On quantum codes from codes over \(R_m \)

Sobre códigos cuánticos a través de códigos sobre \(R_m \)

SHAHRAM MEHRY
Malayer University, Malayer, Iran

Abstract. Let \(R_m = \mathbb{F}_q[y]/(y^m - 1) \), where \(m \mid q - 1 \). In this paper, we obtain the structure of linear and cyclic codes over \(R_m \). Also, we introduce a preserving-orthogonality Gray map from \(R_m \) to \(\mathbb{F}_q^m \). Among the main results, we obtain the exact structure of self-orthogonal cyclic codes over \(R_m \) to introduce parameters of quantum codes from cyclic codes over \(R_m \).

Key words and phrases. Self-orthogonal codes, Cyclic codes, Quantum codes.

2020 Mathematics Subject Classification. 94B05, 94B15, 81-04.

Resumen. Sea \(R_m = \mathbb{F}_q[y]/(y^m - 1) \) donde \(m \mid q - 1 \). En este artículo, obtenemos la estructura de códigos lineales y cíclicos sobre \(R_m \). También introducimos una aplicación de Gray de \(R_m \) a \(\mathbb{F}_q^m \) que preserva la ortogonalidad. Entre los resultados principales, obtenemos la estructura exacta de los códigos cíclicos auto-ortogonales sobre \(R_m \) para introducir parámetros de los códigos cuánticos a través de los códigos cíclicos sobre \(R_m \).

Palabras y frases clave. códigos auto-ortogonales, códigos cíclicos, códigos cuánticos.

1. Introduction

Quantum error correcting codes were introduced by Shor [10]. In a 1998 paper [3], the theory of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field \(\mathbb{F}_4 \) which are self-orthogonal with respect to a certain trace inner product. Recently, codes over rings that serve as a source for QEC have also been of interest.

In [7], quantum codes from cyclic codes over \(F_2 + vF_2 \) are studied. Also, in [1], a construction for quantum codes from cyclic codes over \(R = \mathbb{F}_3 + v\mathbb{F}_3 \) where \(v^2 = 1 \) was given. In [4], a method to obtain self-orthogonal codes over \(\mathbb{F}_2 \) is given and the parameters of quantum codes which are obtained from
cyclic codes over $R = \mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 + \cdots + u^m\mathbb{F}_2$ are determined. Also the construction of quantum codes over \mathbb{F}_q from cyclic codes over a finite non-chain ring $\mathbb{F}_q + v\mathbb{F}_q + v^2\mathbb{F}_q + v^3\mathbb{F}_q$, where $q = p^r$, p is a prime, $3 \mid p - 1$ and $v^4 = v$ was given in [5]. Recently, Sari and Siap extended the results of [1] over $R_p = \mathbb{F}_p + v\mathbb{F}_p + \cdots + v^{p-1}\mathbb{F}_p$ where $v^p = v$ and p is a prime [9].

In this paper, we introduce some classes of quantum codes over \mathbb{F}_q from linear and cyclic codes over the ring $R_m = \mathbb{F}_q[y]/\langle y^m - 1 \rangle$, where $m \mid q - 1$. In Section 2, we recall the definition of quantum codes and we provide some basic background. In Section 3, the structure of linear codes over R_m is given. In addition, we introduce a preserving-orthogonality gray map from R_m to \mathbb{F}_q^n. Also we obtain the parameters of quantum codes over \mathbb{F}_q from linear codes over R_m. In the last Section, the exact structure of self-orthogonal cyclic codes over R_m is given in Theorem 4.4. Using this exact structure, we obtain an exact relation between cyclic codes over R_m and quantum codes over \mathbb{F}_q; these results are presented in Theorem 4.5. At the end of the paper, some examples of self-orthogonal cyclic codes and their relations with quantum codes are given.

2. Quantum codes

In [3], the problem of finding quantum-error-correcting codes is transformed into the problem of finding additive codes over the field \mathbb{F}_4. These quaternary codes are linear over \mathbb{F}_2. The natural generalization from \mathbb{F}_2 to an arbitrary finite ground field \mathbb{F}_q was provided in [2, Definition 1] as follows.

Definition 2.1. Let $E = V(2, q)$ be the 2-dimensional vector space over \mathbb{F}_q. An \mathbb{F}_q-linear quantum code $[[n,k,d]]_q$ is an \mathbb{F}_q-subspace $C \subseteq E^n$, which satisfies the following conditions:

1. C has \mathbb{F}_q-dimension $n-k$.
2. $C \subseteq C^\perp$. Here the dual is taken with respect to an \mathbb{F}_q-linear symplectic scalar product on E^n, where each copy of E is a hyperbolic plane.
3. The elements in $C^\perp \setminus C$ have weight $\geq d$.

In above definition, a symplectic form is a non-degenerate bilinear form β such that $\beta(x, y) = -\beta(y, x)$. Also a hyperbolic plane is a 2-dimensional subspace $H \subseteq E^n$, such that the restriction of β to H is non-degenerate.

The following proposition gives a method to construct quantum codes over a finite ground field \mathbb{F}_q.

