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On quantum codes from codes over Rm

Sobre códigos cuánticos a través de códigos sobre Rm
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Abstract. Let Rm = Fq[y]/〈ym − 1〉, where m | q − 1. In this paper, we
obtain the structure of linear and cyclic codes over Rm. Also, we introduce
a preserving-orthogonality Gray map from Rm to Fm

q . Among the main re-
sults, we obtain the exact structure of self-orthogonal cyclic codes over Rm to
introduce parameters of quantum codes from cyclic codes over Rm.
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Resumen. Sea Rm = Fq[y]/〈ym − 1〉 donde m | q − 1. En este art́ıculo, obte-
nemos la estructura de códigos lineales y ćıclicos sobre Rm. También intro-
ducimos una aplicación de Gray de Rm a Fm

q que preserva la ortogonalidad.
Entre los resultados principales, obtenemos la estructura exacta de los códigos
ćıclicos auto-ortogonales sobre Rm para introducir parámetros de los códigos
cuánticos a través de los códigos ćıclicos sobre Rm.

Palabras y frases clave. códigos auto-ortogonales, códigos ćıclicos, códigos cuán-
ticos.

1. Introduction

Quantum error correcting codes were introduced by Shor [10]. In a 1998 paper
[3], the theory of finding quantum error-correcting codes is transformed into
the problem of finding additive codes over the field F4 which are self-orthogonal
with respect to a certain trace inner product. Recently, codes over rings that
serve as a source for QEC have also been of interest.

In [7], quantum codes from cyclic codes over F2 + vF2 are studied. Also,
in [1], a construction for quantum codes from cyclic codes over R = F3 + vF3

where v2 = 1 was given. In [4], a method to obtain self-orthogonal codes over
F2 is given and the parameters of quantum codes which are obtained from
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cyclic codes over R = F2 + uF2 + u2F2 + · · · + umF2 are determined. Also
the construction of quantum codes over Fq from cyclic codes over a finite non-
chain ring Fq + vFq + v2Fq + v3Fq, where q = pr, p is a prime, 3 | p − 1 and
v4 = v was given in [5]. Recently, Sari and Siap extended the results of [1] over
Rp = Fp + vFp + · · ·+ vp−1Fp where vp = v and p is a prime [9].

In this paper, we introduce some classes of quantum codes over Fq from
linear and cyclic codes over the ring Rm = Fq[y]/〈ym − 1〉, where m | q − 1.
In Section 2, we recall the definition of quantum codes and we provide some
basic background. In Section 3, the structure of linear codes over Rm is given.
In addition, we introduce a preserving-orthogonality gray map from Rm to Fm

q .
Also we obtain the parameters of quantum codes over Fq from linear codes
over Rm. In the last Section, the exact structure of self-orthogonal cyclic codes
over Rm is given in Theorem 4.4. Using this exact structure, we obtain an
exact relation between cyclic codes over Rm and quantum codes over Fq these
results are presented in Theorem 4.5. At the end of the paper, some examples of
self-orthogonal cyclic codes and their relations with quantum codes are given.

2. Quantum codes

In [3], the problem of finding quantum-error-correcting codes is transformed
into the problem of finding additive codes over the field F4. These quaternary
codes are linear over F2. The natural generalization from F2 to an arbitrary
finite ground field Fq was provided in [2, Definition 1] as follows.

Definition 2.1. Let E = V (2, q) be the 2-dimensional vector space over Fq.
An Fq-linear quantum code [[n, k, d]]q is an Fq-subspace C ⊆ En, which satisfies
the following conditions:

(1) C has Fq-dimension n− k.

(2) C ⊆ C⊥. Here the dual is taken with respect to an Fq-linear symplectic
scalar product on En, where each copy of E is a hyperbolic plane.

(3) The elements in C⊥ \ C have weight ≥ d.

In above definition, a symplectic form is a non-degenerate bilinear form
β such that β(x, y) = −β(y, x). Also a hyperbolic plane is a 2-dimensional
subspace H ⊆ En, such that the restriction of β to H is non-degenerate.

The following proposition gives a method to construct quantum codes over
a finite ground field Fq.

