On quantum codes from codes over R_{m}

Sobre códigos cuánticos a través de códigos sobre R_{m}

Shahram Mehry

Malayer University, Malayer, Iran

Abstract

Let $R_{m}=\mathbb{F}_{q}[y] /\left\langle y^{m}-1\right\rangle$, where $m \mid q-1$. In this paper, we obtain the structure of linear and cyclic codes over R_{m}. Also, we introduce a preserving-orthogonality Gray map from R_{m} to \mathbb{F}_{q}^{m}. Among the main results, we obtain the exact structure of self-orthogonal cyclic codes over R_{m} to introduce parameters of quantum codes from cyclic codes over R_{m}.

Key words and phrases. Self-orthogonal codes, Cyclic codes, Quantum codes.
2020 Mathematics Subject Classification. 94B05, 94B15, 81-04.
Resumen. Sea $R_{m}=\mathbb{F}_{q}[y] /\left\langle y^{m}-1\right\rangle$ donde $m \mid q-1$. En este artículo, obtenemos la estructura de códigos lineales y cíclicos sobre R_{m}. También introducimos una aplicación de Gray de R_{m} a \mathbb{F}_{q}^{m} que preserva la ortogonalidad. Entre los resultados principales, obtenemos la estructura exacta de los códigos cíclicos auto-ortogonales sobre R_{m} para introducir parámetros de los códigos cuánticos a través de los códigos cíclicos sobre R_{m}.

Palabras y frases clave. códigos auto-ortogonales, códigos cíclicos, códigos cuánticos.

1. Introduction

Quantum error correcting codes were introduced by Shor [10]. In a 1998 paper [3], the theory of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field \mathbb{F}_{4} which are self-orthogonal with respect to a certain trace inner product. Recently, codes over rings that serve as a source for QEC have also been of interest.

In [7], quantum codes from cyclic codes over $F_{2}+v F_{2}$ are studied. Also, in [1], a construction for quantum codes from cyclic codes over $R=\mathbb{F}_{3}+v \mathbb{F}_{3}$ where $v^{2}=1$ was given. In [4], a method to obtain self-orthogonal codes over \mathbb{F}_{2} is given and the parameters of quantum codes which are obtained from
cyclic codes over $R=\mathbb{F}_{2}+u \mathbb{F}_{2}+u^{2} \mathbb{F}_{2}+\cdots+u^{m} \mathbb{F}_{2}$ are determined. Also the construction of quantum codes over \mathbb{F}_{q} from cyclic codes over a finite nonchain ring $\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}+v^{3} \mathbb{F}_{q}$, where $q=p^{r}, p$ is a prime, $3 \mid p-1$ and $v^{4}=v$ was given in [5]. Recently, Sari and Siap extended the results of [1] over $R_{p}=\mathbb{F}_{p}+v \mathbb{F}_{p}+\cdots+v^{p-1} \mathbb{F}_{p}$ where $v^{p}=v$ and p is a prime [9].

In this paper, we introduce some classes of quantum codes over \mathbb{F}_{q} from linear and cyclic codes over the ring $R_{m}=\mathbb{F}_{q}[y] /\left\langle y^{m}-1\right\rangle$, where $m \mid q-1$. In Section 2, we recall the definition of quantum codes and we provide some basic background. In Section 3, the structure of linear codes over R_{m} is given. In addition, we introduce a preserving-orthogonality gray map from R_{m} to \mathbb{F}_{q}^{m}. Also we obtain the parameters of quantum codes over \mathbb{F}_{q} from linear codes over R_{m}. In the last Section, the exact structure of self-orthogonal cyclic codes over R_{m} is given in Theorem 4.4. Using this exact structure, we obtain an exact relation between cyclic codes over R_{m} and quantum codes over \mathbb{F}_{q} these results are presented in Theorem 4.5. At the end of the paper, some examples of self-orthogonal cyclic codes and their relations with quantum codes are given.

2. Quantum codes

In [3], the problem of finding quantum-error-correcting codes is transformed into the problem of finding additive codes over the field \mathbb{F}_{4}. These quaternary codes are linear over \mathbb{F}_{2}. The natural generalization from \mathbb{F}_{2} to an arbitrary finite ground field \mathbb{F}_{q} was provided in $[2$, Definition 1$]$ as follows.

Definition 2.1. Let $E=V(2, q)$ be the 2-dimensional vector space over \mathbb{F}_{q}. An \mathbb{F}_{q}-linear quantum code $[[n, k, d]]_{q}$ is an \mathbb{F}_{q}-subspace $C \subseteq E^{n}$, which satisfies the following conditions:
(1) C has \mathbb{F}_{q}-dimension $n-k$.
(2) $C \subseteq C^{\perp}$. Here the dual is taken with respect to an \mathbb{F}_{q}-linear symplectic scalar product on E^{n}, where each copy of E is a hyperbolic plane.
(3) The elements in $C^{\perp} \backslash C$ have weight $\geq d$.

In above definition, a symplectic form is a non-degenerate bilinear form β such that $\beta(x, y)=-\beta(y, x)$. Also a hyperbolic plane is a 2-dimensional subspace $H \subseteq E^{n}$, such that the restriction of β to H is non-degenerate.

The following proposition gives a method to construct quantum codes over a finite ground field \mathbb{F}_{q}.
Proposition 2.2. Let C_{1} and C_{2} be two linear codes such that $C_{2} \subseteq C_{1}$ over \mathbb{F}_{q}, and be with the parameters $\left[n, k_{1}, d_{1}\right]$ and $\left[n, k_{2}, d_{2}\right]$; respectively. Then there exists a quantum error-correcting code with the parameters [$\left.\left[n, k_{1}-k_{2}, \min \left\{d_{1}, d_{2}^{\perp}\right\}\right]\right]$, where d_{2}^{\perp} denotes the minimum hamming distance of the dual code C_{2}^{\perp} of C_{2}. Further, if $C_{2}=C_{1}^{\perp}$, then there exists a quantum error-correcting code with the parameters $\left[\left[n, 2 k_{1}-n, d_{1}\right]\right]$.

Proof. See Lemma 4 in [5].