Proposition 2.2. Let C_1 and C_2 be two linear codes such that $C_2 \subseteq C_1$ over \mathbb{F}_q, and be with the parameters $[n,k_1,d_1]$ and $[n,k_2,d_2]$; respectively. Then there exists a quantum error-correcting code with the parameters $[[n,k_1 - k_2,\min\{d_1,d_2\}]]$, where d_2 denotes the minimum hamming distance of the dual code C_2^\perp of C_2. Further, if $C_2 = C_1^\perp$, then there exists a quantum error-correcting code with the parameters $[[n,2k_1 - n,d_1]]$.
QUANTUM CODES

Proof. See Lemma 4 in [5].

We apply this proposition to obtain quantum codes. Note that the above proposition only introduces the parameters \([n, k, d]_q\) of the existing quantum codes which can be constructed by linear codes over \(\mathbb{F}_q\). In other words, quantum codes as defined in Definition 2.1 are obtained by \(C_1\) and \(C_2\) which is not the purpose of this paper.

3. Quantum codes from linear codes over \(R\)

Throughout this paper let \(R = R_m = \mathbb{F}_q[y]/\langle y^m - 1 \rangle\), where \(m \mid q - 1\). A linear code \(C\) of length \(n\) over \(R\) is an \(R\)-submodule of \(R^n\). In this section, first we obtain the structure of linear codes over \(R\). So we introduce a preserving-orthogonality gray map from \(R\) to \(\mathbb{F}_q^m\) and we obtain the parameters of quantum codes over \(\mathbb{F}_q\) from linear codes over \(R\).

Lemma 3.1. Let \(\alpha\) be a primitive \(m\)th root of unity in \(\mathbb{F}_q\). If \(f_i = y - \alpha^i\) for \(i = 1, \ldots, m\), then \(y^m - 1 = \prod_{i=1}^m f_i\) is the unique factorization of \(y^m - 1\) into irreducible factors over \(\mathbb{F}_q\).

Proof. Since \(q \equiv 1 \mod m\), it follows from Theorem 4.2 in [8].

Lemma 3.2. Let \(y^m - 1 = \prod_{i=1}^m f_i\) be the unique factorization of \(y^m - 1\) in above lemma and \(\hat{f}_i = \prod_{j \neq i} f_j\), then there are \(b'_i, b_i \in \mathbb{F}_q[y]\) such that \(b'_i \hat{f}_i + b_i f_i = 1\). If \(e_i = b'_i \hat{f}_i + \langle y^m - 1 \rangle \in R\), then

(1) \(e_1, \ldots, e_m\) are mutually orthogonal non-zero idempotents of \(R\).

(2) \(e_1 + \cdots + e_r = 1 \in R\).

(3) Let \(Re_i\) be the principal ideal of \(R\) generated by \(e_i\). Then \(e_i\) is the identity of \(Re_i\).

(4) \(R = Re_1 \oplus \cdots \oplus Re_m\), where \(\oplus\) denotes the direct sum of rings.

(5) For each \(i = 1, \ldots, m\) let \(R_i = \mathbb{F}_q[y]/\langle f_i \rangle\). Then the map

\[
\varphi_i : R_i \to Re_i, g + \langle f_i \rangle \mapsto (g + \langle y^m - 1 \rangle)e_i
\]

is an isomorphism of rings.

(6) For each \(i = 1, \ldots, m\) the map \(\psi_i : \mathbb{F}_q \to R_i, a \mapsto a + \langle f_i \rangle\) is an isomorphism of rings.

Proof. See Theorem 4.6 in [8].
For a positive integer n, let $\psi_i : F_q^n \to R_i^n$ and $\varphi_i : (R_i)^n \to (Re_i)^n$ be the natural generalizations of ψ_i and φ_i. The following theorem gives the structure of linear codes over R.

Theorem 3.3.
(1) $R^n = (Re_1)^n \oplus \cdots \oplus (Re_m)^n$.

(2) C is a linear code over R of length n if and only if

$$C = \varphi_1 \psi_1(C_1) \oplus \cdots \oplus \varphi_m \psi_m(C_m),$$

where C_i is a linear code over F_q of length n. In this case $|C| = \Pi_{i=1}^m |C_i|$.

(3) Let C^\perp be the dual of C with respect to standard inner product in R. Then

$$C^\perp = \varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp),$$

where C_i^\perp is the dual of C_i with respect to standard inner product in F_q.

Proof.
(1) It follows from Lemma 3.2, part 4.

(2) Let $C \subseteq R^n$ be an R-submodule. By Item 1, $C = \overline{C_1} \oplus \cdots \oplus \overline{C_m}$ where $\overline{C_i}$ is an $(Re_i)^n$-module of $(Re_i)^n$. Consider the F_q-linear isomorphisms $\psi_i : (F_q)^n \to (R_i)^n$ and $\varphi_i : (R_i)^n \to (Re_i)^n$. Since $\overline{C_i}$ is an F_q-module, for any i we have that $\overline{C_i} = \varphi_i \psi_i(C_i)$ for some F_q-module C_i of F_q^n. Conversely let