Proposition 2.2. Let C1 and C2 be two linear codes such that C2 ⊆ C1

over Fq, and be with the parameters [n, k1, d1] and [n, k2, d2]; respectively.
Then there exists a quantum error-correcting code with the parameters
[[n, k1 − k2,min{d1, d

⊥
2 }]], where d⊥2 denotes the minimum hamming distance

of the dual code C⊥2 of C2. Further, if C2 = C⊥1 , then there exists a quantum
error-correcting code with the parameters [[n, 2k1 − n, d1]].
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Proof. See Lemma 4 in [5]. �X

We apply this proposition to obtain quantum codes. Note that the above
proposition only introduces the parameters [[n, k, d]]q of the existing quantum
codes which can be constructed by linear codes over Fq. In other words, quan-
tum codes as defined in Definition 2.1 are obtained by C1 and C2 which is not
the purpose of this paper.

3. Quantum codes from linear codes over R

Throughout this paper let R = Rm = Fq[y]/〈ym − 1〉, where m | q − 1. A
linear code C of length n over R is an R-submodule of Rn. In this section, first
we obtain the structure of linear codes over R. So we introduce a preserving-
orthogonality gray map from R to Fm

q and we obtain the parameters of quantum
codes over Fq from linear codes over R.

Lemma 3.1. Let α be a primitive mth root of unity in Fq. If fi = y − αi for
i = 1, . . . ,m, then ym − 1 =

∏m
i=1 fi is the unique factorization of ym − 1 into

irreducible factors over Fq.

Proof. Since q ≡ 1 mod m, it follows from Theorem 4.2 in [8]. �X

Lemma 3.2. Let ym−1 =
∏m

i=1 fi be the unique factorization of ym−1 in above

lemma and f̂i =
∏

j 6=i fj, then there are b′i, bi ∈ Fq[y] such that b′if̂i + bifi = 1.

If ei = b′if̂i + 〈ym − 1〉 ∈ R, then

(1) e1, . . . , em are mutually orthogonal non-zero idempotents of R.

(2) e1 + · · ·+ er = 1 ∈ R.

(3) Let Rei be the principal ideal of R generated by ei. Then ei is the identity
of Rei.

(4) R = Re1 ⊕ · · · ⊕Rem, where ⊕ denotes the direct sum of rings.

(5) For each i = 1, ..,m let Ri = Fq[y]/〈fi〉. Then the map

ϕi : Ri → Rei, g + 〈fi〉 7→ (g + 〈ym − 1〉)ei

is an isomorphism of rings.

(6) For each i = 1, ..,m the map ψi : Fq → Ri, a 7→ a+〈fi〉 is an isomorphism
of rings.

Proof. See Theorem 4.6 in [8]. �X
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For a positive integer n, let ψi : Fn
q → Rn

i and ϕi : (Ri)
n → (Rei)

n be the
natural generalizations of ψi and ϕi. The following theorem gives the structure
of linear codes over R.

Theorem 3.3. (1) Rn = (Re1)n ⊕ · · · ⊕ (Rem)n.

(2) C is a linear code over R of length n if and only if

C = ϕ1ψ1(C1)⊕ · · · ⊕ ϕmψm(Cm),

where Ci is a linear code over Fq of length n. In this case |C| = Πm
i=1|Ci|.

(3) Let C⊥ be the dual of C with respect to standard inner product in R.
Then

C⊥ = ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m),

where C⊥i is the dual of Ci with respect to standard inner product in Fq.

Proof. (1) It follows from Lemma 3.2, part 4.

(2) Let C ⊆ Rn be an R-submodule. By Item 1, C = C1⊕· · ·⊕Cm where Ci

is an Rei-submodule of (Rei)
n. Consider the Fq-linear isomorphisms ψi :

(Fq)n → (Ri)
n and ϕi : (Ri)

n → (Rei)
n. Since Ci is an Fq-submodule,

for any i we have that Ci = ϕiψi(Ci) for some Fq-submodule Ci of Fn
q .