We apply this proposition to obtain quantum codes. Note that the above proposition only introduces the parameters $[[n, k, d]]_{q}$ of the existing quantum codes which can be constructed by linear codes over \mathbb{F}_{q}. In other words, quantum codes as defined in Definition 2.1 are obtained by C_{1} and C_{2} which is not the purpose of this paper.

3. Quantum codes from linear codes over R

Throughout this paper let $R=R_{m}=\mathbb{F}_{q}[y] /\left\langle y^{m}-1\right\rangle$, where $m \mid q-1$. A linear code C of length n over R is an R-submodule of R^{n}. In this section, first we obtain the structure of linear codes over R. So we introduce a preservingorthogonality gray map from R to \mathbb{F}_{q}^{m} and we obtain the parameters of quantum codes over \mathbb{F}_{q} from linear codes over R.

Lemma 3.1. Let α be a primitive m th root of unity in \mathbb{F}_{q}. If $f_{i}=y-\alpha^{i}$ for $i=1, \ldots, m$, then $y^{m}-1=\prod_{i=1}^{m} f_{i}$ is the unique factorization of $y^{m}-1$ into irreducible factors over \mathbb{F}_{q}.

Proof. Since $q \equiv 1 \bmod m$, it follows from Theorem 4.2 in [8].
Lemma 3.2. Let $y^{m}-1=\prod_{i=1}^{m} f_{i}$ be the unique factorization of $y^{m}-1$ in above lemma and $\hat{f}_{i}=\prod_{j \neq i} f_{j}$, then there are $b_{i}^{\prime}, b_{i} \in \mathbb{F}_{q}[y]$ such that $b_{i}^{\prime} \hat{f}_{i}+b_{i} f_{i}=1$. If $e_{i}=b_{i}^{\prime} \hat{f}_{i}+\left\langle y^{m}-1\right\rangle \in R$, then
(1) e_{1}, \ldots, e_{m} are mutually orthogonal non-zero idempotents of R.
(2) $e_{1}+\cdots+e_{r}=1 \in R$.
(3) Let $R e_{i}$ be the principal ideal of R generated by e_{i}. Then e_{i} is the identity of $R e_{i}$.
(4) $R=R e_{1} \oplus \cdots \oplus R e_{m}$, where \oplus denotes the direct sum of rings.
(5) For each $i=1, . .$, m let $R_{i}=\mathbb{F}_{q}[y] /\left\langle f_{i}\right\rangle$. Then the map

$$
\varphi_{i}: R_{i} \rightarrow R e_{i}, g+\left\langle f_{i}\right\rangle \mapsto\left(g+\left\langle y^{m}-1\right\rangle\right) e_{i}
$$ is an isomorphism of rings.

(6) For each $i=1, .$. , m the map $\psi_{i}: \mathbb{F}_{q} \rightarrow R_{i}, a \mapsto a+\left\langle f_{i}\right\rangle$ is an isomorphism of rings.

Proof. See Theorem 4.6 in [8].

For a positive integer n, let $\psi_{i}: \mathbb{F}_{q}^{n} \rightarrow R_{i}^{n}$ and $\varphi_{i}:\left(R_{i}\right)^{n} \rightarrow\left(R e_{i}\right)^{n}$ be the natural generalizations of ψ_{i} and φ_{i}. The following theorem gives the structure of linear codes over R.

Theorem 3.3. (1) $R^{n}=\left(R e_{1}\right)^{n} \oplus \cdots \oplus\left(R e_{m}\right)^{n}$.
(2) C is a linear code over R of length n if and only if

$$
C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right)
$$

where C_{i} is a linear code over \mathbb{F}_{q} of length n. In this case $|C|=\Pi_{i=1}^{m}\left|C_{i}\right|$.
(3) Let C^{\perp} be the dual of C with respect to standard inner product in R. Then

$$
C^{\perp}=\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)
$$

where C_{i}^{\perp} is the dual of C_{i} with respect to standard inner product in \mathbb{F}_{q}.
Proof. (1) It follows from Lemma 3.2, part 4.
(2) Let $C \subseteq R^{n}$ be an R-submodule. By Item $1, C=\overline{C_{1}} \oplus \cdots \oplus \overline{C_{m}}$ where $\overline{C_{i}}$ is an $R e_{i}$-submodule of $\left(R e_{i}\right)^{n}$. Consider the \mathbb{F}_{q}-linear isomorphisms ψ_{i} : $\left(\mathbb{F}_{q}\right)^{n} \rightarrow\left(R_{i}\right)^{n}$ and $\varphi_{i}:\left(R_{i}\right)^{n} \rightarrow\left(R e_{i}\right)^{n}$. Since $\overline{C_{i}}$ is an \mathbb{F}_{q}-submodule, for any i we have that $\bar{C}_{i}=\varphi_{i} \psi_{i}\left(C_{i}\right)$ for some \mathbb{F}_{q}-submodule C_{i} of \mathbb{F}_{q}^{n}. Conversely let

$$
C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right),
$$

where C_{i} is a linear code over \mathbb{F}_{q} of length n. Since $\psi_{i}: \mathbb{F}_{q} \rightarrow R_{i}$ and $\varphi_{i}: R_{i} \rightarrow R e_{i}$ are isomorphisms of rings, $C_{i} \subseteq \mathbb{F}_{q}^{n}$ is an \mathbb{F}_{q}-submodule if and only if $\varphi_{i} \psi_{i}\left(C_{i}\right) \subseteq\left(R e_{i}\right)^{n}$ is an $R e_{i}$-submodule. Hence $C \subseteq R^{n}$ is an R-submodule. Clearly

$$
|C|=\Pi_{i=1}^{m}\left|\varphi_{i} \psi_{i}\left(C_{i}\right)\right|=\Pi_{i=1}^{m}\left|C_{i}\right| .
$$

