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Ternary arithmetic, factorization, and

the class number one problem

Aritmética ternaria, factorización, y el problema de número de
clase uno
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Abstract. Ordinary multiplication of natural numbers can be generalized to
a ternary operation by considering discrete volumes of lattice hexagons. With
this operation, a natural notion of ‘3-primality’ – primality with respect to
ternary multiplication – is defined, and it turns out that there are very few
3-primes. They correspond to imaginary quadratic fields Q(

√
−n), n > 0, with

odd discriminant and whose ring of integers admits unique factorization. We
also describe how to determine representations of numbers as ternary products
and related algorithms for usual primality testing and integer factorization.
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Resumen. La multiplicación usual de numeros naturales se puede generalizar a
una operación ternaria en consideración de volúmenes discretos de hexágonos
de ret́ıcula. Con esta operación, se define una noción de ‘3-primalidad’ y re-
sulta que hay muy pocos números que son 3-primos. Éstos corresponden a
cuerpos cuadráticos imaginarios Q(

√
−n), n > 0, de discriminante impar

cuyos anillos de enteros admiten factorización única. También describimos
cómo obtener representaciónes de números enteros como productos ternarios
y algoritmos relacionados de chequeo de primalidad y factorización ordinaria.

Palabras y frases clave. Factorización, prueba de primalidad, campos cuadráticos.

1. Introduction

When ideas become engrained, it can be hard to imagine other possibilities.
But in escaping from deep-seated notions, we may uncover pleasant surprises.
In this spirit, this article will present a deformation of integer arithmetic which
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150 ARAM BINGHAM

remains grounded in geometry and leads to new perspectives on old problems
in number theory related to primality and factorization.

Let’s start with the absolute basics. Say you want to multiply two whole
numbers, a and b. What do you do to find the product ab?

One option is the following. Draw a parallel lines on a piece of paper. Now
draw b lines which are parallel to each other but perpendicular to the a parallel
lines you drew first. The number of intersection points of the two sets of lines
is your product ab. Further, the commutativity of multiplication is evident in
the fact that the number of intersection points doesn’t change when you rotate
the whole picture by 90◦.

Figure 1. 3 times 7 is 21

Let’s think of this slightly more formally. Given a lattice of points in the plane,
we will define a lattice polygon to be a polygon whose vertices are lattice
points and whose edges are only in the directions of nearest neighbors from
a given vertex. Using the Z2 lattice, this means that edges are either in the
horizontal or vertical directions. The product ab is then realized as the number
of lattice points inside or on the boundary of the lattice rectangle with corners
at (0, 0), (b − 1, 0), (0, a − 1) and (a − 1, b − 1). Restated, ab is the discrete
volume of the lattice rectangle with a points along two opposite edges in one
direction and b lattice points along the opposite edges in the other direction;
see the right side of Figure 1. This view of multiplication allows us to codify
the following simple observation.

Fact 1.1. A positive integer is prime if and only if it cannot be represented
as the discrete volume of a Z2 lattice rectangle (with edges in the horizontal
and vertical directions) where each edge contains at least two lattice points.

In this model, the commutativity of multiplication is beheld in the preserva-
tion of discrete volume when interchanging which lattice direction corresponds
to which factor in the product ab. This suggests that sensible alternatives to
standard multiplication might then be found in by taking discrete volumes of
other lattice polygons in other lattices.

Opting for maximal symmetry, we consider the hexagonal lattice [4,
pp. 60-61]. In this lattice, rotation of the plane by 60◦ about any lattice point
sends lattice points to other lattice points, arranging the nearest neighbors of
any lattice point P in a regular hexagon. These six other points come in pairs
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TERNARY ARITHMETIC 151

along three lines through P as compared to the four nearest neighbors of a
point in the Z2 lattice which come in pairs along two lines (Figure 2). Hence
we gain an extra direction that can be assigned to a third factor.

Figure 2. Nearest neighbors in a square (Z2) lattice and a hexagonal lattice.

Recall that the arity of a function or algebraic operation refers to the num-
ber of inputs (arguments) it takes. Binary operations can always be iterated
to fabricate operations of higher arity, but we will introduce a true ternary
product on the natural numbers.1 While distinct from repeated multiplica-
tion, it bears some of the same nice properties: commutativity guaranteed by
geometry, and the presence of a multiplicative identity element in the number
1. We will denote this product as

〈−,−,−〉 : N3 → N,

and define it, in analogy with our lattice model of binary multiplication, as the
function which takes the triplet (a, b, c) to the number of lattice points inside
the equiangular lattice hexagon with a points along two opposite edges, b points
along the next pair of edges, and c points along the final pair. Illustrations are
given in Figures 3 and 4.