Conversely let
C = ϕ1ψ1(C1)⊕ · · · ⊕ ϕmψm(Cm),

where Ci is a linear code over Fq of length n. Since ψi : Fq → Ri and
ϕi : Ri → Rei are isomorphisms of rings, Ci ⊆ Fn

q is an Fq-submodule if
and only if ϕiψi(Ci) ⊆ (Rei)

n is an Rei-submodule. Hence C ⊆ Rn is an
R-submodule. Clearly

|C| = Πm
i=1|ϕiψi(Ci)| = Πm

i=1|Ci|.

(3) Let

a = ϕ1ψ1(a1) + · · ·+ ϕmψm(am) ∈ ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m)

and

b = ϕ1ψ1(b1)⊕ · · · ⊕ ϕmψm(bm) ∈ C = ϕ1ψ1(C1)⊕ · · · ⊕ ϕmψm(Cm),

where ai = (ai1, . . . , ain) ∈ C⊥i and bi = (bi1, . . . , bin) ∈ Ci for i =
1, . . . ,m. It is easy to see that ϕiψi(ai).ϕjψj(bj) = 0 for i 6= j. Therefore

a.b =

m∑
i=1

ϕiψi(ai).ϕiψi(bi) =

m∑
i=1

ϕiψi(ai.bi)

=

m∑
i=1

ϕiψi(0) = 0,
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where in the last two lines we consider ψi : Fq → Ri and ϕi : Ri → Rei
and also ai.bi denotes the standard inner product over Fq. So a ∈ C⊥

and hence
ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m) ⊆ C⊥.

Since R is a Frobenius ring, |C||C⊥| = |Rn| = qmn. So we have |C⊥| =
qmn

|C| . On other hand

|ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m)| =
m∏
i=1

|C⊥i | =
m∏
i=1

qn

|Ci|
=
qmn

|C|
.

Thus
|ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m)| = |C⊥|.

Therefore
C⊥ = ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m).

�X

By Part 4 of Lemma 3.2, for any g = g + 〈ym − 1〉 ∈ R there exist g1 =
g1 + 〈ym − 1〉, . . . , gm = gm + 〈ym − 1〉 ∈ R such that g = g1e1 + · · · + gmem.
we define a gray map φ : R→ Fm

q by φ(g) = (g1(α), . . . , gm(αm)).

Definition 3.4. Let g = g1e1 + · · · + gmem be an element of R. The Lee
weight of g is defined as follows: ωL(g) = ωH(g1(α), . . . , gm(αm)), where ωH(a)
denotes the hamming weight of the vector a over Fq. We define the Lee weight
of a vector c = (c1, . . . , cn) ∈ Rn to be the rational sum of Lee weights of its
components, i.e. ωL(c) =

∑n
i=1 ωL(ci).

Theorem 3.5. Let φ : Rn → Fmn
q be the natural extension of the gray map φ

form R to Fm
q . Then

(1) The gray map φ is an Fq-linear isomorphism.

(2) φ is a distance-preserving map from Rn (Lee distance) to Fmn
q (hamming

distance).

(3) If C ⊆ Rn is a linear code, then φ(C⊥) = φ(C)⊥.

(4) If C = ϕ1ψ1(C1)⊕ · · · ⊕ ϕmψm(Cm), then

dL(C) = min{dH(Ci); i = 1, . . . ,m}

where dL(C) is the Lee distance of C and dH(Ci) is the hamming distance
of Ci.

(5) If C ⊆ Rn is an (n,A, d) linear code, then φ(C) is an [mn, logq A, d]
linear code over Fq.
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Proof. (1) Since φ : Rn → Fmn
q is the natural extension of φ : R → Fm

q ,
it suffices to show that φ : R → Fm

q is an Fq-linear isomorphism. First
we show that φ is well defined. Let g = g1e1 + · · · + gmem = 0. Hence
giei = 0 for any i = 1, . . . ,m. But giei = 0 if and only if gi ∈ 〈fi〉. Since
fi(α

i) = αi − αi = 0, gi(α
i) = 0. Thus φ(g) = (g1(α), . . . , gm(αm)) = 0.

Now let g = g1e1 + · · · + gmem and h = h1e1 + · · · + hmem be elements
of R and a ∈ Fq. We have that

g + h =

m∑
i=1

(gi + hi)ei =

m∑
i=1

(gi + hi)ei.

