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Volumen 56(2022)1, páginas 35-61
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Abstract. Let G be a finite group and let X be a compact G-space. In this
note we study the (Z+ × Z/2Z)-graded algebra

Fq
G(X) =

⊕
n≥0

qn ·KGoSn(Xn)⊗ C,

defined in terms of equivariant K-theory with respect to wreath products as
a symmetric algebra, we review some properties of Fq

G(X) proved by Segal
and Wang. We prove a Kunneth type formula for this graded algebras, more
specifically, let H be another finite group and let Y be a compact H-space,
we give a decomposition of Fq

G×H(X×Y ) in terms of Fq
G(X) and Fq

H(Y ). For
this, we need to study the representation theory of pullbacks of groups. We
discuss also some applications of the above result to equivariant connective
K-homology.
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Resumen. Sea G un grupo finito y X un G-espacio compacto. En esta nota
estudiamos el álgebra (Z+ × Z/2Z)-graduada

Fq
G(X) =

⊕
n≥0

qn ·KGoSn(Xn)⊗ C,
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definida en términos de K-teoŕıa equivariante con respecto a productos guir-
nalda, como un álgebra simétrica, revisamos algunas de las propiedades de
Fq

G(X) probadas por Segal y Wang. Probamos una formula tipo Kunneth para
estas álgebras graduadas, más espećıficamente, sea H otro grupo finito y Y un
H-espacio compacto, nosotros damos una descomposición de Fq

G×H(X×Y ) en
términos de Fq

G(X) y Fq
H(Y ), para esto, debemos estudiar la teoŕıa de repre-

sentaciones de pullbacks de grupos. Discutimos tambien algunas aplicaciones
de los resultados anteriores a K-homoloǵıa equivariante conectiva.

Palabras y frases clave. K-teoŕıa equivariante, productos wreath, espacio de
Fock.

Notation

In this note we denote by Sn the symmetric group in n letters. Let G be a
finite group, let g, g′ ∈ G, we say that g and g′ are conjugated in G (denoted
by g ∼G g′) if there is s ∈ G such that g = sg′s−1. We denote by

[g]G = {g′ ∈ G | g ∼G g′}

the conjugacy class of g in G (or simply by [g] when G is clear from the context).
We denote by G∗ the set of conjugacy classes of G. We denote by CG(g) the
centralizer of g in G. Also R(G) will be the complex representation ring of G,
with operations given by direct sum and tensor product, and generated as an
abelian group by the isomorphism classes of irreducible representations of G.
The class function ring of G is the set

Class(G) = {f : G→ C | f is constant in conjugacy classes}

with the usual operations.

1. Introduction

Let X be a finite CW-complex. In [14] Segal studied the vector spaces

F(X) =
⊕
n≥0

KSn(Xn)⊗ C,

these spaces carry several interesting structures, for example they admit a Hopf
algebra structure with the product defined using induction on vector bundles
and the coproduct defined using restriction.

Later in [18], Wang generalizes Segal’s work to an equivariant context. Let
G be a finite group and X be a finite G-CW-complex, Wang defines the vector
space

FG(X) =
⊕
n≥0

KGoSn(Xn)⊗ C,
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where G o Sn denotes the wreath product acting naturally over Xn. Wang
proves that FG(X) admits similar structures as F(X). In particular FG(X)
has a description as a supersymmetric algebra in terms of KG(X)⊗ C.

Following ideas of [14], in [16] appears another reason to study FG(X).
When X is a G-spinc-manifold of even dimension, FG(X) is isomorphic to the
homology with complex coefficients of the G-fixed point set of a based configu-
ration space C(X,x0, G) whose G-equivariant homotopy groups corresponds to
the reduced G-equivariant connective K-homology groups of X. This descrip-
tion allows to relate generators of FG(X) with some homological versions of
the Chern classes.

Let G and H be finite groups, X be a finite G-CW-complex and Y be a
finite H-CW-complex, we also prove a Künneth formula for FG×H(X × Y ),
obtaining an isomorphism

FG×H(X × Y ) ∼= FG(X)⊗F({•}) FH(Y )

that is compatible with the decomposition as a supersymmetric algebra. In
order to do this, we need to study the representation theory of pullbacks of
groups.

Let

Γ
p2
//

p1

��

G

π2

��

H
π1
// K

be a pullback diagram of finite groups, with π1 and π2 surjective, in this case
Γ can be realized as a subgroup of G×H. We prove that when Γ is conjugacy-
closed (see Definition 5.1) in G×H then we have a ring isomorphism

Class(Γ) ∼= Class(H)⊗Class(K) Class(G).

This paper has two goals, the first one is to be a expository note about the
main properties of F(X) and as second we present a proof of a Kunneth-type
formula for FG(X × Y ).

This paper is organized as follows:

In Section 2 we recall basic facts about equivariant K-theory, in particular
we recall the construction for the character. Following ideas of [15] we give an
explicit definition of the induced bundle and recall a formula (proved in [7, Thm.
D]) for a character of the induced bundle. In Section 3 we recall basic facts about
wreath products and its action over Xn. In Section 4 we recall the definition
of FG(X) and give another way to obtain the description as a supersymmetric
algebra using the formula of the induced character. In Section 5 we study the
representation theory of pullbacks. In Section 6 we recall some basic properties
of semidrect products of direct products. In Section 7 we use results in Section
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5 to give a Künneth formula for the Hopf algebra FG×H(X × Y ). In Section 8
we do some final remarks about the relation of F(X) and homological versions
of Chern classes.

2. Induced character in equivariant K-theory

In this section we recall a decomposition theorem for equivariant K-theory with
complex coefficients obtained by Atiyah and Segal in [2]. In the next section
we use that result to give a simple description of FqG(X). In this paper all
CW-complexes (and G-CW-complexes) that we consider are finite.

Definition 2.1. Let X be a G-space. A G-vector bundle over X is a map
p : E → X, where E is a G-space satisfying the following conditions:

(1) p : E → X is a vector bundle.

(2) p is a G-map.

(3) For every g ∈ G the left translation E → E by g is bundle map.

If p : E → X is a G-vector bundle we define the fiber over x ∈ X to the set

p−1(x) = {v ∈ E | p(v) = x},

when p is clear from the context we also denote this set by Ex. Also if H ⊆ G
is a subgroup, we can consider E as a H-vector bundle over X, we denote it
by resGH(E).

Definition 2.2. Let X and Y be G-spaces. If p : E → Y is a G-vector bundle
and f : X → Y is a G-map, then the pullback p∗E → X is a G-vector bundle
over X defined as

p∗E = {(e, x) ∈ E ×X | p(e) = f(x)}.