2. Properties of Ternary Arithmetic

A lattice hexagon representing the product 〈a, b, c〉 can be acted upon by any
of the symmetries of the lattice. Under this action, any lattice direction can
be taken to any other while the discrete volume of a lattice hexagon is always
preserved, implying that 〈−,−,−〉 is fully commutative as a ternary product.

Notice that if we put a 1 as an argument of this product, one of the pairs
of sides of the hexagon degenerates to a single point and we instead have a
parallelogram (see Figure 4). The discrete volume of this parallelogram is then
just the value of the binary product of the other two arguments, so we observe
ordinary multiplication as a specialization of the ternary product. Further, if
1 appears twice as an argument, then 〈1, 1, n〉 leads to just a row of n points
(with discrete volume n), showing that 1 indeed behaves as a multiplicative
identity.

1Throughout this manuscript, we take the set of natural numbers N to start at 1.
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152 ARAM BINGHAM

(a) 〈2, 3, 4〉 = 18 (b) 〈4, 3, 2〉 = 18

Figure 3. Commutativity of ternary multiplication under reflection.

By analogy with Fact 1, we make the following definition.

Definition 2.1. We will say that a natural number n is 3-prime if it can
not be represented as the discrete volume of an equiangular lattice hexagon for
which at least two pairs of opposing sides have at least two points. Equivalently,
n is 3-prime if there is no choice of x, y, z such that 〈x, y, z〉 = n other than
x = 1, y = 1, z = n, and permutations of these inputs.

To avoid confusion with the usual definition of primality, from now on we
will say that a natural number n is 2-prime to mean that its only natural
number factors are 1 and n.2 We shall also say that a number is “2-composite”
or “3-composite” to mean that it is not 2-prime or not 3-prime, respectively. An
immediate consequence of this definition is that 3-primality implies 2-primality,
but not vice versa. For instance 〈2, 2, 2〉 = 7 is not 3-prime, but 2, 3 and 5 are
still 3-prime, and with a little checking you can convince yourself that 11 is as
well. This begs the following question.

Question: Which natural numbers are 3-prime?

To answer this question, we need some preliminaries on ternary multiplica-
tion.

Proposition 2.2. The ternary product can be written

〈x, y, z〉 = xy + yz + zx− x− y − z + 1. (1)

Proof. We have seen that 〈x, y, 1〉 = xy. Increasing the third argument by 1
adds a hooked strip of x+ y− 1 points along two consecutive edges opposite to

2Under binary multiplication, of course.
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those with x and y points (see again Figure 4, where the argument increases
from 1 to 2). This allows us to conclude the claimed equality,

〈x, y, z〉 = xy + (z − 1)(x+ y − 1) = xy + yz + xz − x− y − z + 1. (2)

�X

(a) 〈2, 3, 3〉 = 14 (b) 〈1, 3, 3〉 = 9

Figure 4. Ternary multiplication includes binary multiplication.

Scholars of symmetric polynomials will recognize (1) as an alternating sum of
elementary symmetric polynomials,3

〈x, y, z〉 = e2(x, y, z)− e1(x, y, z) + e0(x, y, z). (3)

However, if you want to mentally compute some ternary products, you may
find the formula

〈x, y, z〉 = xyz − (x− 1)(y − 1)(z − 1) (4)

more convenient.

How can we determine if a number n is 3-prime? When studying 2-primes,
the first method one usually learns is the Sieve of Eratosthenes, which pro-
duces the list of 2-primes up to a given N by crossing off multiples of those
2-primes which are at most

√
N . This amounts to eliminating all of the numbers

greater than each 2-prime p in the congruence class 0 mod p.

The proof of Proposition 2.2 indicates how we might sieve for 3-primes.
Suppose that p = x + y − 1 is a 2-prime, where x and y are natural numbers.
We see that

〈x, y, z〉 = xy + (z − 1)(x+ y − 1) = xy + (z − 1)p

3This observation can be generalized to construct a family of n-ary operations with similar
properties.
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154 ARAM BINGHAM

fails to be 3-prime for all z ≥ 2, thus we can also eliminate all of the numbers of
the congruence class xy mod p which are greater than xy by varying the choice
of z in the product 〈x, y, z〉.