$$C = \varphi_1 \psi_1(C_1) \oplus \cdots \oplus \varphi_m \psi_m(C_m),$$

where C_i is a linear code over F_q of length n. Since $\psi_i : F_q \to R_i$ and $\varphi_i : R_i \to Re_i$ are isomorphisms of rings, $C_i \subseteq F_q^n$ is an F_q-submodule if and only if $\varphi_i \psi_i(C_i) \subseteq (Re_i)^n$ is an Re_i-submodule. Hence $C \subseteq R^n$ is an R-submodule. Clearly

$$|C| = \Pi_{i=1}^m |\varphi_i \psi_i(C_i)| = \Pi_{i=1}^m |C_i|.$$

(3) Let

$$a = \varphi_1 \psi_1(a_1) + \cdots + \varphi_m \psi_m(a_m) \in \varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp)$$

and

$$b = \varphi_1 \psi_1(b_1) + \cdots + \varphi_m \psi_m(b_m) \in C = \varphi_1 \psi_1(C_1) \oplus \cdots \oplus \varphi_m \psi_m(C_m),$$

where $a_i = (a_{i1}, \ldots, a_{in}) \in C_i^\perp$ and $b_i = (b_{i1}, \ldots, b_{in}) \in C_i$ for $i = 1, \ldots, m$. It is easy to see that $\varphi_i \psi_i(a_i) \varphi_j \psi_j(b_j) = 0$ for $i \neq j$. Therefore

$$a.b = \sum_{i=1}^m \varphi_i \psi_i(a_i) \varphi_i \psi_i(b_i) = \sum_{i=1}^m \varphi_i \psi_i(a_i, b_i) = \sum_{i=1}^m \varphi_i \psi_i(0) = 0,$$
where in the last two lines we consider \(\psi_i : \mathbb{F}_q \rightarrow R_i \) and \(\varphi_i : R_i \rightarrow \mathbb{R} \) and also \(a_i, b_i \) denotes the standard inner product over \(\mathbb{F}_q \). So \(a \in C^\perp \) and hence
\[
\varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp) \subseteq C^\perp.
\]
Since \(R \) is a Frobenius ring, \(|C||C^\perp| = |R^n| = q^{mn} \). So we have \(|C^\perp| = q^{mn} |C| \). On the other hand
\[
|\varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp)| = \prod_{i=1}^m |C_i^\perp| = \prod_{i=1}^m q^{n_i} = q^{mn} |C|.
\]
Thus
\[
|\varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp)| = |C^\perp|.
\]
Therefore
\[
C^\perp = \varphi_1 \psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m \psi_m(C_m^\perp).
\]

By Part 4 of Lemma 3.2, for any \(\overline{g} = g + \langle y^m - 1 \rangle \in R \) there exist \(\overline{g_i} = g_1 + \langle y^m - 1 \rangle, \ldots, \overline{g_m} = g_m + \langle y^m - 1 \rangle \in R \) such that \(\overline{g} = \overline{g_1} e_1 + \cdots + \overline{g_m} e_m \). We define a gray map \(\phi : R \rightarrow \mathbb{F}_q^n \) by \(\phi(\overline{g}) = (g_1(\alpha), \ldots, g_m(\alpha^m)) \).

Definition 3.4. Let \(\overline{g} = \overline{g_1} e_1 + \cdots + \overline{g_m} e_m \) be an element of \(R \). The Lee weight of \(\overline{g} \) is defined as follows: \(\omega_L(\overline{g}) = \omega_H(g_1(\alpha), \ldots, g_m(\alpha^m)) \), where \(\omega_H(a) \) denotes the hamming weight of the vector \(a \) over \(\mathbb{F}_q \). We define the Lee weight of a vector \(c = (c_1, \ldots, c_n) \in R^n \) to be the rational sum of Lee weights of its components, i.e. \(\omega_L(c) = \sum_{i=1}^n \omega_L(c_i) \).

Theorem 3.5. Let \(\phi : R^n \rightarrow \mathbb{F}_q^{mn} \) be the natural extension of the gray map \(\phi \) form \(R \) to \(\mathbb{F}_q^n \). Then

1. The gray map \(\phi \) is an \(\mathbb{F}_q \)-linear isomorphism.
2. \(\phi \) is a distance-preserving map from \(R^n \) (Lee distance) to \(\mathbb{F}_q^{mn} \) (hamming distance).
3. If \(C \subseteq R^n \) is a linear code, then \(\phi(C^\perp) = \phi(C)^\perp \).
4. If \(C = \varphi_1 \psi_1(C_1) \oplus \cdots \oplus \varphi_m \psi_m(C_m) \), then
\[
d_L(C) = \min\{d_H(C_i); i = 1, \ldots, m\}
\]
where \(d_L(C) \) is the Lee distance of \(C \) and \(d_H(C_i) \) is the hamming distance of \(C_i \).
5. If \(C \subseteq R^n \) is an \((n, A, d)\) linear code, then \(\phi(C) \) is an \([mn, \log_q A, d]\) linear code over \(\mathbb{F}_q \).