When i : X → Y is an inclusion we usually denote i∗(E) by E | Y .

Details about G-vector bundles can be found in [1].

Definition 2.3. Let G be a group, let X be a finite G-CW-complex (see
[5]), the equivariant K-theory group of X,denoted by KG(X) is defined as the
Grothendieck group of the monoid of isomorphism classes of G-equivariant
vector bundles over X with the operation of direct sum. The functor KG(−)
could be extended to an equivariant cohomology theory K∗(−), defining for
n > 0:

K−nG (X) = ker
(
KG(X × Sn)

i∗−→ KG(X)
)
.

And for any G-CW-pair (X,A), set

K−nG (X,A) = ker

(
K−nG (X ∪A X)

i∗2−→ K−nG (X)

)
.
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INDUCED CHARACTER IN EQUIVARIANT K-THEORY AND WREATH PRODUCTS 39

Finally for n < 0

K−nG (X) = Kn
G(X) and K−nG (X,A) = Kn

G(X,A).

For more details about equivariant K-theory the reader can consult [13].

Example 2.4. If the action of G over X is free, then there is a canonical
isomorphism of abelian groups

KG(X) ∼= K(X/G).

Example 2.5. If the action of G over X is trivial, then there is a canonical
isomorphism of abelian groups

KG(X) ∼= R(G)⊗Z K(X),

when R(G) denotes the (complex) representation ring of G. In particular when
X = {•} we obtain

KG({•}) ∼= R(G).

If Y is a finite G-CW-complex, we can define a G-action on K(Y ). Let
g ∈ G, the pullback

g∗ : K(Y )→ K(Y ),

defines a G-action over K(Y ). We will need the following lemma.

Lemma 2.6. Let Y be a finite G-CW-complex, then

K(Y/G)⊗ C ∼= K(Y )G ⊗ C

Proof. It is a consequence of the Chern character and the analogous fact for
singular cohomology. �X

In [2] a character for equivariant K-theory is constructed, that generalizes
the character of representations. We will recall this construction briefly. Let E
be a G-vector bundle over X and g ∈ G. Note that Xg is a CG(g)-space, then
if E is a G-vector bundle, E|Xg is canonically a CG(g)-vector bundle over Xg.
Considering the action given by pullback we have that the isomorphism class
[(E|Xg)] ∈ K(Xg) is a CG(g)-fixed point. Then [(E|Xg)] ∈ K(Xg)CG(g). Fi-
nally for every element λ ∈ S1, we can form the vector bundle of λ-eigenvectors
considering the action of the element g over π(E|Xg) denoted by π(E|Xg)λ.
Then we can define a map

charG : KG(X)⊗ C→
⊕
[g]

K(Xg)CG(g)) ⊗ C

[E] 7→

(⊕
λ∈S1

[π(E|Xg )λ]⊗ λ

)
[g]

.

Using the above Lemma we identify K(Xg)CG(g) with K(Xg/CG(g)).
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Theorem 2.7. The map charG is an isomorphism of complex vector spaces.

For a proof of the theorem see [2].

2.1. The induced bundle

Now we will give an explicit construction of the induced vector bundle. It is
a direct generalization of the induced representation defined for example in
Section 3.3 in [15].

Let H ⊆ G be a subgroup of G and E
π−→ X an H-vector bundle over a G-

space X. If we choose an element from each left coset of H, we obtain a subset
R of G called a system of representatives of H�G; each g ∈ G can be written
uniquely as g = sr, with r ∈ R = {r1, . . . , rn} and s ∈ H, G =

∐n
i=1Hri, we

suppose that r1 = e the identity of the group G. Consider the vector bundle
F =

⊕n
i=1(ri)

∗E, with projection πF : F → X and consider the following
G-action defined over F :

Let f ∈ F , then

f = fr1 ⊕ · · · ⊕ frn ,

where fri ∈ (ri)
∗E. If πF (f) = x then fri = (x, e), where e ∈ Erix.

Let g ∈ G, note that rig
−1 is in the same left coset of some rj , i.e. rig

−1 =
srj , for some s ∈ H. Define

g(fri) = (gx, s−1e) ∈ (rj)
∗E,

and define the action of g on f by linearly.

Now we will see that F does not depend on the set of representatives up to
isomorphism. Let {r′1, . . . , r′n} be another set of representatives of H�G and
let F ′ =

⊕n
i=1(r′i)

∗E. By reordering we can assume that ri and r′i are in the
same left coclass, then r′ir

−1
i ∈ H.

We have an isomorphism of vector bundles over X

r′ir
−1
i : (ri)

∗E → (r′i)
∗E

(x, e)→ (x, r′ir
−1
i e)

inducing an isomorphism of G-vector bundles

r′1r
−1
1 ⊕ . . .⊕ r′nr−1

n : F → F ′.

We only need to verify that this map commutes with the action of G. To see
this, let g ∈ G and fri = (x, e) ∈ (ri)

∗E, there exist s, s′ ∈ H such that

rig
−1 = srj and r′ig

−1 = s′r′j . (1)
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Note that gfri ∈ (rj)
∗E, then

(r′jr
−1
j )g(fri) = (gx, r′jr

−1
j s−1e).

On the other hand

g(r′ir
−1
i fri) = (gx, (s′)−1(r′ir

−1
i e)),

but we know from (1)
(s′)−1r′ir

−1
i = r′jr

−1
j s−1.

Then the map r′1r
−1
1 ⊕ . . . ⊕ r′nr−1

n commutes with the G-action and then F
and F ′ are isomorphic as G-vector bundles.

We will denote the G-vector bundle F defined above by IndGH(E). Summa-
rizing we have.

Theorem 2.8. Let G be a finite group, let H ⊆ G be a subgroup. Let X be
a G-CW-complex, and let E be a H-vector bundle over X, there is a unique
G-vector bundle IndGH(E) over X, up to isomorphism of G-vector bundles such
that for every G-vector bundle F over X we have a natural identification

HomG(IndGH(E), F ) ∼= HomH(E, resGH(F )).

Proof. Only remains to prove the identification. Let ξ ∈ HomG(IndGH(E), F ),
recall that we have an inclusion of H-vector bundles

E → IndGH(E)

v ∈ Ex 7→ (x, v).

Define r(ξ) ∈ HomH(E, resGH(F )) as follows, if v ∈ Ex

r(ξ)(v) = ξ(x, v).

It is clear that r(ξ) ∈ HomH(E, resGH(F )). On the other hand if η ∈ HomH(E, resGH(F )),

define I(η) : IndGH(E)→ F as follows, if vi ∈ r∗iE, then vi = (x, v) with x ∈ X
and v ∈ Erix, then we define

I(η)(vi) = r−1
i (η(v)).