For example, the choice of x = 3, y = 1 produces the class of ternary
products 〈3, 1, z〉 = 3z and eliminates numbers above 3·1 = 3 in the congruence
class 0 mod 3 from 3-primality, as in the usual 2-primality sieve. But when we
take x = 2, y = 2, the products of the form

〈2, 2, z〉 = 4 + (z − 1)(2 + 2− 1) = 4 + (z − 1)3

eliminate those numbers that are above 4 and in the congruence class of 4 ≡
1 mod 3 from possible 3-primality.

We see that for an odd 2-prime p, there are p+1
2 choices of (unordered) pairs

x and y such that p = x+ y − 1. The next proposition shows that each choice
produces a distinct congruence class xy mod p.

Proposition 2.3. Let x and w be distinct natural numbers between 1 and a
2-prime p, and w 6= p+ 1−x. Then the congruence classes of x(p+ 1− x) and
w(p+ 1− w) modulo p are distinct.

Proof. We will show the equivalent statement that x(p+ 1− x) ≡ w(p+ 1−
w) mod p implies that x = w or x = p+ 1− w. Suppose we have

x(p+ 1− x) ≡ x− x2 mod p and w(p+ 1− w) ≡ w − w2 mod p,

satisfying x− x2 ≡ w − w2 mod p. Then

w2 − x2 − w + x ≡ 0 mod p, so

(w − x)(w + x− 1) ≡ 0 mod p.

So either p divides w−x or p divides w+x−1. Since both x and w are between
1 and p, we have

1− p ≤ w − x ≤ p− 1 and 1 ≤ w + x− 1 ≤ 2p− 1.

Then in the first case, it can only be that w − x = 0, while in the other case
w + x− 1 = p. �X

This has major consequences for how many numbers can be 3-prime! Recall
Dirichlet’s theorem on arithmetic progressions.

Theorem 2.4 (Dirichlet). Let p be a 2-prime and 1 ≤ k < p. Then there are
infinitely many 2-primes of the form k +mp, where m ∈ N.
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A fuller statement of Dirichlet’s theorem says that there is the same “pro-
portion” of primes in each non-zero congruence class modulo p [1, Chap. 7].
There are p−1 such classes for each p, and Proposition 2.3 says that half of them
are ruled out from the possibility of 3-primality, in addition to the congruence
class 0 mod p. The following lemma further tells us that ruling out congruence
classes only needs to happen at the 2-primes – nothing new is eliminated by
ternary products of the form 〈x, y, z〉 where x+ y − 1 is 2-composite.

Lemma 2.5. Let m = ab = x+ y − 1. Then there are natural numbers v and
w such that v + w − 1 = a and xy ≡ vw mod a. Hence if n = 〈x, y, z〉, then
there exists z′ such that n = 〈v, w, z′〉.

Proof. We can write

xy = x(ab+ 1− x) = xab+ x− x2 ≡ x− x2 mod a.

Let v be the least representative of the congruence class x mod a, and set
w = a+ 1− v. Then

vw = v(a+ 1− v) = va+ v − v2 ≡ v − v2 mod a.

Since v and x are in the same congruence class modulo a, the claim is proved.
�X

To list the 3-primes up to a given N , first we can eliminate the 2-primes be-
low N using the Sieve of Eratosthenes, and now Proposition 2.3 and Lemma 2.5
say that we must further eliminate some congruence classes modulo p for some
of the 2-primes below N . The full method is given in the following “ternary
sieve” TS, by proceeding through numerous stages TSk.

Algorithm 2.6 (Ternary Sieve). To determine the 3-primes less than a given
N , list the numbers from 2 to N and perform the following elimination proce-
dure TS:

(1) TS0: Perform the Sieve of Eratosthenes and create the auxiliary list
Π2(N) of 2-primes at most N .

(2) For each 1 ≤ k ≤
√

4N−1
12 − 1

2 perform elimination step TSk as follows.

Let Tk = k(k+1)
2 be the kth triangular number. For each p ∈ Π2(N)

such that p ≤
√
N + 2Tk, eliminate the numbers up to N of the form

〈k + 1, p− k, p− k〉+mp, for m ∈ N.