Revista Colombiana de Matemáticas
Proof. (1) Since \(\phi : R^n \to F_q^m \) is the natural extension of \(\phi : R \to F_q^m \), it suffices to show that \(\phi : R \to F_q^m \) is an \(F_q \)-linear isomorphism. First we show that \(\phi \) is well defined. Let \(\overline{g} = \overline{g_1}e_1 + \cdots + \overline{g_m}e_m = 0 \). Hence \(\overline{g_i}e_i = 0 \) for any \(i = 1, \ldots, m \). But \(\overline{g_i}e_i = 0 \) if and only if \(g_i \in \langle f_i \rangle \). Since \(f_i(\alpha^i) = \alpha^i = 0, g_i(\alpha^i) = 0 \). Thus \(\phi(\overline{g}) = (g_1(\alpha), \ldots, g_m(\alpha^m)) = 0 \).

Now let \(\overline{g} = \overline{g_1}e_1 + \cdots + \overline{g_m}e_m \) and \(\overline{h} = \overline{h_1}e_1 + \cdots + \overline{h_m}e_m \) be elements of \(R \) and \(a \in F_q \). We have that

\[
\overline{g} + \overline{h} = \sum_{i=1}^{m} (\overline{g_i} + \overline{h_i})e_i = \sum_{i=1}^{m} (g_i + h_i)e_i.
\]

Hence

\[
\phi(\overline{g} + \overline{h}) = ((g_1 + h_1)(\alpha), \ldots, (g_m + h_m)(\alpha^m)) = (g_1(\alpha), \ldots, g_m(\alpha^m)) + (h_1(\alpha), \ldots, h_m(\alpha^m)) = \phi(\overline{g}) + \phi(\overline{h}).
\]

Also \(a\overline{g} = a\overline{g_1}e_1 + \cdots + a\overline{g_m}e_m \). Thus

\[
\phi(a\overline{g}) = (a(g_1(\alpha), \ldots, g_m(\alpha^m)) = a(g_1(\alpha), \ldots, g_m(\alpha^m)) = a\phi(\overline{g}).
\]

Therefore \(\phi \) is an \(F_q \)-linear homomorphism. Now let \(\phi(\overline{g}) = 0 \). We have that \(g_i(\alpha^i) = 0 \) for \(i = 1, \ldots, m \). Thus \(f_i = (y-\alpha^i)|g_i \) and hence \(g_i \in \langle f_i \rangle \).

As a result \(\overline{g_i}e_i = 0 \) for \(i = 1, \ldots, m \) and consequently

\[
\overline{g} = \overline{g_1}e_1 + \cdots + \overline{g_m}e_m = 0.
\]

Therefore \(\phi \) is injective. Since \(|R| = |F_q^m| \), \(\phi \) is surjective. This completes the proof.

(2) Let \(c_1, c_2 \in R^n \). By Part 1, \(\phi(c_1 - c_2) = \phi(c_1) - \phi(c_2) \). Hence

\[
L(c_1, c_2) = \omega_L(c_1 - c_2) = \omega_H(\phi(c_1) - \phi(c_2)) = \omega_H(\phi(c_1) - \phi(c_2)) = d_H(\phi(c_1), \phi(c_2)).
\]

This completes the proof.

(3) Let \(c = (c_1, \ldots, c_n) \in C \) and \(c' = (c'_1, \ldots, c'_n) \in C^\perp \) where

\[
c_j = \overline{c_{j1}}e_1 + \cdots + \overline{c_{jm}}e_m
\]

and

\[
c'_j = \overline{c'_{j1}}e_1 + \cdots + \overline{c'_{jm}}e_m
\]

for \(j = 1, \ldots, n \). We have that

\[
\phi(c) = (c_{11}(\alpha), c_{12}(\alpha^2), \ldots, c_{1m}(\alpha^m), \ldots, c_{n1}(\alpha), c_{n2}(\alpha^2), \ldots, c_{nm}(\alpha^m)),
\]

\[
\phi(c') = (c'_{11}(\alpha), c'_{12}(\alpha^2), \ldots, c'_{1m}(\alpha^m), \ldots, c'_{n1}(\alpha), c'_{n2}(\alpha^2), \ldots, c'_{nm}(\alpha^m)).
\]
Thus
\[\phi(c').\phi(c) = \sum_{i=1}^{m} (\sum_{j=1}^{n} c'_{ji}(\alpha^i)c_{ji}(\alpha^j)). \]

Now since \(c' \in C^\perp \), \(c'.c = 0 \). Therefore
\[\sum_{i=1}^{m} \left(\sum_{j=1}^{n} c'_{ji}c_{ji} \right)e_i = 0 \]
and so
\[\sum_{j=1}^{n} (c'_{ji}c_{ji})e_i = 0. \]
Thus \(\sum_{j=1}^{n} c'_{ji}(\alpha^i)c_{ji}(\alpha^j) = \sum_{j=1}^{n} c'_{ji}(\alpha^j)c_{ji}(\alpha^j) = 0. \)

Thus \(\phi(c').\phi(c) = 0 \) which proves that \(\phi(c') \in \varphi(C)^\perp \). Therefore \(\phi(C^\perp) \subseteq \phi(C)^\perp \). Since \(R \) and \(F_q \) are Frobenius rings, we have the following equality:
\[|\phi(C^\perp)| = |C| = \frac{|R^n|}{|C|} = \frac{|R^n|}{|\phi(C)|} = \frac{|F_q^{mn}|}{|\phi(C)|} = |\phi(C)^\perp|. \]

Therefore \(\phi(C^\perp) = \phi(C)^\perp \).