Extending linearly I(η) to IndGH(E).

Now we will see that I(η) is G-equivariant. Let g ∈ G, let s ∈ H such that

rig
−1 = srj ,

then
g · vi = (gx, s−1v).
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Now,
I(η)(g · vi) = I(η)(gx, s−1v)

= r−1
j (η(s−1v))

= r−1
j s−1η(v)

= gr−1
i η(v)

= gI(η)(vi).

Then I(η) ∈ HomG(IndGH(E), F ). Now we will see that r and I are inverse of
each other. It is clear that r(I(η)) = η. On the other hand,

I(r(ξ))(vi) = r−1
i (r(ξ)(v))

= r−1
i ξ(rix, v)

= ξ(x, v)

= ξ(vi).

�X

We have a formula for the character of an induced H-vector bundle, it is
a particular case of a formula for induced character of generalized cohomology
theories in [7] and [8]. We include a proof for completeness.

Theorem 2.9 (Formula for the induced character). Let X be a G-CW-complex,
let H be a subgroup of G, let h be the order of H and E be a H-vector bundle,
consider the map

charG ◦ IndGH : KH(X)⊗ C→
⊕
[g]

K(Xg)CG(g) ⊗ C,

let R be a system of representatives of H�G. For each g ∈ G, we have

charG(g) ◦ IndGH([E]) =
⊕

r∈R,r−1gr∈H

r∗
(

charH(r−1gr)([E])
)

=
1

h

⊕
r∈G,r−1gr∈H

r∗
(

charH(r−1gr)([E])
)
.

Proof. Our explicit definition of the induced bundle allows us to proof this
result just by adapting the proof for representations contained in [15]. The
vector bundle F = IndGH(E) is the direct sum

⊕n
i=1 r

∗
iE, with R = {r1, . . . , rn}.

H�G = {Hr1, . . . ,Hrn}.

We know from the definition of the induced bundle that if we write rig
−1 in

the form srj with rj ∈ R and s ∈ H, then g sends r∗iE to r∗jE. Considering
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the action of g in H�G , we have that

charG(g)
(

IndGH(E)
)

= charG(g)

 ⊕
Hri=Hrig−1

r∗iE ⊕
⊕

Hri 6=Hrig−1

r∗iE


Note that g acts in each term of the direct sum on the right hand side, hence
the right hand side of the above equation can be written as

charG(g)

 ⊕
Hri=Hrig−1

r∗iE

⊕ charG(g)

 ⊕
Hri 6=Hrig−1

r∗iE


We will see that charG(g)

(⊕
Hri 6=Hrig−1 r∗iE

)
= 0. Because each 0-dimensional

bundle is trivial, it suffices to check that this condition holds on fibers, i.e.,

charG(g)

 ⊕
Hri 6=Hrig−1

r∗iE


x

= 0,

for all x ∈ Xg. If we fix a basis for (r∗iE)x, the trace of the matrix representing
the action of g is zero because Hri 6= Hrig

−1.

Now, if Hri = Hrig
−1 we have that rigr

−1
i = si with si ∈ H. Thus as the

character is invariant under conjugation

charG(g)(r∗iE) = charH(si)(r
∗
iE).

Finally as the character commutes with pullbacks we have that,

charG(g)(IndGH(E)) =
⊕

r∈R,rgr−1∈H

r∗i
(
charH(rgr−1)(E)

)
=

1

h

⊕
s∈G,sgs−1∈H

r∗i
(
charH(s−1hs)(E)

)
.

�X

3. Wreath product and its action on Xn

Let C be a set. There is a natural action of Sn on Cn defined as

σ • (c1, . . . , cn) = (cσ−1(1), . . . , cσ−1(n))

if G is a group, we define the wreath product as the semidirect product

Gn = G oSn = Gn oSn.
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44 GERMAN COMBARIZA, JUAN RODRIGUEZ & MARIO VELASQUEZ

This section is dedicated to describe the conjugacy classes and centralizers of
elements in Gn, we follow [10, Chapter 1, App. B] and [18].

First, we must recall the conjugacy classes in Sn. Two elements s1, s2 ∈ Sn

are conjugate if their cycle factorization correspond to the same partition of
n. For example the elements (1, 2)(3, 4, 5) and (1, 4)(2, 3, 5) are conjugated and
correspond to the partition 5 = 2 + 3. Note that every partition of n can be
view as a function m : {1, 2, · · · , n} → N as follows. If s ∈ Sn then ms(r) is the
number of r-cyces in s. Now in the general case, if x = (ḡ, s) ∈ Gn, then s can
be decomposed as a product of disjoint cycles, if z = (i1i2 . . . ir) is one of these
cycles, the element girgir−1

· · · gi1 is called the cycle product of x corresponding
to z.

Recall that G∗ denotes the set of conjugacy classes of G. If x = (ḡ, s) ∈ Gn,
let ρ(x) = mx(r, c) denote the number of r-cycles in s whose cycle product
belongs to c, where c ∈ G∗ and r ∈ {1, 2, · · ·n}. In this way every element
x ∈ Gn determines a matrix ρ(x) = mx(r, c) of non-negative integers such that∑
r,c rmx(r, c) = n.

For example let G be the cyclic group, {g0, g1, g2, g3}, of 4 elements gener-
ated by g and s = (1, 2)(3, 4, 5) ∈ S5. If x = (g, g, g, g, g, s) then ρ(x) = mx(r, c)
looks like

g0 g1 g2 g3

r = 1 0 0 0 0

r = 2 0 0 1 0

r = 3 0 0 0 1

r = 4 0 0 0 0

r = 5 0 0 0 0

the map ρ : Gn →Mn,v(Z) is called the type of x ∈ Gn, where v = |G|.

Proposition 3.1. Two elements in Gn are conjugate iff they have the same
type.

Proof. See [10, Appendix 1.B] �X

By the above proposition we can assume that every element x ∈ Gn is
conjugated to a product of elements of the form

((g, 1, . . . , 1), (iu1 , . . . , iur )).

Denote by gr(c) = ((g, 1, . . . , 1), (1, . . . , r)).
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Proposition 3.2. The elements in the centralizer CGn(gn(c)) are of the form
((gz, . . . , z︸︷︷︸

k+1

, . . . , gz), (1, . . . , n)k), with z ∈ CG(g). Moreover CGn(gn(c)) ∼=

CG(g)× 〈(1, . . . n)〉.

Proof. It follows from a direct computation. �X

We have described centralizers of elements in Gn and in the next section
we will use this description to write charGn in terms of charG.

