from the pointwise convergence of the Ornstein-
Uhlenbeck semigroup (see [9]), we have,

lim fi(x) = lim |T,f(z) - F@)P =0, ae. zeR?
On the other hand,
T () = (@) <20 (T f @) + | ) )
<2+ (I F @) + @)

Set g(x) = 2P+ (|T*f(m)\p(z) + |f(x)|p($)> for all x € R?. Then g is integrable,
in fact

[ a@natds) = [ 2+ (11 $@P + 1 £@F) 2uldo)
Rd Rd
= ([ or e + [ 0Pt )

= 2P+ (pp(')Km(T*f) + pp('),’Yd(f)) < oo,

Revista Colombiana de Mateméticas



38 JORGE MORENO, EBNER PINEDA & WILFREDO URBINA
since f, T*f € LPO)(RY, ~,).
Applying Lebesgue’s dominated convergence theorem, we have

Thus,

t—07t ) pd

0=lim A fe(x)va(dz) i£?+4d|th(m) — f@)|"' ya(da) =lm py()a(Tef=f)

Then, py()q,(Tef — f) =0, t = 07 and hence | T3 f — fllp(),ya — 0, t—0F.
Therefore, Ty f — f on LPO)(R? ~,) as t — 0F. ™

2.2. Consequences of the Boundedness of the Ornstein-Uhlenbeck
semigroup

Another consequence of Theorem 1.1 is the boundedness of Poisson-Hermite
semigroup in LP()(R?, ~v4), Theorem 1.3:

Proof. of Theorem 1.3. Let f € LP) (R4, ~,) with I1fllp(),va < 1, then by
Corollary 1.2, we have for every s > 0

s Allpyma < Cllllpe) e < €

and therefore

T.f
e

T.f
pp(‘),m ( C ) <1l

For fixed t > 0, since the measure utl/ 2(ds) is a probability measure, using
Jensen’s inequality, and Fubini’s theorem we get that the modular is less or
equal to 1. In fact,

Pt va <Pé~f> Z/]R (ag@))p(’”) Ya(dz)

d
</ /+oo Tsf(x) p(z)
~ Jre Jo C

p"? (ds)va(dz)
_ /+°° / Tyf(x)
0 R4
+oo

Thus

va(dz)py"* (ds)

I, f
:/ pp(-)wd < C ),ui/z(ds) < L.
0
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Thus, P;f € LPO(RY, vy) and || Py f]lp(y 4y < C, for allt > 0.

Now, by homogeneity of the norm and the linearity of P, we obtain the
general result.

1B oy iva < ClA e va
for any function f € LP()(R?, ~4) and t > 0. of

Additionally, as a consequence of Theorem 1.3 we obtain the boundedness
of Gaussian Bessel potentials, Theorem 1.4:

Proof. of Theorem 1.4. Let f € LPO)(R?,~,) with 1 fllpy,ra < 1, we already
know, from the proof of Theorem 1.3 that, for every s > 0, [|Psf|[p(),7, <

Cllfllp()7a < € and therefore p, | <P5f> <1.

Now, for fixed 8 > 0, using the Jensen’s inequality and Fubini’s theorem,

we get,
ZE s ~Ya(dz)

Pot)ma (@) = /Rd c
< /Rd F(lﬁ)/;oo sPles

1 “+o0 Pf
= — B-lg—s 5 ds < 1.
F(ﬂ)/o e ”P('W<C> =

Thus Z5f € LPO)(R?,~,) and

175 fllp)7a < C

for any 8 > 0. Now, again by homogeneity of the norm and linearity of #3 we
get the general result,

fﬁf(ﬁﬂ) p(x)

p(z)

BA@) T g5 )

C

p(z)

Ya(dz) ds

||/ﬁf”20(')7’¥d < C”pr(')wd

for any function f € LPO)(R?, 7). of

We want to thank the reviewer for his/her commentaries and corrections
which improved greatly the presentation as well as the clarity of the results of
the paper.
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