Hence

φ(g + h) = ((g1 + h1)(α), . . . , (gm + hm)(αm))

= (g1(α), . . . , gm(αm)) + (h1(α), . . . , hm(αm)) = φ(g) + φ(h).

Also ag = ag1e1 + · · ·+ agmem. Thus

φ(ag) = (ag1(α), . . . , agm(αm)) = a(g1(α), . . . , gm(αm)) = aφ(g).

Therefore φ is an Fq-linear homomorphism. Now let φ(g) = 0. We have
that gi(α

i) = 0 for i = 1, . . . ,m. Thus fi = (y−αi)|gi and hence gi ∈ 〈fi〉.
As a result giei = 0 for i = 1, . . . ,m and consequently

g = g1e1 + · · ·+ gmem = 0.

Therefore φ is injective. Since |R| = |Fm
q |, φ is surjective. This completes

the proof.

(2) Let c1, c2 ∈ Rn. By Part 1, φ(c1 − c2) = φ(c1)− φ(c2). Hence

L(c1, c2) = ωL(c1 − c2)

= ωH(φ(c1 − c2))

= ωH(φ(c1)− φ(c2)) = dH(φ(c1), φ(c2)).

This completes the proof.

(3) Let c = (c1, . . . , cn) ∈ C and c′ = (c′1, . . . , c
′
n) ∈ C⊥ where

cj = cj1e1 + · · ·+ cjmem

and
c′j = c′j1e1 + · · ·+ c′jmem

for j = 1, . . . , n. We have that

φ(c) = (c11(α), c12(α2), . . . , c1m(αm), . . . , cn1(α), cn2(α2), . . . , cnm(αm)),

φ(c′) = (c′11(α), c′12(α2), . . . , c′1m(αm), . . . , c′n1(α), c′n2(α2), . . . , c′nm(αm)).
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Thus

φ(c′).φ(c) =

m∑
i=1

(

n∑
j=1

c′ji(α
i)cji(α

i)).

Now since c′ ∈ C⊥, c′.c = 0. Therefore

m∑
i=1

(

n∑
j=1

c′jicji)ei = 0

and so

(

n∑
j=1

c′jicji)ei = 0.

Thus (
∑n

j=1 c
′
jicji) ∈ 〈fi〉. Consequently,

n∑
j=1

c′ji(α
i)cji(α

i) = (

n∑
j=1

c′jicji)(α
i) = 0.

Thus φ(c′).φ(c) = 0 which proves that φ(c′) ∈ ϕ(C)⊥. Therefore φ(C⊥) ⊆
φ(C)⊥. SinceR and Fq are Frobenius rings, we have the following equality:

|φ(C⊥)| = |C⊥| = |R|
n

|C|
=
|R|n

|φ(C)|
=
|Fq|mn

|φ(C)|
= |φ(C)⊥|.

Therefore φ(C⊥) = φ(C)⊥.

(4) Let c = (c1, . . . , cn) ∈ Rn. Then c =
∑m

i=1 ϕiψi(ai), where

ai = (ai1, . . . , ain) ∈ (Fq)n,

for i = 1, . . . ,m. It is easy to see that

cj = (a1j + 〈ym − 1〉)e1 + · · ·+ (amj + 〈ym − 1〉)em

for j = 1, . . . , n. So

φ(c) = (a11, . . . , am1, . . . , a1n, . . . , amn)

and hence ωL(c) =
∑m

i=1 ωH(ai). Now let ωL(C) = ωL(c) for some c ∈ C.
We have that c =

∑m
i=1 ϕiψi(ai) for some ai ∈ Ci. Let aj 6= 0. Then

ωL(C) = ωL(c) =

m∑
i=1

ωH(ai) ≥ ωH(aj) ≥ min{ωH(Ci); i = 1, . . . ,m}.

On other hand if ai ∈ Ci, then c′ = ϕiψi(ai) ∈ C. But

ωL(C) ≤ ωL(c′) = ωH(ai).
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Hence

ωL(C) ≤ min{ωH(Ci); i = 1, . . . ,m}.