Let X be a G-space, there is canonical Gn-action over Xn defined from the
G-action over X

Gn ×Xn → Xn

((ḡ, σ), x̄) 7→ ḡ(σ • x̄)

where ḡ acts component-wise.

In order to relate charGnwith with charG we need to describe the fixed
point set of a representative of each conjugacy class of Gn. Let us start with
the conjugacy classes of elements (ḡ, σ) where σ is an n-cycle. To this end we
will need the following result.

Proposition 3.3. Let ζ = ((g, 1, . . . , 1), σ) whith g ∈ G and σ is a n-cycle.
There is a canonical homeomorphism

(Xn)
ζ
/CGn(ζ) ∼= Xg/CG(g).

Proof. We can assume σ = (1, . . . , n). Let (x1, . . . , xn) ∈ (Xn)ζ , then

ζ(x1, . . . , xn) = (x1, . . . , xn)

it implies
(gxn, x1, . . . , xn−1) = (x1, . . . , xn).

Therefore
xn = xn−1 = · · · = x1, gxn = x1,

and then (x1, . . . , xn) = (y, . . . , y) lies in the diagonal and y ∈ Xg. This proves
that (Xn)ζ ∼= Xg. On the other hand, if b̄ ∈ CGn(ζ) then by Proposition 3.2

b̄ = (((gz, . . . , z︸︷︷︸
k+1

, . . . , gz), σk)

where z ∈ CG(g). Then we obtain

b̄(y, . . . , y) = (((gz, . . . , z︸︷︷︸
k+1

, . . . , gz), σk) · (y . . . , y) = (gzy, . . . , zy︸︷︷︸
k+1

, . . . , gzy),

showing that the orbit of (y, . . . , y) by CGn(ζ) is

{(gzy, . . . , zy︸︷︷︸
k+1

, . . . , gzy) : z ∈ CG(g)}.

This proves the result. �X
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4. Fock space

Let X be a G-space, by the equivariant Bott periodicity theorem we know that
K∗G(X) = K0

G(X)⊕K1
G(X) is a Z/2Z-graded group. Denote by

FG(X) =
⊕
n≥0

K∗Gn(Xn)⊗ C, FqG(X) =
⊕
n≥0

qnK∗Gn(Xn)⊗ C

where q is formal variable giving a Z+-grading in FqG(X). They both have a
natural structure of abelian groups, we endow them with a product ·, defined
as the composition of the induced bundle and the Künneth isomorphism � (see
[12])

K∗Gn(Xn)×K∗Gm(Xm)
�−→ K∗Gn×Gm(Xn+m)

Ind−−→ K∗Gn+m
(Xn+m)

Proposition 4.1. With the above operations FqG(X) is a commutative (Z+ ×
Z/2Z)-graded ring.

Proof. The associativity follows from the following fact. Let [E1] ∈ K∗Gn(Xn),

[E2] ∈ K∗Gm(Xm) and [E3] ∈ K∗Gk(Xk), then

(E1 · E2) · E3
∼= Ind

Gn+m+k

Gn+m×Gk

(
Ind

Gn+m

Gn×Gn (E1 � E2)� E3

)
∼= Ind

Gn+m+k

Gn×Gm×Gk (E1 � E2 � E3)

∼= Ind
Gn+m+k

Gn×Gm+k

(
E1 � Ind

Gm+k

Gm×Gk (E2 � E3)
)
.

For the graded commutativity, let [E1] ∈ K∗Gn(Xn) and [E2] ∈ K∗Gm(Xm), we
will prove that E1 · E2 and E2 · E1 has the same character as Gn+m-vector
bundles over Xn+m.

Consider two inclusions of Sn into Sn+m. The first one is the inclusion by

the first n letters denoted by Sn
in1−→ Sn+m; the second one is the inclusion

by the last n letters denoted by Sn
im2−−→ Sn+m. Let x = (ḡ, σ) ∈ Gn+m and

let r = (h̄, τ) ∈ Gn+m, such that r−1xr ∈ Gn × Gm, then, there is η1 ∈ Sn

and η2 ∈ Sm such that τ−1στ = i1(η1)i2(η2), but i1(η1)i2(η2) is conjugated
in Sn+m to i1(η2)i2(η1), then, there is γ ∈ Sn+m such that γ−1(τ−1στ)γ =
i1(η2)i2(η1). Then

((e, . . . , e), γ−1)(r−1xr)((e, . . . , e), γ) ∈ Gm ×Gn.

It implies that we have bijective correspondence between elements r ∈ Gn+m

such that r−1xr ∈ Gn × Gm and elements s ∈ Gn+m such that s−1xs ∈
Gm ×Gn. Then, if we apply Theorem 2.9, the number of terms in each direct
sum computing

Ind
Gn+m

Gn×Gm(E1 � E2) and Ind
Gn+m

Gm×Gn(E2 � E2)
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are the same. Moreover, for every (α, β) ∈ Gn ×Gm,

charGn×Gm(α, β)(E1 � E2) ∼= charGm×Gn(β, α)(E2 � E1),

then, we have E1 · E2 and E2 · E1 have the same character, then the product
is commutative. The other properties follows directly. �X

Definition 4.2. Let R be a commutative ring, the graded-symmetric algebra
of a Z-graded R-module M (denoted by S(M)) is the quotient of the tensor
algebra of M by the ideal I generated by elements of the form

(1) x⊗ y − (−1)deg(x) deg(y)(y ⊗ x),

(2) x⊗ x, when deg(x) is even.

Now we will give another proof of the description of FqG(X) as a graded-
symmetric algebra given in [14] or Theorem 3 in [18]. Our proof gives an explicit
isomorphism and moreover gives explicit generators of FqG(X) as Z+ ×Z/2Z)-
graded algebras.

Theorem 4.3. There is an isomorphism of (Z+ × Z/2Z)-graded algebras

Φ : S(⊕n≥1q
nK∗G(X)⊗ C)→ FqG(X).