Those numbers that remain among the numbers from 2 to N constitute the
list Π3(N) of 3-primes which are at most N .
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Proof. The Sieve of Eratosthenes eliminates the products of the form 〈1, p, z〉
for z ≥ 2 by allowing us to add (z − 1)p to the product p · 1 = p. As a small
efficiency, starting from the first 2-prime 2 and as p increases towards

√
N , one

only needs to cross off products 〈1, p, z〉 with z ≥ p, as those for z < p will
already have been cancelled as products of lesser 2-primes.

The next stage (TS1) of our sieve for 3-primes eliminates products of the
form 〈2, p− 1, z〉. Lemma 2.5 tells us that this can only possibly cross out new
numbers if all of the sums

2 + (p− 1)− 1, 2 + z − 1, and (p− 1) + z − 1

are 2-primes. However, since we will also proceed through this stage using p’s
in increasing order from among the 2-primes produced by TS0, the elimination
of a product will be redundant if 2 + z − 1 (which is possibly smallest among
the three sums) is a 2-prime less than p. Thus, we can start from z ≥ p − 1
at this stage. Furthermore, this should be done only for those 2-primes p such
that the first possible interesting product

〈2, p− 1, p− 1〉 ≤ N.

Writing
〈2, p− 1, p− 1〉 = 2(p− 1) + (p− 2)p = p2 − 2,

we see that the TS1 stage uses those 2-primes such that p ≤
√
N + 2.

At the kth stage TSk, we eliminate products of the form 〈k+1, p−k, z〉. By
considerations similar as in the previous case, this process only needs to happen
for z ≥ p− k, and therefore only for 2-primes such that (applying formula 2)

〈k + 1, p− k, p− k〉 = (k + 1)(p− k) + (p− k − 1)p = p2 − (k2 + k) ≤ N.

Rearranging, this condition becomes p ≤
√
N + 2Tk.

To obtain the bound on k, note that to avoid further unnecessary redun-
dancy we should keep k + 1 ≤ p − k in the product 〈k + 1, p − k, z〉.4 Since
z ≥ p− k during TSk, the largest possible value of k must satisfy

〈k + 1, k + 1, k + 1〉 = 3k2 + 3k + 1 ≤ N.

Completing the square and solving the inequality, one finds that

k ≤
√

4N − 1

12
− 1

2
(5)

is a sufficient bound. Note that by Lemma 2.5 〈k + 1, k + 1, k + 1〉 will only
eliminate a new congruence class if p = 2k + 1 is 2-prime. �X

4Otherwise, once k + 1 becomes bigger than p− k we start transiting the same choices of
pairs for the first two inputs, but in the opposite direction.

Volumen 55, Número 2, Año 2021



TERNARY ARITHMETIC 157

This algorithm is not hard to implement on a computer, and a search for
the 3-primes up to 10,000,000 reveals a very short list.

2, 3, 5, 11, 17, 41

At OEIS (A014556) one learns that these are “Euler’s ‘lucky’ numbers,”
those 2-primes p such that

n2 − n+ p (6)

is 2-prime for all 1 ≤ n ≤ p − 1. This confirms that 3-primes are somehow
“extra” prime, but these numbers are significant for a deeper reason. We might
add the number 1 to Euler’s list, as it vacuously satisfies the defining condition,
so obtaining an “augmented lucky numbers” list. The augmented list is then
exactly the set of integers k such that 4k − 1 is a Heegner number. The full
list of Heegner numbers is

1, 2, 3, 7, 11, 19, 43, 67, 163.

We next explain their significance.

3. The Class Number One Problem

Recall that a quadratic number field Q(
√
n) is an extension of the rational

numbers Q obtained by adjoining a root of an irreducible degree-two polyno-
mial. Just as the integers Z sit inside the rationals, each quadratic number field
has its own set of integers.

Definition 3.1. The ring of integers of a quadratic number field K = Q(
√
n)

is the subset of elements which are roots of some monic polynomial with coef-
ficients in Z. It is denoted OK .

Classic examples include the Gaussian integers Z[i] inside Q(i), and the

Eisenstein integers Z[ω] inside Q(
√
−3), where ω = − 1

2 +
√
−3
2 . In general one

has the following uniform description of rings of quadratic integers [7, p. 189].

OK =

{
Z[
√
n] if n 6≡ 1 mod 4

Z
[
−1+

√
n

2

]
if n ≡ 1 mod 4.

(7)

It is well-known that both the Gaussian integers and the Eisenstein integers
admit unique factorization into irreducible elements, just as the ordinary in-
tegers admit unique factorization into 2-primes. But other rings of quadratic
integers do not. To cite a common example, in Z[

√
−5] the number 6 admits

decompositions as both 2·3 and (1+
√
−5)(1−

√
−5). This leads to the following

natural question.