(3) Let

$$
a=\varphi_{1} \psi_{1}\left(a_{1}\right)+\cdots+\varphi_{m} \psi_{m}\left(a_{m}\right) \in \varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)
$$

and

$$
b=\varphi_{1} \psi_{1}\left(b_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(b_{m}\right) \in C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right)
$$

where $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in C_{i}^{\perp}$ and $b_{i}=\left(b_{i 1}, \ldots, b_{i n}\right) \in C_{i}$ for $i=$ $1, \ldots, m$. It is easy to see that $\varphi_{i} \psi_{i}\left(a_{i}\right) \cdot \varphi_{j} \psi_{j}\left(b_{j}\right)=0$ for $i \neq j$. Therefore

$$
\begin{aligned}
a . b & =\sum_{i=1}^{m} \varphi_{i} \psi_{i}\left(a_{i}\right) \cdot \varphi_{i} \psi_{i}\left(b_{i}\right)=\sum_{i=1}^{m} \varphi_{i} \psi_{i}\left(a_{i} \cdot b_{i}\right) \\
& =\sum_{i=1}^{m} \varphi_{i} \psi_{i}(0)=0
\end{aligned}
$$

where in the last two lines we consider $\psi_{i}: \mathbb{F}_{q} \rightarrow R_{i}$ and $\varphi_{i}: R_{i} \rightarrow R e_{i}$ and also $a_{i} . b_{i}$ denotes the standard inner product over \mathbb{F}_{q}. So $a \in C^{\perp}$ and hence

$$
\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right) \subseteq C^{\perp}
$$

Since R is a Frobenius ring, $|C|\left|C^{\perp}\right|=\left|R^{n}\right|=q^{m n}$. So we have $\left|C^{\perp}\right|=$ $\frac{q^{m n}}{|C|}$. On other hand

$$
\left|\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)\right|=\prod_{i=1}^{m}\left|C_{i}^{\perp}\right|=\prod_{i=1}^{m} \frac{q^{n}}{\left|C_{i}\right|}=\frac{q^{m n}}{|C|}
$$

Thus

$$
\left|\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)\right|=\left|C^{\perp}\right|
$$

Therefore

$$
C^{\perp}=\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)
$$

V
By Part 4 of Lemma 3.2, for any $\bar{g}=g+\left\langle y^{m}-1\right\rangle \in R$ there exist $\overline{g_{1}}=$ $g_{1}+\left\langle y^{m}-1\right\rangle, \ldots, \overline{g_{m}}=g_{m}+\left\langle y^{m}-1\right\rangle \in R$ such that $\bar{g}=\overline{g_{1}} e_{1}+\cdots+\overline{g_{m}} e_{m}$. we define a gray map $\phi: R \rightarrow \mathbb{F}_{q}^{m}$ by $\phi(\bar{g})=\left(g_{1}(\alpha), \ldots, g_{m}\left(\alpha^{m}\right)\right)$.
Definition 3.4. Let $\bar{g}=\overline{g_{1}} e_{1}+\cdots+\overline{g_{m}} e_{m}$ be an element of R. The Lee weight of \bar{g} is defined as follows: $\omega_{L}(\bar{g})=\omega_{H}\left(g_{1}(\alpha), \ldots, g_{m}\left(\alpha^{m}\right)\right)$, where $\omega_{H}(a)$ denotes the hamming weight of the vector a over \mathbb{F}_{q}. We define the Lee weight of a vector $c=\left(c_{1}, \ldots, c_{n}\right) \in R^{n}$ to be the rational sum of Lee weights of its components, i.e. $\omega_{L}(c)=\sum_{i=1}^{n} \omega_{L}\left(c_{i}\right)$.

Theorem 3.5. Let $\phi: R^{n} \rightarrow \mathbb{F}_{q}^{m n}$ be the natural extension of the gray map ϕ form R to \mathbb{F}_{q}^{m}. Then
(1) The gray map ϕ is an \mathbb{F}_{q}-linear isomorphism.
(2) ϕ is a distance-preserving map from R^{n} (Lee distance) to $\mathbb{F}_{q}^{m n}$ (hamming distance).
(3) If $C \subseteq R^{n}$ is a linear code, then $\phi\left(C^{\perp}\right)=\phi(C)^{\perp}$.
(4) If $C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right)$, then

$$
d_{L}(C)=\min \left\{d_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\}
$$

where $d_{L}(C)$ is the Lee distance of C and $d_{H}\left(C_{i}\right)$ is the hamming distance of C_{i}.
(5) If $C \subseteq R^{n}$ is an (n, A, d) linear code, then $\phi(C)$ is an $\left[m n, \log _{q} A, d\right]$ linear code over \mathbb{F}_{q}.

Proof. (1) Since $\phi: R^{n} \rightarrow \mathbb{F}_{q}^{m n}$ is the natural extension of $\phi: R \rightarrow \mathbb{F}_{q}^{m}$, it suffices to show that $\phi: R \rightarrow \mathbb{F}_{q}^{m}$ is an \mathbb{F}_{q}-linear isomorphism. First we show that ϕ is well defined. Let $\bar{g}=\overline{g_{1}} e_{1}+\cdots+\overline{g_{m}} e_{m}=0$. Hence $\overline{g_{i}} e_{i}=0$ for any $i=1, \ldots, m$. But $\overline{g_{i}} e_{i}=0$ if and only if $g_{i} \in\left\langle f_{i}\right\rangle$. Since $f_{i}\left(\alpha^{i}\right)=\alpha^{i}-\alpha^{i}=0, g_{i}\left(\alpha^{i}\right)=0$. Thus $\phi(\bar{g})=\left(g_{1}(\alpha), \ldots, g_{m}\left(\alpha^{m}\right)\right)=0$. Now let $\bar{g}=\overline{g_{1}} e_{1}+\cdots+\overline{g_{m}} e_{m}$ and $\bar{h}=\overline{h_{1}} e_{1}+\cdots+\overline{h_{m}} e_{m}$ be elements of R and $a \in \mathbb{F}_{q}$. We have that

$$
\bar{g}+\bar{h}=\sum_{i=1}^{m}\left(\overline{g_{i}}+\overline{h_{i}}\right) e_{i}=\sum_{i=1}^{m} \overline{\left(g_{i}+h_{i}\right)} e_{i}
$$

Hence

$$
\begin{aligned}
\phi(\bar{g}+\bar{h}) & =\left(\left(g_{1}+h_{1}\right)(\alpha), \ldots,\left(g_{m}+h_{m}\right)\left(\alpha^{m}\right)\right) \\
& =\left(g_{1}(\alpha), \ldots, g_{m}\left(\alpha^{m}\right)\right)+\left(h_{1}(\alpha), \ldots, h_{m}\left(\alpha^{m}\right)\right)=\phi(\bar{g})+\phi(\bar{h}) .
\end{aligned}
$$