Proof. First note that using charGn we can define an injective group homo-
morphism in the following way. Consider the following sequence of maps:

K∗G(X)⊗ C
∼=−→
⊕
g∈G∗

K∗(Xg)CG(g) ⊗ C

λ−→
⊕
x∈Gn∗

K∗((Xn)x)CGn (x) ⊗ C
∼=−→ K∗Gn(Xn)⊗ C

where the map λ is given by the assigning [((g, 1, . . . , 1), (1, . . . , n))]Gn to the
conjugacy class [g]G and using the identification in Proposition 3.3. This map
is certainly injective. Define

φ : K∗G(X)⊗ C→ K∗Gn(Xn)⊗ C

by the composition of the above sequence so that φ is injective and by the
universal property of the graded-symmetric algebra we have a unique map

Φ : S

⊕
n≥1

K∗G(X)⊗ C

→ FqG(X)

extending φ.
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48 GERMAN COMBARIZA, JUAN RODRIGUEZ & MARIO VELASQUEZ

Suppose inductively that im(Φ) contains K∗Gk(Xk)⊗C for k < n. Then by
induction we know that the image of the following composition

S (⊕n≥1q
nK∗G(X)⊗ C)× S (⊕n≥1q

nK∗G(X)⊗ C)

Φ×Φ−−−→ FqG(X)×FqG(X)
·−→ FqG(X)

contains
K∗Gk(Xk)⊗ C ·K∗Gn−k

(Xn−k)⊗ C ⊆ K∗Gn(X)⊗ C.

Now we have that the image under charGn of

n−1⊕
k=1

(K∗Gk(Xk)⊗ C) · (K∗Gn−k
(Xn−k)⊗ C)

coincides with ⊕
x∈J

K∗(((Xn)x)/CGn(x))⊗ C,

where J is the set of conjugacy classes in Gn such that for every c, m•(n, c) = 0,
in other words J is the set of conjugacy classes whose components in Sn are
not an n-cycle.

On the other hand if x = ((g, 1, . . . , 1), (1, . . . , n)) for some g ∈ G, then
Proposition 3.3 gives us that im(charGn ◦Φ) containsK∗((Xn)x)CGn (x). Finally,
since charGn is an isomorphism we can conclude that Φ is surjective.

To see that Φ is injective we can use the formula for the induced character,
because this formula implies that if A ∈ S(

⊕
k≥1 q

kK∗G(X)⊗C) is not zero then

there exists n and x ∈ Gn such that charGn(x)(Φ(A)) 6= 0, then Φ(A) 6= 0. �X

5. Pullback of groups

Let Γ be a group fitting into the following pullback diagram

Γ
p2
//

p1

��

G

π2

��

H
π1
// K

(2)

If the group Γ comes from a diagram 2 then it is isomorphic to a subgroup of
G ×H, namely Γ ∼= {(g, h) ∈ G ×H | π1(g) = π2(h)}. When maps π1 and π2

are clear from the context we denote Γ by G ×K H. We suppose that π1 and
π2 are surjective.

In this section we describe the class function ring of Γ in terms of the class
function rings of G, H and K. In order to obtain this description we need that
Γ satisfies the following condition.
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Definition 5.1. Let G be a finite group and let H ⊆ G be a subgroup, let
[h]H ∈ H∗, we say that [h]H is closed in G if,

[h]H = [h]G ∩H.

We say that H is conjugacy-closed in G if, for every h ∈ H, [h]H is closed in
G.

Example 5.2. The following are examples of conjugacy-closed subgroups:

• The general linear groups over subfields are conjugacy-closed.

• The symmetric group is conjugacy-closed in the general linear group.

• The symmetric group on subsets are conjugacy-closed.

• The orthogonal group is conjugacy-closed in the general linear group over
real numbers.

• The unitary group is conjugacy-closed in the general linear group.

Remark 5.3. Let G and H be groups

• If H ⊆ G is conjugacy-closed in G, then the pullback of the inclusion

i∗ : Class(G)→ Class(H)

is surjective.

• If H is a retract in G, the pullback of the inclusion

i∗ : R(G)→ R(H)

is surjective.

When Γ is conjugacy-closed in G ×H, we have a way to express the class
function ring of Γ in terms of the class function rings of G, H and K. The same
is true for the representations ring when Γ is a retract of G×H.

5.1. The class function ring of a pullback

Consider a pullback diagram of finite groups such as (2). If we apply the rep-
resentation ring functor we obtain the following diagram

R(Γ) R(G)
p∗2

oo

R(H)

p∗1

OO

R(K)
π∗
1

oo

π∗
2

OO
(3)
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This diagram endows the rings R(G) and R(H) with a R(K)-module struc-
ture. A similar statement is true changing the representation ring by the class
function ring. We will prove that if Γ is a retract of G×H, then the diagram
(3) is a pushout. In fact, we have the following theorem.

Theorem 5.4. Let Γ, G, H and K be finite groups such as in the diagram
(2). If Γ is conjugacy-closed in G×H, there is an isomorphism

m : Class(G)⊗Class(K) Class(H)→ Class(Γ)

of Class(K)-modules

Moreover, if Γ is a retract of G×H, we have an isomorphism

f : R(G)⊗R(K) R(H)→ R(Γ)

of R(K)-modules.

Proof. In order to avoid confusion, in this proof we denote the product on
Class(Γ), Class(G) and Class(H) by · and the generators of the tensor product
by ρ⊗ γ.

The map f is defined as

f : Class(G)⊗Class(K) Class(H)→ Class(Γ)

ρ⊗ γ 7→ p∗1(ρ) · p∗2(γ)

First we prove that the map f is well defined. Let ξ ∈ Class(K), ρ ∈ Class(G)
and γ ∈ Class(H). Let (g, h) ∈ Γ

f (π∗1(ξ) · ρ⊗ γ) (g, h) = (p∗1 (π∗1(ξ) · ρ) · p∗2 (γ)) (g, h)

= (π∗1(ξ) · ρ) (g)γ(h)

= ξ(π1(g))ρ(g)γ(h)

= ρ(g)ξ(π2(h))γ(h)

= f(ρ⊗ π∗2(ξ) · γ)(g, h).

Now we will prove that f is an isomorphism. Consider the following diagram
with exact rows

0 // ker(π) //

f2

��

Class(G)⊗C Class(H)
π
//

f1

��

Class(G)⊗Class(K) Class(H) //

f

��

0

0 // ker(i∗) // Class(G×H)
i∗

// Class(Γ) // 0.

Where map π is the quotient by the relations defining tensor product over
Class(K), map i∗ is the pullback of the inclusion i : Γ → G × H, map f1 is
the natural isomorphism given by tensor product over C and the map f2 is the
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restriction of f1 to ker(π). Note that as Γ is closed conjugacy in G×H the map
i∗ is surjective. We will prove that above diagram is commutative and that f2

is an isomorphism.

First we need to verify that f1(ker(π)) ⊆ ker(i∗). Let (g, h) ∈ Γ,

i∗[f1(π∗1(ξ) · ρ⊗ γ − ρ⊗ π∗2(ξ) · γ)](g, h) =

[p∗1(π∗1(ξ)) · p∗1(ρ) · p∗2(γ)− p∗1(ρ) · p∗2(π∗2(ξ)) · p∗2(γ)](g, h) = 0

Now we prove that ker(i∗) = f1(ker(π)). For this we will prove that if f is
a class function in G × H such that i∗(f) ≡ 0 and f is orthogonal to every
element in f1(ker(π)), then f has to be zero.