For which n does the ring of integers of Q(
√
n) have unique factorization?
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Beyond the description of (7), there is a bifurcation in the approach to this
question according to whether n is positive or negative; that is, whether the
quadratic field is real or imaginary. These two types are of extremely different
character. For instance, there are very few units (invertible elements) in the
ring of integers of imaginary fields, while there are infinitely many in the real
case. We are concerned here with the imaginary case, for which a complete
answer to the question above is known.

Theorem 3.2. For a natural number n, the ring of integers of Q(
√
−n) has

unique factorization if and only if n is a Heegner number: 1, 2, 3, 7, 11, 19,
43, 67, or 163.

This theorem, has a long, interesting history with origins in the study of
quadratic forms going back to Fermat, Lagrange, Legendre, Gauss, etc.5 The
answer was guessed by Gauss and was proved by Heegner in 1952, but this proof
was only accepted by the mathematical community after Heegner’s death and
the appearance of proofs in the 1960’s by established mathematicians Baker
and Stark. Moreover, the answer to the unique factorization problem is just
one part of a larger problem called Gauss’ class number problem, resolved
by Goldfeld–Gross–Zagier in 1985. Theorem 3.2 above addresses just the class
number one problem, with classes referring to equivalence classes either of ideals
in OK or of a related set of quadratic forms. When the class number of OK is
one, it implies that OK has the unique factorization property; for background,
see [3].

Within the class number one problem, the two cases of (7) are treated
differently. Remember that a quadratic number field is obtained by adjoining
to Q a root α of some polynomial ax2 + bx+ c, which root has formula

α =
−b±

√
b2 − 4ac

2a
.

Since we are adjoining α to the rational numbers, everything other than√
b2 − 4ac can be disregarded, and in fact the discriminant D = b2 − 4ac de-

termines the number field. Since D ≡ b2 modulo 4 it can only be congruent to
0 or 1. When D ≡ 0 mod 4, there is a factor of 4 that can be pulled out of the
square root so that

Q(
√
D) = Q

(√
D

4

)
.

This is to say that for a quadratic field Q(
√
n), n is usually understood to be

square-free, although it may come by adjoining the root of a polynomial with
discriminant D = 4n. This motivates the following definition.

5See, for instance, [5].
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Definition 3.3. The field discriminant dK of K = Q(
√
n) is

dK =

{
n if n ≡ 1 mod 4

4n otherwise.

Returning to the list of Heegner numbers, we see that Q(
√
−1) and Q(

√
−2)

are the only cases where dK ≡ 0 mod 4. That is, −n ≡ 1 mod 4 for every other
Heegner number n. Often, Theorem 3.2 is stated by giving instead the list of
negative field discriminants D such that Q(

√
D) has class number h(D) equal

to one. Then, instead of the Heegner numbers, we have the slightly modified
list

D = −3,−4,−7,−8,−11,−19,−43,−67,−163.

In 1902, Landau was able to prove that Q(
√
−1) and Q(

√
−2) are the only

imaginary quadratic fields with even (divisible by 4, really) discriminant and
unique factorization.6 The proof of this fact is quite elementary, but the proofs
of Heegner, Baker and Stark that cover the odd discriminant case require much
more sophistication.7 In 1913, Rabinowitsch provided another elementary char-
acterization of the odd case.

Theorem 3.4 ([9]). Let D < 0 and D ≡ 1 mod 4. Then

x2 − x+
1 + |D|

4
is prime for each x = 1, 2, . . . ,

|D| − 3

4

if and only if the integers of the field Q(
√
D) admit unique factorization.

This theorem does not appear to have been directly useful for solving the
class number one problem, but it does link it to the list of Euler’s lucky primes,
and so to the list of 3-primes. Just as we augmented Euler’s lucky primes
by adding 1, from now on we will consider 1 as a 3-prime in the sense that
it is not representable by a non-degenerate hexagonal or parallelogrammatic
configuration. We then see that the augmented lucky numbers/known 3-primes

1, 2, 3, 5, 11, 17, 41

account for all of the negative odd discriminants of class number one,

−3,−7,−11,−19,−43,−67,−163.

Next we show that the 3-primes known from the ternary sieve exactly coincide
with the augmented lucky numbers.

6Actually, he proved a slightly broader statement in terms of quadratic forms; see [3,
Theorem 2.18].