Also $a \bar{g}=\overline{a g_{1}} e_{1}+\cdots+\overline{a g_{m}} e_{m}$. Thus

$$
\phi(a \bar{g})=\left(a g_{1}(\alpha), \ldots, a g_{m}\left(\alpha^{m}\right)\right)=a\left(g_{1}(\alpha), \ldots, g_{m}\left(\alpha^{m}\right)\right)=a \phi(\bar{g})
$$

Therefore ϕ is an \mathbb{F}_{q}-linear homomorphism. Now let $\phi(\bar{g})=0$. We have that $g_{i}\left(\alpha^{i}\right)=0$ for $i=1, \ldots, m$. Thus $f_{i}=\left(y-\alpha^{i}\right) \mid g_{i}$ and hence $g_{i} \in\left\langle f_{i}\right\rangle$. As a result $\overline{g_{i}} e_{i}=0$ for $i=1, \ldots, m$ and consequently

$$
\bar{g}=\overline{g_{1}} e_{1}+\cdots+\overline{g_{m}} e_{m}=0
$$

Therefore ϕ is injective. Since $|R|=\left|\mathbb{F}_{q}^{m}\right|, \phi$ is surjective. This completes the proof.
(2) Let $c_{1}, c_{2} \in R^{n}$. By Part 1, $\phi\left(c_{1}-c_{2}\right)=\phi\left(c_{1}\right)-\phi\left(c_{2}\right)$. Hence

$$
\begin{aligned}
L\left(c_{1}, c_{2}\right) & =\omega_{L}\left(c_{1}-c_{2}\right) \\
& =\omega_{H}\left(\phi\left(c_{1}-c_{2}\right)\right) \\
& =\omega_{H}\left(\phi\left(c_{1}\right)-\phi\left(c_{2}\right)\right)=d_{H}\left(\phi\left(c_{1}\right), \phi\left(c_{2}\right)\right)
\end{aligned}
$$

This completes the proof.
(3) Let $c=\left(c_{1}, \ldots, c_{n}\right) \in C$ and $c^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \in C^{\perp}$ where

$$
c_{j}=\overline{c_{j 1}} e_{1}+\cdots+\overline{c_{j m}} e_{m}
$$

and

$$
c_{j}^{\prime}=\overline{c_{j 1}^{\prime}} e_{1}+\cdots+\overline{c_{j m}^{\prime}} e_{m}
$$

for $j=1, \ldots, n$. We have that
$\phi(c)=\left(c_{11}(\alpha), c_{12}\left(\alpha^{2}\right), \ldots, c_{1 m}\left(\alpha^{m}\right), \ldots, c_{n 1}(\alpha), c_{n 2}\left(\alpha^{2}\right), \ldots, c_{n m}\left(\alpha^{m}\right)\right)$,
$\phi\left(c^{\prime}\right)=\left(c_{11}^{\prime}(\alpha), c_{12}^{\prime}\left(\alpha^{2}\right), \ldots, c_{1 m}^{\prime}\left(\alpha^{m}\right), \ldots, c_{n 1}^{\prime}(\alpha), c_{n 2}^{\prime}\left(\alpha^{2}\right), \ldots, c_{n m}^{\prime}\left(\alpha^{m}\right)\right)$.

Thus

$$
\phi\left(c^{\prime}\right) \cdot \phi(c)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} c_{j i}^{\prime}\left(\alpha^{i}\right) c_{j i}\left(\alpha^{i}\right)\right)
$$

Now since $c^{\prime} \in C^{\perp}, c^{\prime} . c=0$. Therefore

$$
\sum_{i=1}^{m} \overline{\left(\sum_{j=1}^{n} c_{j i}^{\prime} c_{j i}\right)} e_{i}=0
$$

and so

$$
\overline{\left(\sum_{j=1}^{n} c_{j i}^{\prime} c_{j i}\right)} e_{i}=0
$$

Thus $\left(\sum_{j=1}^{n} c_{j i}^{\prime} c_{j i}\right) \in\left\langle f_{i}\right\rangle$. Consequently,

$$
\sum_{j=1}^{n} c_{j i}^{\prime}\left(\alpha^{i}\right) c_{j i}\left(\alpha^{i}\right)=\left(\sum_{j=1}^{n} c_{j i}^{\prime} c_{j i}\right)\left(\alpha^{i}\right)=0
$$

Thus $\phi\left(c^{\prime}\right) \cdot \phi(c)=0$ which proves that $\phi\left(c^{\prime}\right) \in \varphi(C)^{\perp}$. Therefore $\phi\left(C^{\perp}\right) \subseteq$ $\phi(C)^{\perp}$. Since R and \mathbb{F}_{q} are Frobenius rings, we have the following equality:

$$
\left|\phi\left(C^{\perp}\right)\right|=\left|C^{\perp}\right|=\frac{|R|^{n}}{|C|}=\frac{|R|^{n}}{|\phi(C)|}=\frac{\left|\mathbb{F}_{q}\right|^{m n}}{|\phi(C)|}=\left|\phi(C)^{\perp}\right| .
$$

Therefore $\phi\left(C^{\perp}\right)=\phi(C)^{\perp}$.
(4) Let $c=\left(c_{1}, \ldots, c_{n}\right) \in R^{n}$. Then $c=\sum_{i=1}^{m} \varphi_{i} \psi_{i}\left(a_{i}\right)$, where

$$
a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in\left(\mathbb{F}_{q}\right)^{n}
$$

for $i=1, \ldots, m$. It is easy to see that

$$
c_{j}=\left(a_{1 j}+\left\langle y^{m}-1\right\rangle\right) e_{1}+\cdots+\left(a_{m j}+\left\langle y^{m}-1\right\rangle\right) e_{m}
$$

for $j=1, \ldots, n$. So

$$
\phi(c)=\left(a_{11}, \ldots, a_{m 1}, \ldots, a_{1 n}, \ldots, a_{m n}\right)
$$

and hence $\omega_{L}(c)=\sum_{i=1}^{m} \omega_{H}\left(a_{i}\right)$. Now let $\omega_{L}(C)=\omega_{L}(c)$ for some $c \in C$. We have that $c=\sum_{i=1}^{m} \varphi_{i} \psi_{i}\left(a_{i}\right)$ for some $a_{i} \in C_{i}$. Let $a_{j} \neq 0$. Then

$$
\omega_{L}(C)=\omega_{L}(c)=\sum_{i=1}^{m} \omega_{H}\left(a_{i}\right) \geq \omega_{H}\left(a_{j}\right) \geq \min \left\{\omega_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\}
$$