Suppose that for every ξ ∈ Class(K), ρ ∈ Class(G) and γ ∈ Class(H) we
have ∑

(g,h)∈G×H

f(g, h)ρ(g)γ(h)[ξ(π2(h))− ξ(π1(g))] = 0.

Let us fix ρ ∈ Class(G) and let

η(g) =
∑
h∈H

f(g, h)γ(h)[ξ(π2(h))− ξ(π1(g))].

We observe that η is a class function on G that is orthogonal to every ρ in
Class(G), then η ≡ 0.

By a similar argument we conclude that for every (g, h) ∈ G × H and
ξ ∈ Class(K)

f(g, h)[ξ(π2(h))− ξ(π1(g))] = 0. (4)

We already know that f(g, h) = 0 if (g, h) ∈ Γ, then let (g, h) /∈ Γ, we have
two cases. First suppose that π1(g) is conjugate to π2(h) in K, in this case
there is h̄ ∈ H such that (g, h̄hh̄−1) ∈ Γ and then f(g, h) = f(g, h̄hh̄−1) = 0.

Suppose now that π1(g) is not conjugate to π2(h) in K, in this case there
is ξ ∈ Class(K) such that ξ(π1(g)) 6= ξ(π2(g)) and equation (4) gives us that
f(g, h) = 0. Then we conclude that ker(i∗) = f1(ker(π)). The map f2 is an iso-
morphism because it is the restriction of f1 and as the diagram is commutative
we conclude that f is Class(K)-module isomorphism.

When Γ is a retract in G×H, the same argument works changing characters
by representations, in particular the map i∗ : R(G×H) → R(Γ) is surjective.

�X

Observe that the pullback is not always conjugacy-closed in the product as
the following example shows.
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Example 5.5. Consider the pullback of the symmetric groups S3 over the
cyclic group C2

Γ //

��

S3

sgn

��

S3
sgn
// C2

In this case the pullback Γ has 6 conjugacy classes, {γ1, · · · , γ6}. The prod-
uct S3 ×S3 has 9 conjugacy classes, {χ1 · · · , χ9}. Observe that the elements
((1, 2, 3), (1, 2, 3)) and ((1, 2, 3), (1, 3, 2)) are conjugate in the group S3×S3 by
the element (e, (1, 2)) but they are not conjugate in Γ.

The pullback of the inclusion can be described in the class function ring as
follows:

Class(S3 ×S3) →Class(Γ)

χ1 7→γ1

χ2 7→γ1

χ3 7→γ2

χ4 7→γ2

χ5 7→γ3

χ6 7→γ3

χ7 7→γ4

χ8 7→γ4

χ9 7→γ5 + γ6.

This map is not surjective.

Example 5.6. Consider the following pullback

Γ //

��

D12

ψ1

��

C3 n C4
ψ2

// S3

In this case the pullback Γ is isomorphic to the group C2 × (C3 n C4) and it
is conjugacy closed in the group D12 × (C3 n C4). According with GAP[6] the
group D12 has group id (12,4) and generators d1, d2 and d3 of orders 2, 2 and
3 respectively. The homomorphism ψ1 is given by

ψ1 : D12 → S3

d1 7→ (2, 3)

d2 7→ (1)

d3 7→ (1, 2, 3).
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The group C3nC4 has id (12,1) and it is generated by three elements g1, g2, g3

of orders 4, 2 and 3 respectively. The homomorphism ψ2 is given by

ψ2 : C3 n C4 → S3

g1 7→ (2, 3)

g2 7→ (1)

g3 7→ (1, 2, 3).

For these groups the pullback Γ is isomorphic to the group C2 × (C3 n C4)
with group id (24,7) and four generators f1, f2, f3, f4 of orders 4, 6, 2 and 2
respectively.

Applying Theorem 5.4 we obtain an isomorphism

Class(Γ) ∼= Class(D12)⊗Class(S3) Class(C3 n C4).

For more examples please see [4].

6. Semidirect product of a direct product

Let A1, A2 be groups with an action of a group G by automorphisms noted by
agi = g · ai, for ai ∈ Ai and g ∈ G. Note that G acts also on the direct product
A1 ×A2 by acting on each component, i.e. (a1, a2)g := (ag1, a

g
2). In this section

we describe the semidirect product of a direct product as a pullback of two
semidirect products and then, we apply this for the wreath product of a direct
product which will allow us to compute the Fock ring of a product.

Consider the projections πi : Ai oG→ G and the pullback Γ associated

Γ

��

// A1 oG

��

A2 oG // G

Proposition 6.1. The pullback Γ is isomorphic to the semidirect product (A1×
A2)oG.

Proof. Note that the pullback is the subgroup of (A1 o G) × (A2 oG) given
by

Γ={(a1, g1, a2, g2)∈(A1oG)×(A2oG) : π1(a1, g1) = π2(a2, g2), a1∈A1, gi ∈ G}

that is, g1 = g2. Consider the bijective function φ : Γ → (A1 × A2) o G given
by φ(a1, g, a2, g) = (a1, a2, g). On one hand

φ[(a1, g, a2, g) · (b1, h, b2, h)] = φ(a1b
g
1, gh, a2b

g
2, gh) = (a1b

g
1, a2b

g
2, gh).

On the other hand (a1, a2, g) · (b1, b2, h) = (a1b
g
1, a2b

g
2, gh) which shows that φ

is a homomorphism of groups. �X
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Corollary 6.2. Let A,B be groups, there is an isomorphism

(A×B)n ∼= An ×Sn Bn.

Now we proof that certain conjugacy classes in (A × B)n are closed in
An ×Bn.

Proposition 6.3. Let (ḡ, h̄, σ) ∈ (A × B)n, where σ is an n-cycle. Then its
conjugacy class in An ×Bn is closed.

Proof. Let x = (ḡ1, h̄1, σ1) and y = (ḡ2, h̄2, σ2) be elements in (A× B)n that
are conjugated in An×Bn, where σ1 and σ2 are n-cycles. We can suppose that
σ1 = σ2 = (1 · · ·n).

Note that

(ḡ1, σ1) ∼An (ḡ2, σ2) and (h̄1, σ1) ∼Bn (h̄2, σ2).