7Heegner’s and Stark’s proofs use modular forms, while Baker’s approach involves bounds
on logarithms of linear forms of algebraic numbers.
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Theorem 3.5. A number is 3-prime if and only if it is among the augmented
lucky numbers.

Proof. If n is not 3-prime, then n dots can be arranged into a lattice par-
allelogram or hexagon such that two distinct pairs of sides have at least two
points along the edge. Then either n is already 2-composite, in which case a
parallelogrammatic representation exists, or not, in which case a true hexago-
nal representation exists. Supposing the latter is the case, the hexagon can be
“completed” to a parallelogram by adding two triangles along opposite edges.
If the the sides abutting these triangles contain k points, then the completed
parallelogram will have n+ 2Tk−1 points (see Figure 5).

On the other hand, if a number n is 3-prime, then the only representation
it admits is a row of n dots. In other words, the smallest triangles that can be
adjoined in order to obtain a parallelogram are those of size Tn−1 (see Figure 5).
Equivalently, n+ 2Tk is 2-prime for k = 1, 2, . . . , n− 2, as is n itself.

(a) 〈3, 3, 3〉 = 19 is not 3-prime because

19 + 2T2 = 19 + 6 = 25 is 2-composite.

(b) 5 is 3-prime because two T4

triangles are the smallest that can be

added to reach a 2-composite.

Figure 5. Relating 3-factorizations and 2-factorizations.

Now examine the polynomial x2−x+n, and observe that x2−x = x(x− 1) =
2Tx−1 when x is a natural number. Then, the condition that x2 − x + n is
2-prime for all x from 1 to n− 1 is equivalent to statement that every number
in the set

{n, n+ 2T1, n+ 2T2, . . . , n+ 2Tn−2}

is 2-prime. This is plainly equivalent to the characterization of 3-primality just
given. �X
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Invoking the theorems of Rabinowitsch and Heegner/Baker/Stark, we con-
clude the following.

Corollary 3.6. There are only finitely many 3-primes. Including 1, these are
1, 2, 3, 5, 11, 17, and 41.

Proof. We see that if there were 3-primes beyond the list of augmented lucky
numbers, they would give imaginary quadratic fields with unique factorization
and odd discriminant. But there are only seven of these from the solution of
the class number one problem. �X

This is a very heavy-handed proof, especially compared to common proofs
of the finitude of 2-primes. While it would be extremely desirable to find a
proof that relied only upon ternary multiplication, the historical difficulty of
the class number one problem suggests that this might be out of reach.

4. Applications

Besides determining which numbers are 2-prime and which are 2-composite, one
of the most basic questions one can ask in number theory is how to determine
the factorization of numbers which are 2-composite. The proof of Theorem 3.5
can be retooled to produce 3-factorizations of natural numbers, by which we
mean representations of a number as a ternary product.

For example, by Corollary 3.6, we know that 19 is 3-composite. To find
its 3-factorizations, we can add twice a triangular number to 19 to see if we
obtain a 2-composite number. Then, since we know that a 2-composite of the
form 19 + 2Tk can be represented by a parallelogram, there is an equation
19 + 2Tk = ab where neither of a and b is equal to 1. Removing the corner
triangles (consisting of 2Tk points) from this parallelogram, we get a hexagon
whose sides give a non-trivial 3-factorization of 19.

Note that there may be several k’s for which 19 + 2Tk is 2-composite and
multiple parallelograms that represent each of those 2-composites. For instance,
19 + 2 = 21 = 7 · 3. Removing two points from the opposite corners of a 7 by
3 parallelogram, we get a hexagon with pairs of sides of lengths 2, 2 and 6, so
19 = 〈2, 2, 6〉. But 19 + 2T2 = 19 + 6 = 25 = 5 · 5 as well, and removing the T2

triangles from the 5 by 5 parallelogram gives us the 3-factorization 19 = 〈3, 3, 3〉
of Figure 5. In general, we have the following.

Proposition 4.1. If n+ 2Tk = ab for a, b > k, then n = 〈a− k, b− k, k + 1〉.