On other hand if $a_{i} \in C_{i}$, then $c^{\prime}=\varphi_{i} \psi_{i}\left(a_{i}\right) \in C$. But

$$
\omega_{L}(C) \leq \omega_{L}\left(c^{\prime}\right)=\omega_{H}\left(a_{i}\right)
$$

Hence

$$
\omega_{L}(C) \leq \min \left\{\omega_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\}
$$

Therefore

$$
\omega_{L}(C)=\min \left\{\omega_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\}
$$

Since the maps φ_{i}, ψ_{i} and ϕ are linear maps, we have the following equality that completes the proof

$$
\begin{aligned}
d_{L}(C)=\omega_{L}(C) & =\min \left\{\omega_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\} \\
& =\min \left\{d_{H}\left(C_{i}\right) ; i=1, \ldots, m\right\}
\end{aligned}
$$

(5) It is clear by the definition of the gray map ϕ.

The following theorem indicates the existence of some quantum codes.
Theorem 3.6. Let

$$
C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right)
$$

be a linear code over R, where C_{i} is an $\left[n, k_{i}, d_{i}\right]$ linear code over \mathbb{F}_{q}. If $C_{i}^{\perp} \subseteq C_{i}$, then there exists a quantum error-correcting code with the parameters

$$
\left[\left[m n, 2\left(\sum_{i=1}^{m} k_{i}\right)-m n, \min \left\{d_{i} ; i=1, \ldots, m\right\}\right]\right]
$$

Proof. By Theorem 3.3.3,

$$
C^{\perp}=\varphi_{1} \psi_{1}\left(C_{1}^{\perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp}\right)
$$

Then $C^{\perp} \subseteq C$ and so $\phi\left(C^{\perp}\right) \subseteq \phi(C)$. But $\phi\left(C^{\perp}\right)=\phi(C)^{\perp}$; see Theorem 3.5.3. Hence $\phi(C)^{\perp} \subseteq \phi(C)$. Also by Theorem 3.5, $\phi(C)$ is an

$$
\left[m n, \sum_{i=1}^{m} k_{i}, \min \left\{d_{i} ; i=1, \ldots, m\right\}\right]
$$

linear code over \mathbb{F}_{q}. Now Proposition 2.2 proves the existence of a quantum error-correcting code with the following parameters

$$
\left[\left[m n, 2\left(\sum_{i=1}^{m} k_{i}\right)-m n, \min \left\{d_{i} ; i=1, \ldots, m\right\}\right]\right]
$$

Note that the above theorem only shows the existence of quantum codes with the help of self-orthogonal codes, but obtaining the exact structure of the self-orthogonal code $C=\varphi_{1} \psi_{1}\left(C_{1}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}\right)$ may not be very efficient. In the next section, as a special case of such codes, we specify the exact structure of self-orthogonal cyclic codes over R_{m}. Therefore the structure of quantum codes can be obtained with the relation between self-orthogonal codes and quantum codes, mentioned in Proposition 2.2. Moreover, some examples of self-orthogonal cyclic codes are given.

4. Quantum codes from cyclic codes over R

In this section, we obtain the structure of cyclic codes over $R=R_{m}=$ $\mathbb{F}_{q}[y] /\left\langle y^{m}-1\right\rangle$. We determine the parameters of quantum codes over \mathbb{F}_{q} from cyclic codes over R and some examples are given. Consider the following correspondence.

$$
\begin{aligned}
\pi: R^{n} & \rightarrow R[x] /\left\langle x^{n}-1\right\rangle, & \\
\left(a_{0}, a_{1} \ldots, a_{n-1}\right) & \mapsto & a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left\langle x^{n}-1\right\rangle .
\end{aligned}
$$

Clearly π is an R-module isomorphism. We will identify R^{n} with $R[x] /\left\langle x^{n}-1\right\rangle$ under π. A nonempty subset C of R^{n} is a cyclic code if and only if $\pi(C)$ is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$. Now consider the decomposition $R=R e_{1} \oplus \cdots \oplus R e_{m}$ in Lemma 3.2. The following theorem gives a decomposition for $R[x] /\left\langle x^{n}-1\right\rangle$.

Theorem 4.1. (1) The following map is an isomorphism of rings;

$$
\begin{aligned}
\varphi: \frac{R[x]}{\left\langle x^{n}-1\right\rangle} & \rightarrow \frac{R e_{1}[x]}{\left\langle e_{1} x^{n}-e_{1}\right\rangle} \times \cdots \times \frac{R e_{m}[x]}{\left\langle e_{m} x^{n}-e_{m}\right\rangle} \\
\bar{h} & \mapsto\left(\overline{h e_{1}}, \ldots, \overline{h e_{m}}\right),
\end{aligned}
$$

where $\bar{h}=h+\left\langle x^{n}-1\right\rangle$ and $\overline{h e_{i}}=h e_{i}+\left\langle e_{i} x^{n}-e_{i}\right\rangle$.
(2) C is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$ if and only if $\varphi(C)=J_{1} \times \cdots \times J_{m}$, where J_{i} is an ideal of $R e_{i}[x] /\left\langle e_{i} x^{n}-e_{i}\right\rangle$.
(3) If $J_{i}=\left\langle\overline{h_{i}}\right\rangle$ for $i=1, \ldots, m$, then $C=\left\langle\overline{h_{1}+\cdots+h_{m}}\right\rangle$.