Since as σ1 and σ2 are n-cycles,
∏n
i=1 g1,i ∼A

∏n
i=1 g2,i, and

∏n
i=1 h1,i ∼B∏n

i=1 h2,i. On the other hand the type of x is given by

mx(r, c) =

{
1 if r = n and (

∏n
i=1 g1,i,

∏n
i=1 h1,i) ∈ c

0 in any other case

and the type of y is given by

my(r, c) =

{
1 if r = n and (

∏n
i=1 g2,i,

∏n
i=1 h2,i) ∈ c

0 in any other case

Then the types of x and y are equal, hence x and y are conjugated in (A ×
B)n. �X

7. The Fock space of a product of spaces

In this section we apply results of Section 5 in order to obtain a decomposition
of FG×H(X × Y ) in terms of FG(X) and FH(Y ). Let X be a G-space, we can
endow to FG(X) with natural module structures as follows:

• Consider the trivial Gn-space {•}, and the unique Gn-map π : Xn → {•},
then the pullback

π∗ : Class(Gn)→ K∗Gn(Xn)⊗ C

induces a Class(Gn)-module structure over K∗Gn(X)⊗ C, hence we have
a FG({•})-module structure over FG(X) defined componentwise.
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• Note that we have a quotient map s : Gn → Sn, then the pullback

(π ◦ s)∗ : Class(Sn)→ KGn(Xn)⊗ C

induce a Class(Sn)-module structure over KGn(X)⊗C, hence we have a
F({•})-module structure over FG(X) defined componentwise.

As we observe in Section 5.1, (G × H)n is not closed conjugacy in Gn ×
Hn, then we cannot expect a decomposition of Class((G × H)n) in terms of
Class(Gn), Class(Hn) and Class(Sn), but as the conjugacy classes with an n-
cycle as component in Sn are closed we have a decomposition of FG×H(X×Y )
in terms of FG(X), FH(Y ) and F({•}), with X a G-space and Y a H-space.

Theorem 7.1. There is an isomorphism of F({•})-modules

FG×H(X × Y )
K−→ FG(X)⊗F({•}) FH(Y ).

The map K is compatible with the symmetric algebra decomposition in Thm.
4.3. That means, we have a commutative diagram

FG×H(X × Y )
K

//

d

��

FG(X)⊗F({•}) FH(Y )

d⊗d
��

S(X × Y )
πG⊗πH

// S(X)⊗F({•}) S(Y )

.

Where S(X) stands for S(
⊕

n≥0KG(X) ⊗ C), and similarly for S(Y ) and
S(X × Y ).

Proof. Let {E1, . . . , Em} be a basis of K∗G(X) ⊗ C as complex vector space
and let {F1, . . . , Fs} be a basis of K∗H(Y ) ⊗ C as complex vector space. From
the proof of Theorem 4.3 we can conclude that

{∆G,n,c,k ∈ KGn(Xn)⊗ C | n ≥ 0, c ∈ G∗, 1 ≤ k ≤ m}

is a basis of FG(X) as C-algebra, where

charGn(∆G,n,c,k)((g1, . . . , gn), σ) =

{
Ek if

∏n
i=1 gσi(1) ∈ c and σ is an n-cycle

0 in any other case.

In a similar way we define

{∆H,n,d,l ∈ KHn(Y n)⊗ C | n ≥ 0, d ∈ H∗, 1 ≤ l ≤ s}

a basis of FH(Y ) as C-algebra, where

charHn(∆H,n,d,l)((h1, . . . , hn), σ) =

{
Fl if

∏n
i=1 hσi(1) ∈ d and σ is an n-cycle

0 in any other case.
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Recall that we have an isomorphism

KG×H(X × Y )⊗ C �−→ (KG(X)⊗KH(Y ))⊗ C,

given by the external tensor product. It is proved in [12] or can be obtained
(for complex coefficients) directly from the character.

Using the above identification we have that

{∆G×H,n,c×d,(k,l) | n ≥ 0, c ∈ G∗, d ∈ H∗, 1 ≤ k ≤ m, 1 ≤ l ≤ s}

is a basis as C-algebra of FG×H(X × Y ), where

char(G×H)n(∆G×H,n,c×d,(k,l))(ḡ, h̄, σ) ={
Ek � Fl if

∏n
i=1 gσi(1) ∈ c,

∏n
i=1 hσi(1) ∈ d and σ is an n-cycle

0 in any other case.

As the conjugacy classes when the character of the above elements is not zero
is closed in Gn ×Hn we have

∆G×H,n,c×d,(k,l) = ∆G,n,c,k ·∆H,n,d,l,

hence the map defined on generators as

∆G×H,n,c×d,(k,l) 7→ ∆G,n,c,k ⊗∆H,n,d,l

is an isomorphism of F({•})-modules satisfying the required conditions. �X

8. Final remarks

In [16] and [17] a configuration space representing equivariant connective K-
homology for finite groups was constructed. We recall the construction briefly.

Definition 8.1. Let G be a finite group and (X,x0) be a based G-connected,
G-CW-complex. Let C(X,x0, G) be the G-space of configurations of complex
vector spaces over (X,x0), defined as the increasing union, with respect to the
inclusions Mn(C[G])→Mn+1(C[G])

C(X,x0, G) =
⋃
n≥0

Hom∗(C0(X),Mn(C[G])),

with the compact open topology. Notice that * refers to *-homomorphism,
C0(X) denotes the C*-algebra of complex valued continuous maps vanishing
at x0 and C[G] denotes the complex group ring.

We endow C(X,x0, G) with a continuous G-action as follows. If
F ∈ C(X,x0, G), we define

g · F : C0(X) −→Mn(C[G])

f 7−→ g · F (g−1 · f).
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The space C(X,x0, G) can be described as the configuration space whose
elements are formal sums

n∑
i=1

(xi, Vi),

when xi ∈ X − {x0} and Vi ⊆ C[G]∞ such that if xi 6= xj then Vi ⊥ Vj ,
subject to some relations, for details see [17, Sec. 2.1]. We call the elements xi
the points and to the vector spaces Vi the labels.

Remark 1. When the based G-CW-complex (X,x0) is not supposed to be
G-connected, we define the configuration space

C(X,x0, G) = Ω0C(ΣX,x0, G),

Where Ω0 denotes the based loop space and Σ denotes the reduced suspension.

That description allow us to define a Hopf space structure on C(X,x0, G) by
putting together two configurations when labels in both of them are mutually
orthogonal.

We have the following result:

Theorem 2 (Thm. 5.2 in [16]). Let (X,x0) be a based finite G-connected
G-CW-complex. If we denote by kGn (X,x0) the n-th G-equivariant connective
K-homology groups of the pair (X,x0), then there is a natural isomorphism

πn(C(X,x0, G)G)
An−−→ kGn (X,x0).

When a Hopf space Y is path-connected, consider the Hurewicz morphism

λ : π∗(Y;C) =
⊕
n≥0

πi(Y)⊗ C→ H∗(Y;C).