Proof. Construct a lattice parallelogram which has a points and b points along
opposite pairs of edges. Since a and b are bigger than k, we can remove lattice
triangles with k points along each edge from opposite corners of the parallelo-
gram. If a and b are k + 1, then removal of these triangles yields n points in a
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row and the factorization n = 〈1, 1, n〉. In case exactly one of a or b is k+1 (as-
sume it is a), the removal produces a new parallelogram and the factorization
n = 〈1, b − k, k + 1〉. Otherwise this removal produces a true lattice hexagon.
The number of points in opposite pairs of edges of this hexagon are a−k, b−k,
and k + 1 which yields the factorization n = 〈a− k, b− k, k + 1〉. �X

We see that the proposition also covers “degenerate” 3-factorizations which
are either trivial (n = 〈1, 1, n〉) or reduce to binary products, though we are
most interested in the 3-factorizations where each factor is at least 2. One could
obtain all of these hexagonal representations of n as follows.

Suppose n has 3-factorization n = 〈x, y, z〉, where z is the least among the
three factors. This 3-factorization can be discovered by examining parallelo-
grams which represent n+2Tz−1 and removing the triangles in opposite corners.
The smallest 3-factor of n is as large as possible when n = 〈z, z, z〉, meaning
that to recover all 3-factorizations, one needs to examine the 2-factorizations
of all the numbers n + 2Tk for 1 ≤ k ≤ z − 1, where z is the largest number
satisfying

〈z, z, z〉 = 3z2 − 3z + 1 ≤ n.

Since ternary multiplication results in a number system with finitely many
3-primes, the fact that many numbers admit multiple 3-factorizations is not
surprising. The question of exactly how many distinct 3-factorizations (up to
reordering the factors) a number admits, and how this statistic may be further
related to the class numbers of quadratic fields could be of interest for future
research.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3-factorizations 1 1 1 2 1 2 2 2 2 3 1 3 2 3 2 4 1 4 3 3

Table 1. Number of 3-factorizations of small natural numbers

We will close this discussion with a few applications of this line of thinking to
elementary number theory. The first is a 2-primality test that comes from the
following partial converse of Proposition 2.3.

Proposition 4.2. Let n = pr be an odd 2-composite number and p, r ≥ 3.
Then there are distinct x and w where 1 ≤ x,w ≤ n+1

2 such that x(n+1−x) ≡
w(n+ 1− w) mod n.

Proof. We can assume p ≤ r by choosing p to be the smallest 2-prime factor of
n. We will show that the claim is true for some x ≤ n+1

2 and w = x+ p ≤ n+1
2 ,

though the statement may be true for other choices of x and w as well. In order
to obtain

x(n+ 1− x) ≡ w(n+ 1− w) mod n
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we need

x(n+ 1− x) ≡ (x+ p)(n+ 1− x− p) mod n, so

nx+ x− x2 ≡ nx+ x− x2 − px+ np+ p− px− p2 mod n.

Subtracting and collecting terms, we have

2px+ p2 − p = p(2x+ p− 1) ≡ 0 mod n.

This is satisfied if and only if 2x + p − 1 ≡ 0 mod r. By varying x, we can
arrange 2x+ p− 1 to take the value of any even number from

p+ 1 to 2

(
n+ 1

2
− p
)

+ p− 1 = pr + 1− 2p+ p− 1 = pr − p.

By showing that the even number 2r lies in this range, we will establish the
existence of x and w. First, p+ 1 ≤ 2r because r ≥ p and both are at least 3.
Next, the inequality 2r ≤ pr − p holds if and only if

pr − 2r − p ≥ 0

(p− 2)r − p ≥ 0

which holds because p ≥ 3 and r ≥ p. �X

The statement of this proposition seems to be true for any r ≥ 2, and so
for every 2-composite that is not a pure power of 2 rather than just for odd
n. However, 2-primality tests usually are usually only meant for odd numbers
since even numbers can be tested instantly, so we ignore this other case. Thus
we have the following 2-primality test, which is an immediate consequence of
Propositions 2.3 and 4.2.

Theorem 4.3. Let n be an odd natural number. Then n is 2-prime if and only
if the congruence classes of x(n+ 1−x) mod n are distinct for every x between
1 and n+1

2 .

This test doesn’t appear to be very efficient – as stated it requires about
half as many computations as the size of the number n.8 However a simple
observation makes it slightly more suitable for hand calculation with small
numbers.

Lemma 4.4. Let Tk = k(k+1)
2 for any k = 0, 1, 2, 3, . . . and let n and x be

natural numbers with 1 ≤ x ≤ n. Then x(n+ 1− x) ≡ −2Tx−1 mod n.