Proof. (1) Let $\bar{h} \in R[x] /\left\langle x^{n}-1\right\rangle$. Then

$$
\begin{aligned}
\bar{h}=0 & \Leftrightarrow h \in\left\langle x^{n}-1\right\rangle \\
& \Leftrightarrow \exists g \in R[x] ; h=g\left(x^{n}-1\right) \\
& \Leftrightarrow h e_{i}=g\left(e_{i} x^{n}-e_{i}\right) \text { for } i=1, \ldots, m \\
& \Leftrightarrow \overline{h e_{i}}=0 \text { for } i=1, \ldots, m
\end{aligned}
$$

Hence φ is well defined and injective. Now let

$$
\left(\overline{h_{1}}, \ldots, \overline{h_{m}}\right) \in \prod_{i=1}^{m} \frac{R e_{i}[x]}{\left\langle e_{i} x^{n}-e_{i}\right\rangle}
$$

Since e_{i} is the identity of $R e_{i}[x], h_{i}=h_{i} e_{i}$ for $i=1, \ldots, m$. Also for $i \neq j, h_{i} e_{j}=h_{i} e_{i} e_{j}=0$. Hence $\varphi\left(\overline{h_{1}+\cdots+h_{m}}\right)=\left(\overline{h_{1}}, \ldots, \overline{h_{m}}\right)$. Thus φ is surjective. It is easy to see that $\varphi\left(\bar{h} \cdot \overline{h^{\prime}}\right)=\varphi(\bar{h}) \cdot \varphi\left(\overline{h^{\prime}}\right)$ and $\varphi\left(\bar{h}+\overline{h^{\prime}}\right)=$ $\varphi(\bar{h})+\varphi\left(\overline{h^{\prime}}\right)$ for $\bar{h}, \overline{h^{\prime}} \in R[x] /\left\langle x^{n}-1\right\rangle$. Therefore φ is an isomorphism of rings.
(2) It is clear by Item 1 .
(3) By the proof of Part 1, we have that

$$
\varphi\left(\overline{h_{1}+\cdots+h_{m}}\right)=\left(\overline{h_{1}}, \ldots, \overline{h_{m}}\right)
$$

Hence

$$
\varphi(C)=J_{1} \times \cdots \times J_{m}=\left\langle\varphi\left(\overline{h_{1}+\cdots+h_{m}}\right)\right\rangle=\varphi\left(\left\langle\overline{h_{1}+\cdots+h_{m}}\right\rangle\right)
$$

Therefore $C=\left\langle\overline{h_{1}+\cdots+h_{m}}\right\rangle$.

Now we want to obtain the structure of cyclic codes over R. First we remind the following lemma that gives the structure of cyclic codes over \mathbb{F}_{q}.

Lemma 4.2. Let C be a nonzero cyclic code over \mathbb{F}_{q} of length n. There exists a polynomial $g(x) \in C$ with the following properties:
(1) $p(x)$ is the unique monic polynomial of minimum degree in C,
(2) $C=\langle p(x)\rangle$, and
(3) $p(x) \mid\left(x^{n}-1\right)$.
(4) $|C|=q^{n-\operatorname{deg} p(x)}$.
(5) If $\ell(x)=\left(x^{n}-1\right) / p(x)$ then $C^{\perp}=\left\langle\ell^{\star}(x)\right\rangle$ where $\ell^{\star}(x)$ is the reciprocal polynomial of $\ell(x)$.
(6) C contains its dual code if and only if $\left(x^{n}-1\right) \equiv 0 \bmod p(x) p^{\star}(x)$, where $p^{\star}(x)$ is the reciprocal polynomial of $p(x)$.

Proof. Parts 1, 2, 3 and 4 follow from Theorem 4.2.1 in [6]. Item 5 follows from Theorem 5.6 in [8]. We have Part 6 by Lemma 8 in [5].

Volumen 56, Número 1, Año 2022

Now let

$$
\overline{\psi_{i}}: \mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle \rightarrow R_{i}[x] /\left\langle 1_{R_{i}} x^{n}-1_{R_{i}}\right\rangle
$$

and

$$
\overline{\varphi_{i}}: R_{i}[x] /\left\langle 1_{R_{i}} x^{n}-1_{R_{i}}\right\rangle \rightarrow R e_{i}[x] /\left\langle e_{i} x^{n}-e_{i}\right\rangle
$$

be the natural extension of isomorphisms ψ_{i} and φ_{i} in Lemma 3.2. It easy to see that $\overline{\varphi_{i}}$ and $\overline{\psi_{i}}$ are isomorphisms of rings. The following theorem gives the structure of cyclic codes over R.

Theorem 4.3. (1) C is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$ if and only if

$$
\varphi(C)=\overline{\varphi_{i}} \overline{\psi_{i}}\left(C_{1}\right) \times \cdots \times \overline{\varphi_{i}} \overline{\psi_{i}}\left(C_{m}\right),
$$

where C_{i} is a cyclic code over \mathbb{F}_{q} of length $n ; C_{i}$ is an ideal of $\mathbb{F}_{q}[x] /\left\langle x^{n}-\right.$ 1).
(2) If $C_{i}=\left\langle\overline{p_{i}(x)}\right\rangle$ for $i=1, \ldots, m$, then

$$
C=\left\langle\overline{p_{1}(x) e_{1}+\cdots+p_{m}(x) e_{m}}\right\rangle
$$

In this case $|C|=q^{m n-\sum_{i=1}^{m} \operatorname{deg}\left(p_{i}(x)\right)}$.
(3) If $\ell_{i}(x)=\left(x^{n}-1\right) / p_{i}(x)$ for $i=1, \ldots, m$, then

$$
\left.C^{\perp}=\overline{\left\langle\ell_{1}^{\star}(x) e_{1}+\cdots+\ell_{m}^{\star}(x) e_{m}\right.}\right\rangle
$$

where $\ell_{i}^{\star}(x)$ is the reciprocal polynomial of $\ell_{i}(x)$.
(4) $R[x] /\left\langle x^{n}-1\right\rangle$ is a principal ideal ring.