We have the following result:

Theorem 3 (Thm. of the Appendix in [11]). If Y is a pathwise connected
homotopy associative Hopf space with unit, and λ : π∗(Y;C) → H∗(Y;C) is
the Hurewicz morphism viewed as a morphism of Z-graded Lie algebras, then
it induces an isomorphism of Hopf algebras

λ̄ : S(π(Y;C))→ H∗(Y;C).

Applying the above theorem to C(X,x0, G) we obtain.

Corollary 4. Let X be a finite G-CW-complex, if X is G-connected we have
an isomorphism

S(kG∗ (X,x0)⊗ C) ∼= H∗(C(X,x0, G)G;C).
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In order to relate H∗(C(X,x0, G)G;C) with FG(X) we need to recall the
following result proved in Theorem 6.13 in [16] using the equivariant Chern
character obtained in [9].

Theorem 5. Let X be a G-CW-complex. There is a natural isomorphism of
Z-graded complex vector spaces (here the graduation is given by q)⊕

q≥0

kGn (X)⊗ C ∼=
⊕
n≥0

KG
n (X)⊗ C[q].

Finally we can relate H∗(C(X,x0, G)G;C) with FqG(X) when X is an even
dimensional G-connected, G-Spinc-manifold. First we recall Poincaré duality
for equivariant K-theory.

Theorem 8.2. [3] Let M be a n-dimensional G-Spinc-manifold. Then there
exists an isomorphism

D : K∗G(M+) −→ KG
n−∗(M).

Applying Theorem 8.2 and Theorem 3 we can obtain the main result of the
section.

Theorem 8.3. Let (M,m0) be an even dimensional G-connected, G-Spinc-
manifold. We have an isomorphism of Z-graded Hopf algebras

H∗(C(M,m0, G)G;C) ∼= FqG(M).

Proof. Since M is a G-Spinc manifold we can use Theorem 8.2 and obtain the
following isomorphism of Z+ × Z/2Z-graded Hopf algebras

S
(
kG∗ (M,m0)⊗ C

) ∼= S
⊕
n≥1

qnKG
∗ (M,m0)⊗ C


∼= S

⊕
n≥1

qnK∗G(M+,+)⊗ C


∼= S

⊕
n≥1

qnK∗G(M)⊗ C

 .

Combining Corollary 4, Theorem 3 and Theorem 4.3 we obtain

H∗(C(M,m0, G)G;C) ∼= FqG(M).

�X
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For the case when M is not necessarily G-connected, we can obtain also a
similar result. For details consult [16, Proposition 6.11].

Proposition 8.4. Let X be a finite G-CW-complex, we have an isomorphism

H∗(ΩC(ΣX,G)G;C) ∼= S(kG∗ (X,x0)⊗ C).

In particular we have.

Example 8.5. For X = S0 we have

Ω
(
C(Σ(S0), G)

)
' BUG.

Where BUG can be taken as the Grassmannian of finite dimensional vector
subspaces of a complete G-universe. A complete G-universe is a countably
infinite-dimensional representation of G with an inner product such that con-
tains a copy of every irreducible representation of G, contains countably many
copies of each finite-dimensional subrepresentation. Applying the above discus-
sion to this Hopf space we conclude that

H∗
(
(BUG)G;C

) ∼=R(G)⊗ S
(
π∗((BUG)G)⊗ C

)
∼=R(G)⊗ S

⊕
n≥0

R(Gn)⊗ C


∼=S

⊕
n≥0

R(Gn)⊗ C

 .

Summarizing, we have an isomorphism

H∗((BUG)G;C) ∼= FqG({•}) = S

⊕
n≥0

R(Gn)⊗ C

 .

We also have

H∗
(
(BUG)G;C

) ∼= S
⊕
n≥0

R(Gn)⊗ C

 ∼= C[σ1
1 , . . . , σ

k1
1 , σ1

2 , . . .]

where {σ1
i , · · · , σ

ki
i } is a complete set of non isomorphic irreducible represen-

tations of Gi. We expect that the elements σki correspond in some sense with
duals of G-equivariant Chern classes.

Now suppose that M is a G-connected G-Spinc-manifold and N is a H-
connected H-Spinc-manifold, then we have an isomorphism of Z-graded Hopf
algebras

H∗
(
C(M ×N, (m0, n0), G×H)G×H ;C

) ∼= FqG(M)⊗F({•}) FqH(N)
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In the case that M = N = S0 with trivial action we obtain

H∗((BUG×H)G×H ;C) ∼= FG({•})⊗F({•}) FH({•}).

References

[1] M. F. Atiyah, K-theory, second ed., Advanced Book Classics, Addison-
Wesley Publishing Company Advanced Book Program, Redwood City,
CA, 1989, Notes by D. W. Anderson. MR 1043170 (90m:18011)

[2] M. F. Atiyah and Graeme Segal, On equivariant Euler characteristics, J.
Geom. Phys. 6 (1989), no. 4, 671–677. MR MR1076708 (92c:19005)

[3] P. Baum, N. Higson, and T. Schick, On the equivalence of geometric and
analytic K-homology, Pure Appl. Math. Q. 3 (2007), no. 1, part 3, 1–24.
MR MR2330153 (2008d:58015)

[4] G. Combariza, Pullbacks with kernel s3, https://sites.google.com/

site/combariza/research/pullbacks-with-kernel-s3, 2019.

[5] T. T. Dieck, Transformation groups, de Gruyter Studies in Mathematics,
vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR MR889050 (89c:57048)

[6] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.8.10, 2018.

[7] M. J. Hopkins, N. J.Kuhn, and D. C. Ravenel, Generalized group charac-
ters and complex oriented cohomology theories, J. Amer. Math. Soc. 13
(2000), no. 3, 553–594. MR 1758754

[8] N. J. Kuhn, Character rings in algebraic topology, Advances in homotopy
theory (Cortona, 1988), London Math. Soc. Lecture Note Ser., vol. 139,
Cambridge Univ. Press, Cambridge, 1989, pp. 111–126. MR 1055872

[9] W. Lück, Chern characters for proper equivariant homology theories and
applications to K- and L-theory, J. Reine Angew. Math. 543 (2002), 193–
234. MR 1887884 (2003a:19003)

[10] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed.,
Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Ox-
ford University Press, New York, 2015, With contribution by A. V. Zelevin-
sky and a foreword by Richard Stanley, Reprint of the 2008 paperback
edition [ MR1354144]. MR 3443860

[11] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of
Math. (2) 81 (1965), 211–264. MR MR0174052 (30 #4259)
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