8The best (deterministic) 2-primality testing algorithms require a number of computations
which is polynomial in logn, instead of linear in n as this one is.
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Proof. Recall that x(n + 1 − x) ≡ x − x2 mod n and x − x2 = x(1 − x) =
−2Tx−1. �X

This lemma makes it quite easy to write down the congruence classes of
interest for Theorem 4.3. To make the list, start from x = 1, in which case
x(n + 1 − x) ≡ −2T0 ≡ 0 mod n, and then to get from −2Tx to −2Tx+1, just
subtract 2(x+ 1). We illustrate this now for n = 15:

15 ≡ 0 mod 15
subtract 2−−−−−−→ 13

subtract 4−−−−−−→ 9
subtract 6−−−−−−→ 3

subtract 8−−−−−−→

−5 ≡ 10
subtract 10−−−−−−−→ 0

subtract 12−−−−−−−→ 3
subtract 14−−−−−−−→ 4.

We see that the appearance of the congruence class 3 mod 15 at x = 4 and
x = 7 indicates that 15 is 2-composite. Also notice the coincidence at x = 1
and x = 6, indicating that the type of repetition produced in the proof of
Proposition 4.2 occurs not only at intervals of length equal to the smallest
prime p.

The coincidence of congruence classes −2Tk ≡ −2Tl mod n means that
2Tl − 2Tk is a multiple of n. The next proposition goes further, relating the
value l − k to the 2-factorization of n.

Proposition 4.5. With notation as before, if 2(Tl − Tk) = mn for 0 ≤ k, l ≤
n−1

2 , distinct and n > 3, then both of the pairs (l− k, n) and (l+ k+ 1, n) have
greatest common divisor (gcd) greater than 1.

Proof. We have

2(Tl − Tk) = l2 + l − k2 − k = (l − k)(l + k + 1) = mn.

If gcd(l − k, n) = 1, then l − k divides m and l + k + 1 = sn for some integer
s. But since 0 ≤ k, l ≤ n−1

2 , and k and l are distinct, we have

2 ≤ l + k + 1 ≤ n− 1,

so l + k + 1 = sn is impossible.

On the other hand, if gcd(l+ k+ 1, n) = 1, then l− k = tn for some integer
t. But −n

2 < l− k < n
2 , so the only possibility is t = 0 contradicting that l and

k are distinct. �X

Taking the gcd of natural numbers can be done efficiently by Euclid’s al-
gorithm. Thus, the major cost in the following 2-factorization algorithm is
generating the list of congruence classes x(n+ 1− x) ≡ −2Tx−1 mod n.

Theorem 4.6 (2-factorization algorithm). Given an odd natural number n,
one can obtain a non-trivial 2-divisor of n as follows.
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(1) List the congruence classes −2Tk mod n for k = 0, 1, 2 . . . until there is
a repetition

−2Tk ≡ −2Tl mod n, k 6= l

In case there is no repetition up through k = n−1
2 , then conclude n is

2-prime.

(2) Otherwise compute either gcd(l − k, n) or gcd(l + k + 1, n). The output
will be a non-trivial divisor d of n.

Steps 1 and 2 can then be iterated on d and n1 = n
d to obtain a complete

2-factorization of n.

One may recognize in this algorithm a formal similarity with Pollard’s rho
algorithm, which also finds a non-trivial factor of n by taking the gcd of numbers
after finding a repetition in a sequence. However the discovery of a repetition
in the algorithm of Theorem 4.6 does not mean that there is a “cycle” in the
sequence as it does in Pollard’s algorithm.

Closer examination reveals that this algorithm actually has more in common
with the Fermat factorization method which finds factors of n by representing
it as a difference of squares, n = a2 − b2.9 To see this, let u = n+1

2 , so that
when x = u the product x(n + 1 − x) is u2. Then all of the other products in
the list are (u+ a)(u− a) = u2 − a2 for some a. In seeking a match

u2 − a2 ≡ u2 − b2 mod n,

we are really seeking a solution to a2− b2 ≡ 0 mod n, or a2− b2 = mn for some
integer m.

The ideas of the Fermat factorization method form the basis of the fastest
known integer factorization algorithms, the quadratic sieve and general number
field sieve [8]. It remains to be seen whether the algorithm of Theorem 4.6
admits improvements that could make it competitive. For now, it is a curiosity
which we hope encourages the reader to explore the plunder of ideas which may
come from non-binary thinking.
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9See [2, Ch. 5] or [6, Ch. 3], for instance, for descriptions of these other algorithms.
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Morelia, Michoacán, México

e-mail: aram@matmor.unam.mx
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