Proof. (1) Since $\overline{\varphi_{i}}$ and $\overline{\psi_{i}}$ are isomorphisms of rings, it follows from Theorem 4.1.2.
(2) It is easy to see that

$$
\overline{\varphi_{i}} \overline{\psi_{i}}\left(\overline{p_{i}(x)}\right)=\overline{p_{i}(x) e_{i}}
$$

Hence

$$
\overline{\varphi_{i}} \overline{\psi_{i}}\left(C_{i}\right)=\overline{\varphi_{i}} \overline{\psi_{i}}\left(\left\langle\overline{p_{i}(x)}\right\rangle\right)=\left\langle\overline{\varphi_{i}} \overline{\psi_{i}}\left(\overline{p_{i}(x)}\right)\right\rangle=\left\langle\overline{p_{i}(x) e_{i}}\right\rangle .
$$

Now by Theorem 4.1.3,

$$
C=\left\langle\overline{p_{1}(x) e_{1}+\cdots+p_{m}(x) e_{m}}\right\rangle .
$$

By Lemma 4.2.4, $\left|C_{i}\right|=q^{n-\operatorname{deg} p_{i}(x)}$. Hence

$$
|C|=\prod_{i=1}^{m}\left|C_{i}\right|=q^{m n-\sum_{i=1}^{m} \operatorname{deg}\left(p_{i}(x)\right)}
$$

(3) Consider the isomorphisms

$$
\pi: R^{n} \rightarrow \frac{R[x]}{\left\langle x^{n}-1\right\rangle}
$$

and

$$
\pi_{i}:\left(\operatorname{Re}_{i}\right)^{n} \rightarrow \frac{R e_{i}[x]}{\left\langle e_{i} x^{n}-e_{i}\right\rangle}
$$

Let $C=\pi\left(C^{\prime}\right)$ and $C_{i}=\pi_{i}\left(C_{i}^{\prime}\right)$, where $C^{\prime} \subseteq R^{n}$ and $C_{i}^{\prime} \subseteq\left(R e_{i}\right)^{n}$. By these correspondences, C and C^{\prime} have the same dual as linear codes. Also C_{i} and C_{i}^{\prime} have the same dual. Denote the dual of these linear codes by $C^{\perp}, C^{\prime \perp}, C_{i}^{\perp}$ and $C_{i}^{\prime \perp}$. It is easy to see that

$$
C^{\prime \perp}=\varphi_{1} \psi_{1}\left(C_{1}^{\prime \perp}\right) \oplus \cdots \oplus \varphi_{m} \psi_{m}\left(C_{m}^{\perp \perp}\right)
$$

if and only if

$$
\varphi\left(C^{\perp}\right)=\overline{\varphi_{1}} \overline{\psi_{1}}\left(C_{1}^{\perp}\right) \times \cdots \times \overline{\varphi_{m}} \overline{\psi_{m}}\left(C_{m}^{\perp}\right) .
$$

But by Lemma 4.2.5, $C_{i}^{\perp}=\left\langle\overline{\ell_{i}^{\star}(x)}\right\rangle$. Hence by Item 2 ,

$$
\left.C^{\perp}=\overline{\left\langle\ell_{1}^{\star}(x) e_{1}+\cdots+\ell_{m}^{\star}(x) e_{m}\right.}\right\rangle
$$

(4) By Lemma 3.2, $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$ is a principal ideal ring. So by Part 2 , $R[x] /\left\langle x^{n}-1\right\rangle$ is a principal ideal ring.

Theorem 4.4. Let

$$
C=\left\langle\overline{p_{1}(x) e_{1}+\cdots+p_{m}(x) e_{m}}\right\rangle
$$

be a cyclic code of length n over R. Then $C^{\perp} \subseteq C$ if and only if for any $i=1, \ldots, m$ we have that

$$
\left(x^{n}-1\right) \equiv 0 \quad \bmod p_{i}(x) p_{i}^{\star}(x)
$$

Proof. By above theorem $\varphi(C)=\overline{\varphi_{1}} \overline{\psi_{1}}\left(C_{1}\right) \times \cdots \times \overline{\varphi_{m}} \overline{\psi_{m}}\left(C_{m}\right)$, where $C_{i}=$ $\left\langle\overline{p_{i}(x)}\right\rangle$. Clearly

$$
\begin{aligned}
\varphi\left(C^{\perp}\right) & =\overline{\varphi_{1}} \overline{\psi_{1}}\left(C_{1}^{\perp}\right) \times \cdots \times \overline{\varphi_{m}} \overline{\psi_{m}}\left(C_{m}^{\perp}\right) \subseteq \varphi(C) \\
& =\overline{\varphi_{1}} \overline{\psi_{1}}\left(C_{1}\right) \times \cdots \times \overline{\varphi_{m}} \overline{\psi_{m}}\left(C_{m}\right)
\end{aligned}
$$

if and only if

$$
\overline{\varphi_{i}} \overline{\psi_{i}}\left(C_{i}^{\perp}\right) \subseteq \overline{\varphi_{i}} \overline{\psi_{i}}\left(C_{i}\right)
$$

for $i=1, \ldots, m$. Hence $C^{\perp} \subseteq C$ if and only if $C_{i}^{\perp} \subseteq C_{i}$ for $i=1, \ldots, m$. But by Lemma 4.2.6, $C_{i}^{\perp} \subseteq C_{i}$ if and only if $\left(x^{n}-1\right) \equiv 0 \bmod p_{i}(x) p_{i}^{\star}(x)$. This completes the proof.

Theorem 4.5. Let $C=\left\langle\overline{p_{1}(x) e_{1}+\cdots+p_{m}(x) e_{m}}\right\rangle$ be a cyclic code of length n over R with $d_{L}(C)=d$. If $\left(x^{n}-1\right) \equiv 0 \bmod p_{i}(x) p_{i}^{\star}(x)$ for $i=1, \ldots, m$, then there exists a quantum error-correcting code over \mathbb{F}_{q} with the following parameters

$$
\left[\left[m n, m n-2 \sum_{i=1}^{m} \operatorname{deg}\left(p_{i}(x)\right), d\right]\right] .
$$

Proof. By Theorem 4.4, $C^{\perp} \subseteq C$. Also $|C|=q^{m n-\sum_{i=1}^{m} \operatorname{deg}\left(p_{i}(x)\right)}$ by Theorem 4.3.2. Apply the gray map ϕ on C. Then $\phi(C)$ is an

$$
\left[m n, m n-\sum_{i=1}^{m} \operatorname{deg}\left(p_{i}(x)\right), d\right]
$$

linear code over \mathbb{F}_{q}. Now by Proposition 2.2 , we have the result.
Example 4.6. Let $R=\mathbb{F}_{7}[y] /\left\langle y^{3}-1\right\rangle$ and $n=7$. Then $x^{7}-1=(x-1)^{7}$ over \mathbb{F}_{7}. Consider the polynomials $p_{1}(x)=x-1, p_{2}(x)=(x-1)^{2}$ and $p_{3}(x)=(x-1)^{3}$. Let

$$
C=\left\langle\overline{p_{1}(x) e_{1}+p_{2}(x) e_{2}+p_{3}(x) e_{3}}\right\rangle
$$

By Theorem 3.5.4 and Theorem 4.32, it is easy to see that C is a $\left(7,7^{15}, 2\right)$ cyclic code over R. By Theorem $4.4, C^{\perp} \subseteq C$. Now by Theorem 4.5 there exists a quantum error-correcting code with parameters $[[21,9,2]]$ over \mathbb{F}_{7}.