(4) Let \(c = (c_1, \ldots, c_n) \in R^n \). Then \(c = \sum_{i=1}^{m} \varphi_i\psi_i(a_i) \), where
\[a_i = (a_{i1}, \ldots, a_{in}) \in (F_q)^n, \]
for \(i = 1, \ldots, m \). It is easy to see that
\[c_j = (a_{1j} + (y^m - 1)e_1 + \cdots + (a_{mj} + (y^m - 1)e_m \]
for \(j = 1, \ldots, n \). So
\[\phi(c) = (a_{11}, \ldots, a_{m1}, \ldots, a_{1n}, \ldots, a_{mn}) \]
and hence \(\omega_L(c) = \sum_{i=1}^{m} \omega_H(a_i) \). Now let \(\omega_L(C) = \omega_L(c) \) for some \(c \in C \).
We have that \(c = \sum_{i=1}^{m} \varphi_i\psi_i(a_i) \) for some \(a_i \in C_i \). Let \(a_j \neq 0 \). Then
\[\omega_L(C) = \omega_L(c) = \sum_{i=1}^{m} \omega_H(a_i) \geq \omega_H(a_j) = \min \{ \omega_H(C_i); i = 1, \ldots, m \}. \]
On other hand if \(a_i \in C_i \), then \(c' = \varphi_i\psi_i(a_i) \in C \). But
\[\omega_L(C) \leq \omega_L(c') = \omega_H(a_i). \]
Hence
\[\omega_L(C) \leq \min\{\omega_H(C_i); i = 1, \ldots, m\}. \]

Therefore
\[\omega_L(C) = \min\{\omega_H(C_i); i = 1, \ldots, m\}. \]

Since the maps \(\varphi_i, \psi_i \) and \(\phi \) are linear maps, we have the following equality that completes the proof
\[d_L(C) = \omega_L(C) = \min\{\omega_H(C_i); i = 1, \ldots, m\} = \min\{d_H(C_i); i = 1, \ldots, m\}. \]

(5) It is clear by the definition of the gray map \(\phi \).

The following theorem indicates the existence of some quantum codes.

Theorem 3.6. Let
\[C = \varphi_1\psi_1(C_1) \oplus \cdots \oplus \varphi_m\psi_m(C_m) \]
be a linear code over \(R \), where \(C_i \) is an \([n, k_i, d_i] \) linear code over \(\mathbb{F}_q \). If \(C_i^\perp \subseteq C_i \), then there exists a quantum error-correcting code with the parameters
\[[(mn, 2(\sum_{i=1}^{m} k_i) - mn, \min\{d_i; i = 1, \ldots, m\})]. \]

Proof. By Theorem 3.3.3,
\[C^\perp = \varphi_1\psi_1(C_1^\perp) \oplus \cdots \oplus \varphi_m\psi_m(C_m^\perp). \]

Then \(C^\perp \subseteq C \) and so \(\phi(C^\perp) \subseteq \phi(C) \). But \(\phi(C^\perp) = \phi(C)^\perp \); see Theorem 3.5.3. Hence \(\phi(C)^\perp \subseteq \phi(C) \). Also by Theorem 3.5, \(\phi(C) \) is an
\[[mn, \sum_{i=1}^{m} k_i, \min\{d_i; i = 1, \ldots, m\}] \]
linear code over \(\mathbb{F}_q \). Now Proposition 2.2 proves the existence of a quantum error-correcting code with the following parameters
\[[(mn, 2(\sum_{i=1}^{m} k_i) - mn, \min\{d_i; i = 1, \ldots, m\})]. \]
Note that the above theorem only shows the existence of quantum codes with the help of self-orthogonal codes, but obtaining the exact structure of the self-orthogonal code \(C = \varphi_1 \psi_1(C_1) \oplus \cdots \oplus \varphi_m \psi_m(C_m) \) may not be very efficient. In the next section, as a special case of such codes, we specify the exact structure of self-orthogonal cyclic codes over \(R_m \). Therefore the structure of quantum codes can be obtained with the relation between self-orthogonal codes and quantum codes, mentioned in Proposition 2.2. Moreover, some examples of self-orthogonal cyclic codes are given.

4. Quantum codes from cyclic codes over \(R \)

In this section, we obtain the structure of cyclic codes over \(R = R_m = \mathbb{F}_q[y]/\langle y^m - 1 \rangle \). We determine the parameters of quantum codes over \(\mathbb{F}_q \) from cyclic codes over \(R \) and some examples are given. Consider the following correspondence.

\[
\pi : R^n \rightarrow R[x]/\langle x^n - 1 \rangle,
\]

\[
(a_0, a_1, \ldots, a_{n-1}) \mapsto a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + \langle x^n - 1 \rangle.
\]

Clearly \(\pi \) is an \(R \)-module isomorphism. We will identify \(R^n \) with \(R[x]/\langle x^n - 1 \rangle \) under \(\pi \). A nonempty subset \(C \) of \(R^n \) is a cyclic code if and only if \(\pi(C) \) is an ideal of \(R[x]/\langle x^n - 1 \rangle \). Now consider the decomposition \(R = R_1 \oplus \cdots \oplus R_m \) in Lemma 3.2. The following theorem gives a decomposition for \(R[x]/\langle x^n - 1 \rangle \).