Therefore

ωL(C) = min{ωH(Ci); i = 1, . . . ,m}.

Since the maps ϕi, ψi and φ are linear maps, we have the following
equality that completes the proof

dL(C) = ωL(C) = min{ωH(Ci); i = 1, . . . ,m}
= min{dH(Ci); i = 1, . . . ,m}.

(5) It is clear by the definition of the gray map φ.

�X

The following theorem indicates the existence of some quantum codes.

Theorem 3.6. Let

C = ϕ1ψ1(C1)⊕ · · · ⊕ ϕmψm(Cm)

be a linear code over R, where Ci is an [n, ki, di] linear code over Fq. If C
⊥
i ⊆ Ci,

then there exists a quantum error-correcting code with the parameters

[[mn, 2(

m∑
i=1

ki)−mn,min{di; i = 1, . . . ,m}]].

Proof. By Theorem 3.3.3,

C⊥ = ϕ1ψ1(C⊥1 )⊕ · · · ⊕ ϕmψm(C⊥m).

Then C⊥ ⊆ C and so φ(C⊥) ⊆ φ(C). But φ(C⊥) = φ(C)⊥; see Theorem 3.5.3.
Hence φ(C)⊥ ⊆ φ(C). Also by Theorem 3.5, φ(C) is an

[mn,
m∑
i=1

ki,min{di; i = 1, . . . ,m}]

linear code over Fq. Now Proposition 2.2 proves the existence of a quantum
error-correcting code with the following parameters

[[mn, 2(

m∑
i=1

ki)−mn,min{di; i = 1, . . . ,m}]].

�X
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Note that the above theorem only shows the existence of quantum codes
with the help of self-orthogonal codes, but obtaining the exact structure of
the self-orthogonal code C = ϕ1ψ1(C1) ⊕ · · · ⊕ ϕmψm(Cm) may not be very
efficient. In the next section, as a special case of such codes, we specify the exact
structure of self-orthogonal cyclic codes over Rm. Therefore the structure of
quantum codes can be obtained with the relation between self-orthogonal codes
and quantum codes, mentioned in Proposition 2.2. Moreover, some examples
of self-orthogonal cyclic codes are given.

4. Quantum codes from cyclic codes over R

In this section, we obtain the structure of cyclic codes over R = Rm =
Fq[y]/〈ym − 1〉. We determine the parameters of quantum codes over Fq from
cyclic codes over R and some examples are given. Consider the following cor-
respondence.

π : Rn → R[x]/〈xn − 1〉,
(a0, a1 . . . , an−1) 7→ a0 + a1x+ · · ·+ an−1x

n−1 + 〈xn − 1〉.

Clearly π is an R-module isomorphism. We will identify Rn with R[x]/〈xn−1〉
under π. A nonempty subset C of Rn is a cyclic code if and only if π(C) is an
ideal of R[x]/〈xn − 1〉. Now consider the decomposition R = Re1 ⊕ · · · ⊕ Rem
in Lemma 3.2. The following theorem gives a decomposition for R[x]/〈xn− 1〉.

Theorem 4.1. (1) The following map is an isomorphism of rings;

ϕ :
R[x]

〈xn − 1〉
→ Re1[x]

〈e1xn − e1〉
× · · · × Rem[x]

〈emxn − em〉
h 7→ (he1, . . . , hem),

where h = h+ 〈xn − 1〉 and hei = hei + 〈eixn − ei〉.

(2) C is an ideal of R[x]/〈xn− 1〉 if and only if ϕ(C) = J1× · · · × Jm, where
Ji is an ideal of Rei[x]/〈eixn − ei〉.

(3) If Ji = 〈hi〉 for i = 1, . . . ,m, then C = 〈h1 + · · ·+ hm〉.

Proof. (1) Let h ∈ R[x]/〈xn − 1〉. Then

h = 0⇔ h ∈ 〈xn − 1〉
⇔ ∃g ∈ R[x]; h = g(xn − 1)

⇔ hei = g(eix
n − ei) for i = 1, . . . ,m

⇔ hei = 0 for i = 1, . . . ,m.
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Hence ϕ is well defined and injective. Now let

(h1, . . . , hm) ∈
m∏
i=1

Rei[x]

〈eixn − ei〉
.