Example 4.7. Let $R=\mathbb{F}_{11}[y] /\left\langle y^{5}-1\right\rangle$ and $n=11$. Then $x^{11}-1=(x-1)^{11}$ over \mathbb{F}_{11}. Consider the polynomials $p_{1}(x)=p_{2}(x)=(x-1)^{4}$ and $p_{3}(x)=$ $p_{4}(x)=p_{5}(x)=(x-1)^{5}$. Let $C=\left\langle\overline{\sum_{i=1}^{5} p_{i}(x) e_{i}}\right\rangle$. Then C is a $\left(11,11^{32}, 5\right)$ cyclic code over R where $C^{\perp} \subseteq C$. So there exists a quantum error-correcting code with parameters $[[55,9,5]]$ over \mathbb{F}_{11}.

Example 4.8. Let $R_{m}=\mathbb{F}_{13}[y] /\left\langle y^{m}-1\right\rangle$ where $m \in\{2,3,4,6\}$. Then

$$
x^{8}-1=(x+1)(x+5)(x+8)(x+12)\left(x^{2}+5\right)\left(x^{2}+8\right)
$$

over \mathbb{F}_{13}. We obtain some quantum error-correcting codes from cyclic codes over R_{m}.
(1) Let $m=2, p_{1}(x)=(x+8)\left(x^{2}+8\right)$ and $p_{2}(x)=(x+5)\left(x^{2}+5\right)$. Then

$$
C=\overline{\left\langle\sum_{i=1}^{2} p_{i}(x) e_{i}\right\rangle}
$$

is a $\left(8,13^{10}, 3\right)$ cyclic code over R where $C^{\perp} \subseteq C$. Thus we have a quantum error-correcting code with parameters $[[16,4,3]]$ over \mathbb{F}_{13}.
(2) Let $m=3, p_{1}(x)=x+8, p_{2}(x)=x^{2}+8$ and $p_{3}(x)=x^{2}+5$. Then

$$
C=\overline{\left\langle\sum_{i=1}^{3} p_{i}(x) e_{i}\right\rangle}
$$

is a $\left(8,13^{19}, 2\right)$ cyclic code over R where $C^{\perp} \subseteq C$, which proves the existing of a quantum error-correcting code with parameters [[24, 14, 2]] over \mathbb{F}_{13}.
(3) Let $m=4$,

$$
p_{1}(x)=p_{2}(x)=(x+8)\left(x^{2}+8\right)
$$

and

$$
p_{3}(x)=p_{4}(x)=(x+5)\left(x^{2}+5\right)
$$

Then $C=\left\langle\overline{\sum_{i=1}^{4} p_{i}(x) e_{i}}\right\rangle$ is a $\left(32,13^{20}, 3\right)$ cyclic code over R where $C^{\perp} \subseteq C$. Therefore there exists a quantum error-correcting code with parameters $[[32,8,3]]$ over \mathbb{F}_{13}.
(4) Let $m=6$,

$$
\begin{aligned}
p_{1}(x) & =(x+8) \\
p_{2}(x) & =(x+5) \\
p_{3}(x)=p_{4}(x) & =\left(x^{2}+8\right) \\
p_{5}(x)=p_{6}(x) & =\left(x^{2}+5\right)
\end{aligned}
$$

Then

$$
C=\overline{\left\langle\sum_{i=1}^{6} p_{i}(x) e_{i}\right\rangle}
$$

is a $\left(48,13^{38}, 2\right)$ cyclic code over R where $C^{\perp} \subseteq C$. Hence there exists a quantum error-correcting code with parameters $[[48,28,2]]$ over \mathbb{F}_{13}.

References

[1] M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $f_{3}+v f_{3}$, Int. J. Quantum Inform. 12 (2014), no. 6, 1450042.
[2] J. Bierbrauer and Y. Edel, Quantum twisted codes, J. Combin. Des. 8 (2000), 174-188.
[3] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, Quantum error correction via codes over gf(4), IEEE Trans. Inform. Theory. IT-44 (1998), 1369-1387.
[4] A. Dertli, Y. Cengellenmis, and S. Eren, Quantum codes over the ring $\mathbb{F}_{2}+u \mathbb{F}_{2}+u^{2} \mathbb{F}_{2}+\cdots+u^{m} \mathbb{F}_{2}$, Int. J. Algebra. 9 (2015), no. 3, $115-121$.
[5] J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}+v^{3} \mathbb{F}_{q}$, Int. J. Quantum Inform. 13 (2015), no. 8, 1550063.
[6] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
[7] J. Qian, Quantum codes from cyclic codes over $f_{2}+v f_{2}$, J. Inform. Comput. Sci. 10 (2013), no. 6, 1715-1722.
[8] K. Samei and S. Mahmoudi, Cyclic r-additive codes, Discrete Math. 340 (2017), 1657-1668.
[9] M. Sari and I. Siap, Quantum codes from cyclic codes over a class of nonchain rings, Bull. Korean Math. Soc., http:// dx.doi.org/10.4134/BKMS.b150544 pISSN: 1015-8634 / eISSN: 2234-3016, 2017.
[10] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A. 52 (1995), 2493- 2496.
(Recibido en mayo de 2021. Aceptado en mayo de 2022)

Mathematical Sciences and Statistics
Malayer University, Malayer, Iran
e-mail: shmehry@malayeru.ac.ir