Theorem 4.1. (1) The following map is an isomorphism of rings;

\[
\varphi : \frac{R[x]}{\langle x^n - 1 \rangle} \rightarrow \frac{R_1[x]}{\langle e_1 x^n - e_1 \rangle} \times \cdots \times \frac{R_m[x]}{\langle e_m x^n - e_m \rangle},
\]

\[
\overline{h} \mapsto (\overline{he_1}, \ldots, \overline{he_m}),
\]

where \(\overline{h} = h + \langle x^n - 1 \rangle \) and \(\overline{he_i} = he_i + \langle e_i x^n - e_i \rangle \).

(2) \(C \) is an ideal of \(R[x]/\langle x^n - 1 \rangle \) if and only if \(\varphi(C) = J_1 \times \cdots \times J_m \), where \(J_i \) is an ideal of \(R[x]/\langle e_i x^n - e_i \rangle \).

(3) If \(J_i = \langle \overline{h_i} \rangle \) for \(i = 1, \ldots, m \), then \(C = \langle \overline{h_1} + \cdots + \overline{h_m} \rangle \).

Proof. (1) Let \(\overline{h} \in R[x]/\langle x^n - 1 \rangle \). Then

\[
\overline{h} = 0 \iff h \in \langle x^n - 1 \rangle
\]

\[
\iff \exists g \in R[x] : h = g(x^n - 1)
\]

\[
\iff he_i = g(e_i x^n - e_i) \text{ for } i = 1, \ldots, m
\]

\[
\iff \overline{he_i} = 0 \text{ for } i = 1, \ldots, m.
\]
Hence \(\varphi \) is well defined and injective. Now let

\[
(h_1, \ldots, h_m) \in \prod_{i=1}^{m} \langle e_i x^n - e_i \rangle.
\]

Since \(e_i \) is the identity of \(\text{Re}_i[x] \), \(h_i = h_i e_i \) for \(i = 1, \ldots, m \). Also for \(i \neq j \), \(h_i e_j = h_i e_i e_j = 0 \). Hence \(\varphi(h_1 + \cdots + h_m) = (\overline{h_1}, \ldots, \overline{h_m}). \) Thus \(\varphi \) is surjective. It is easy to see that \(\varphi(h h') = \varphi(h) \cdot \varphi(h') \) and \(\varphi(h + h') = \varphi(h) + \varphi(h') \) for \(\overline{h}, \overline{h'} \in R[x]/\langle x^n - 1 \rangle \). Therefore \(\varphi \) is an isomorphism of rings.

(2) It is clear by Item 1.

(3) By the proof of Part 1, we have that

\[
\varphi(h_1 + \cdots + h_m) = (\overline{h_1}, \ldots, \overline{h_m}).
\]

Hence

\[
\varphi(C) = J_1 \times \cdots \times J_m = \langle \varphi(h_1 + \cdots + h_m) \rangle = \varphi(\overline{h_1 + \cdots + h_m}).
\]

Therefore \(C = \langle \overline{h_1 + \cdots + h_m} \rangle. \)

\(\Box \)

Now we want to obtain the structure of cyclic codes over \(R \). First we remind the following lemma that gives the structure of cyclic codes over \(\mathbb{F}_q \).

Lemma 4.2. Let \(C \) be a nonzero cyclic code over \(\mathbb{F}_q \) of length \(n \). There exists a polynomial \(g(x) \in C \) with the following properties:

1. \(p(x) \) is the unique monic polynomial of minimum degree in \(C \),
2. \(C = \langle p(x) \rangle \), and
3. \(p(x) | (x^n - 1) \).
4. \(|C| = q^{n - \deg p(x)} \).
5. If \(\ell(x) = (x^n - 1)/p(x) \) then \(C^\perp = \langle \ell^*(x) \rangle \) where \(\ell^*(x) \) is the reciprocal polynomial of \(\ell(x) \).
6. \(C \) contains its dual code if and only if \((x^n - 1) \equiv 0 \mod p(x)p^*(x) \), where \(p^*(x) \) is the reciprocal polynomial of \(p(x) \).

Proof. Parts 1, 2, 3 and 4 follow from Theorem 4.2.1 in [6]. Item 5 follows from Theorem 5.6 in [8]. We have Part 6 by Lemma 8 in [5].

\(\Box \)
Now let
\[\overline{\psi}_i : \mathbb{F}_q[x]/(x^n - 1) \to R[x]/(1_R, x^n - 1_R) \]
and
\[\overline{\varphi}_i : R[x]/(1_R, x^n - 1_R) \to \mathbb{R}_i[x]/(e_i x^n - e_i) \]
be the natural extension of isomorphisms \(\psi_i \) and \(\varphi_i \) in Lemma 3.2. It easy to see that \(\overline{\varphi}_i \) and \(\overline{\psi}_i \) are isomorphisms of rings. The following theorem gives the structure of cyclic codes over \(R \).