Since ei is the identity of Rei[x], hi = hiei for i = 1, . . . ,m. Also for
i 6= j, hiej = hieiej = 0. Hence ϕ(h1 + · · ·+ hm) = (h1, . . . , hm). Thus ϕ
is surjective. It is easy to see that ϕ(h.h′) = ϕ(h).ϕ(h′) and ϕ(h+ h′) =
ϕ(h) + ϕ(h′) for h, h′ ∈ R[x]/〈xn − 1〉. Therefore ϕ is an isomorphism of
rings.

(2) It is clear by Item 1.

(3) By the proof of Part 1, we have that

ϕ(h1 + · · ·+ hm) = (h1, . . . , hm).

Hence

ϕ(C) = J1 × · · · × Jm = 〈ϕ(h1 + · · ·+ hm)〉 = ϕ(〈h1 + · · ·+ hm〉).

Therefore C = 〈h1 + · · ·+ hm〉.
�X

Now we want to obtain the structure of cyclic codes over R. First we remind
the following lemma that gives the structure of cyclic codes over Fq.

Lemma 4.2. Let C be a nonzero cyclic code over Fq of length n. There exists
a polynomial g(x) ∈ C with the following properties:

(1) p(x) is the unique monic polynomial of minimum degree in C,

(2) C = 〈p(x)〉, and

(3) p(x)|(xn − 1).

(4) |C| = qn−deg p(x).

(5) If `(x) = (xn − 1)/p(x) then C⊥ = 〈`?(x)〉 where `?(x) is the reciprocal
polynomial of `(x).

(6) C contains its dual code if and only if (xn−1) ≡ 0 mod p(x)p?(x), where
p?(x) is the reciprocal polynomial of p(x).

Proof. Parts 1, 2, 3 and 4 follow from Theorem 4.2.1 in [6]. Item 5 follows
from Theorem 5.6 in [8]. We have Part 6 by Lemma 8 in [5]. �X
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Now let
ψi : Fq[x]/〈xn − 1〉 → Ri[x]/〈1Rix

n − 1Ri〉

and
ϕi : Ri[x]/〈1Ri

xn − 1Ri
〉 → Rei[x]/〈eixn − ei〉

be the natural extension of isomorphisms ψi and ϕi in Lemma 3.2. It easy to
see that ϕi and ψi are isomorphisms of rings. The following theorem gives the
structure of cyclic codes over R.

Theorem 4.3. (1) C is an ideal of R[x]/〈xn − 1〉 if and only if

ϕ(C) = ϕiψi(C1)× · · · × ϕiψi(Cm),

where Ci is a cyclic code over Fq of length n; Ci is an ideal of Fq[x]/〈xn−
1〉.

(2) If Ci = 〈pi(x)〉 for i = 1, . . . ,m, then

C = 〈p1(x)e1 + · · ·+ pm(x)em〉.

In this case |C| = qmn−
∑m

i=1 deg(pi(x)).

(3) If `i(x) = (xn − 1)/pi(x) for i = 1, . . . ,m, then

C⊥ = 〈`?1(x)e1 + · · ·+ `?m(x)em〉

where `?i (x) is the reciprocal polynomial of `i(x).

(4) R[x]/〈xn − 1〉 is a principal ideal ring.

Proof. (1) Since ϕi and ψi are isomorphisms of rings, it follows from Theo-
rem 4.1.2.

(2) It is easy to see that
ϕiψi(pi(x)) = pi(x)ei.

Hence

ϕiψi(Ci) = ϕiψi(〈pi(x)〉) = 〈ϕiψi(pi(x))〉 = 〈pi(x)ei〉.

Now by Theorem 4.1.3,

C = 〈p1(x)e1 + · · ·+ pm(x)em〉.

By Lemma 4.2.4, |Ci| = qn−deg pi(x). Hence

|C| =
m∏
i=1

|Ci| = qmn−
∑m

i=1 deg(pi(x)).
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(3) Consider the isomorphisms

π : Rn → R[x]

〈xn − 1〉

and

πi : (Rei)
n → Rei[x]

〈eixn − ei〉
.