Theorem 4.3.
1. \(C \) is an ideal of \(R[x]/(x^n - 1) \) if and only if
 \[\varphi(C) = \overline{\varphi}_i \overline{\psi}_i(C_1) \times \cdots \times \overline{\varphi}_i \overline{\psi}_i(C_m), \]
 where \(C_i \) is a cyclic code over \(\mathbb{F}_q \) of length \(n \); \(C \) is an ideal of \(\mathbb{F}_q[x]/(x^n - 1) \).
2. If \(C_i = \langle p_i(x) \rangle \) for \(i = 1, \ldots, m \), then
 \[C = \langle p_1(x)e_1 + \cdots + p_m(x)e_m \rangle. \]
 In this case \(|C| = q^{mn - \sum_{i=1}^m \deg(p_i(x))}. \)
3. If \(\ell_i(x) = (x^n - 1)/p_i(x) \) for \(i = 1, \ldots, m \), then
 \[C^\perp = \langle \ell_1^*(x)e_1 + \cdots + \ell_m^*(x)e_m \rangle \]
 where \(\ell_i^*(x) \) is the reciprocal polynomial of \(\ell_i(x) \).
4. \(R[x]/(x^n - 1) \) is a principal ideal ring.

Proof.
1. Since \(\overline{\varphi}_i \) and \(\overline{\psi}_i \) are isomorphisms of rings, it follows from Theorem 4.1.2.
2. It is easy to see that
 \[\overline{\varphi}_i \overline{\psi}_i(p_i(x)) = \overline{p_i(x)}e_i. \]
 Hence
 \[\overline{\varphi}_i \overline{\psi}_i(C_i) = \overline{\varphi}_i \overline{\psi}_i(\overline{p_i(x)}) = \overline{\langle \varphi_i \psi_i(p_i(x)) \rangle} = \overline{\langle p_i(x)e_i \rangle}. \]
 Now by Theorem 4.1.3,
 \[C = \langle p_1(x)e_1 + \cdots + p_m(x)e_m \rangle. \]
 By Lemma 4.2.4, \(|C_i| = q^{n - \deg p_i(x)} \). Hence
 \[|C| = \prod_{i=1}^m |C_i| = q^{mn - \sum_{i=1}^m \deg(p_i(x))}. \]
(3) Consider the isomorphisms

\[\pi : R^n \to \frac{R[x]}{\langle x^n - 1 \rangle} \]

and

\[\pi_i : (Re_i)^n \to \frac{Re_i[x]}{\langle e_i x^n - e_i \rangle} . \]

Let \(C = \pi(C') \) and \(C_i = \pi_i(C'_i) \), where \(C' \subseteq R^n \) and \(C'_i \subseteq (Re_i)^n \). By these correspondences, \(C \) and \(C' \) have the same dual as linear codes. Also \(C_i \) and \(C'_i \) have the same dual. Denote the dual of these linear codes by \(C'^\perp \), \(C'^\perp_i \), \(C'^\perp_i \) and \(C'^\perp \). It is easy to see that

\[C'^\perp = \phi_1 \psi_1(C'^\perp_1) \oplus \cdots \oplus \phi_m \psi_m(C'^\perp_m) \]

if and only if

\[\phi(C'^\perp) = \overline{\phi_1 \psi_1(C_1')} \times \cdots \times \overline{\phi_m \psi_m(C_m')} . \]

But by Lemma 4.2.5, \(C'^\perp_i = \langle \ell_i' \rangle \). Hence by Item 2,

\[C'^\perp = \langle \ell_1' \rangle e_1 + \cdots + \ell_m'(x)e_m . \]

(4) By Lemma 3.2, \(F_q[x]/\langle x^n - 1 \rangle \) is a principal ideal ring. So by Part 2, \(R[x]/\langle x^n - 1 \rangle \) is a principal ideal ring.

\[\square \]

Theorem 4.4. Let

\[C = \langle p_1(x)e_1 + \cdots + p_m(x)e_m \rangle \]

be a cyclic code of length \(n \) over \(R \). Then \(C'^\perp \subseteq C \) if and only if for any \(i = 1, \ldots, m \) we have that

\[(x^n - 1) \equiv 0 \mod p_i(x) p_i^*(x) . \]

Proof. By above theorem \(\phi(C) = \overline{\phi_1 \psi_1(C_1')} \times \cdots \times \overline{\phi_m \psi_m(C_m)} \), where \(C_i = \langle p_i(x) \rangle \). Clearly

\[\phi(C'^\perp) = \overline{\phi_1 \psi_1(C'_1)} \times \cdots \times \overline{\phi_m \psi_m(C'_m)} \subseteq \phi(C) \]

if and only if

\[\overline{\phi_i \psi_i(C'_i)} \subseteq \overline{\phi_i \psi_i(C_i)} , \]

for \(i = 1, \ldots, m \). Hence \(C'^\perp \subseteq C \) if and only if \(C'^\perp_i \subseteq C_i \) for \(i = 1, \ldots, m \). But by Lemma 4.2.6, \(C'^\perp_i \subseteq C_i \) if and only if \((x^n - 1) \equiv 0 \mod p_i(x) p_i^*(x) \). This completes the proof. \[\square \]
Theorem 4.5. Let $C = \langle p_1(x)e_1 + \cdots + p_m(x)e_m \rangle$ be a cyclic code of length n over R with $d_L(C) = d$. If $(x^n - 1) \equiv 0 \pmod{p_i(x)p_j(x)}$ for $i = 1, \ldots, m$, then there exists a quantum error-correcting code over \mathbb{F}_q with the following parameters
\[
[mn, mn - 2 \sum_{i=1}^{m} \deg(p_i(x)), d] .
\]

Proof. By Theorem 4.4, $C^\perp \subseteq C$. Also $|C| = q^{mn - \sum_{i=1}^{m} \deg(p_i(x))}$ by Theorem 4.3.2. Apply the gray map ϕ on C. Then $\phi(C)$ is an linear code over \mathbb{F}_q. Now by Proposition 2.2, we have the result. \(\square\)

Example 4.6. Let $R = \mathbb{F}_7[y]/(y^3 - 1)$ and $n = 7$. Then $x^7 - 1 = (x-1)^7$ over \mathbb{F}_7. Consider the polynomials $p_1(x) = x - 1$, $p_2(x) = (x-1)^2$ and $p_3(x) = (x-1)^3$. Let
\[
C = \langle p_1(x)e_1 + p_2(x)e_2 + p_3(x)e_3 \rangle.
\]
By Theorem 3.5.4 and Theorem 4.32, it is easy to see that C is a $(7, 7^{15}, 2)$ cyclic code over R. By Theorem 4.4, $C^\perp \subseteq C$. Now by Theorem 4.5 there exists a quantum error-correcting code with parameters $[[21, 9, 2]]$ over \mathbb{F}_7.

Example 4.7. Let $R = \mathbb{F}_11[y]/(y^5 - 1)$ and $n = 11$. Then $x^{11} - 1 = (x-1)^{11}$ over \mathbb{F}_{11}. Consider the polynomials $p_1(x) = p_2(x) = (x-1)^4$ and $p_3(x) = p_4(x) = p_5(x) = (x-1)^5$. Let $C = \langle \sum_{i=1}^{5} p_i(x)e_i \rangle$. Then C is a $(11, 11^{32}, 5)$ cyclic code over R where $C^\perp \subseteq C$. So there exists a quantum error-correcting code with parameters $[[55, 9, 5]]$ over \mathbb{F}_{11}.

Example 4.8. Let $R_m = \mathbb{F}_{13}[y]/(y^m - 1)$ where $m \in \{2, 3, 4, 6\}$. Then
\[
x^8 - 1 = (x + 1)(x + 5)(x + 8)(x + 12)(x^2 + 5)(x^2 + 8)
\]
over \mathbb{F}_{13}. We obtain some quantum error-correcting codes from cyclic codes over R_m.

1. Let $m = 2$, $p_1(x) = (x + 8)(x^2 + 8)$ and $p_2(x) = (x + 5)(x^2 + 5)$. Then
\[
C = \langle \sum_{i=1}^{2} p_i(x)e_i \rangle
\]
is a $(8, 13^{10}, 3)$ cyclic code over R where $C^\perp \subseteq C$. Thus we have a quantum error-correcting code with parameters $[[16, 4, 3]]$ over \mathbb{F}_{13}.

Revista Colombiana de Matemáticas
(2) Let \(m = 3\), \(p_1(x) = x + 8\), \(p_2(x) = x^2 + 8\) and \(p_3(x) = x^2 + 5\). Then
\[
C = \langle \sum_{i=1}^{3} p_i(x) e_i \rangle
\]
is a \((8,13^19,2)\) cyclic code over \(R\) where \(C^\perp \subseteq C\), which proves the existence of a quantum error-correcting code with parameters \([[24,14,2]]\) over \(F_{13}\).

(3) Let \(m = 4\),
\[
p_1(x) = p_2(x) = (x + 8)(x^2 + 8)
\]
and
\[
p_3(x) = p_4(x) = (x + 5)(x^2 + 5).
\]
Then \(C = \langle \sum_{i=1}^{4} p_i(x) e_i \rangle\) is a \((32,13^{20},3)\) cyclic code over \(R\) where \(C^\perp \subseteq C\). Therefore there exists a quantum error-correcting code with parameters \([[32,8,3]]\) over \(F_{13}\).

(4) Let \(m = 6\),
\[
p_1(x) = x + 8,
\]
\[
p_2(x) = x + 5,
\]
\[
p_3(x) = p_4(x) = (x^2 + 8),
\]
\[
p_5(x) = p_6(x) = (x^2 + 5).
\]
Then
\[
C = \langle \sum_{i=1}^{6} p_i(x) e_i \rangle
\]
is a \((48,13^{38},2)\) cyclic code over \(R\) where \(C^\perp \subseteq C\). Hence there exists a quantum error-correcting code with parameters \([[48,28,2]]\) over \(F_{13}\).

References

(Recibido en mayo de 2021. Aceptado en mayo de 2022)

Mathematical Sciences and Statistics
Malayer University, Malayer, Iran
e-mail: shmehry@malayeru.ac.ir

Revista Colombiana de Matemáticas