Let C = π(C ′) and Ci = πi(C
′
i), where C ′ ⊆ Rn and C ′i ⊆ (Rei)

n. By
these correspondences, C and C ′ have the same dual as linear codes. Also
Ci and C ′i have the same dual. Denote the dual of these linear codes by
C⊥, C ′⊥, C⊥i and C ′⊥i . It is easy to see that

C ′⊥ = ϕ1ψ1(C ′⊥1 )⊕ · · · ⊕ ϕmψm(C ′⊥m )

if and only if

ϕ(C⊥) = ϕ1ψ1(C⊥1 )× · · · × ϕmψm(C⊥m).

But by Lemma 4.2.5, C⊥i = 〈`?i (x)〉. Hence by Item 2,

C⊥ = 〈`?1(x)e1 + · · ·+ `?m(x)em〉.

(4) By Lemma 3.2, Fq[x]/〈xn − 1〉 is a principal ideal ring. So by Part 2,
R[x]/〈xn − 1〉 is a principal ideal ring.

�X

Theorem 4.4. Let

C = 〈p1(x)e1 + · · ·+ pm(x)em〉

be a cyclic code of length n over R. Then C⊥ ⊆ C if and only if for any
i = 1, . . . ,m we have that

(xn − 1) ≡ 0 mod pi(x)p?i (x).

Proof. By above theorem ϕ(C) = ϕ1ψ1(C1) × · · · × ϕmψm(Cm), where Ci =
〈pi(x)〉. Clearly

ϕ(C⊥) = ϕ1ψ1(C⊥1 )× · · · × ϕmψm(C⊥m) ⊆ ϕ(C)

= ϕ1ψ1(C1)× · · · × ϕmψm(Cm)

if and only if
ϕiψi(C

⊥
i ) ⊆ ϕiψi(Ci),

for i = 1, . . . ,m. Hence C⊥ ⊆ C if and only if C⊥i ⊆ Ci for i = 1, . . . ,m. But
by Lemma 4.2.6, C⊥i ⊆ Ci if and only if (xn − 1) ≡ 0 mod pi(x)p?i (x). This
completes the proof. �X
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Theorem 4.5. Let C = 〈p1(x)e1 + · · ·+ pm(x)em〉 be a cyclic code of length
n over R with dL(C) = d. If (xn − 1) ≡ 0 mod pi(x)p?i (x) for i = 1, . . . ,m,
then there exists a quantum error-correcting code over Fq with the following
parameters

[[mn,mn− 2

m∑
i=1

deg(pi(x)), d]].

Proof. By Theorem 4.4, C⊥ ⊆ C. Also |C| = qmn−
∑m

i=1 deg(pi(x)) by Theorem
4.3.2. Apply the gray map φ on C. Then φ(C) is an

[mn,mn−
m∑
i=1

deg(pi(x)), d]

linear code over Fq. Now by Proposition 2.2, we have the result. �X

Example 4.6. LetR = F7[y]/〈y3−1〉 and n = 7. Then x7−1 = (x−1)7 over F7.
Consider the polynomials p1(x) = x−1, p2(x) = (x−1)2 and p3(x) = (x−1)3.
Let

C = 〈p1(x)e1 + p2(x)e2 + p3(x)e3〉.

By Theorem 3.5.4 and Theorem 4.32, it is easy to see that C is a (7, 715, 2)
cyclic code over R. By Theorem 4.4, C⊥ ⊆ C. Now by Theorem 4.5 there exists
a quantum error-correcting code with parameters [[21, 9, 2]] over F7.

Example 4.7. Let R = F11[y]/〈y5 − 1〉 and n = 11. Then x11 − 1 = (x− 1)11

over F11. Consider the polynomials p1(x) = p2(x) = (x − 1)4 and p3(x) =

p4(x) = p5(x) = (x − 1)5. Let C = 〈
∑5

i=1 pi(x)ei〉. Then C is a (11, 1132, 5)
cyclic code over R where C⊥ ⊆ C. So there exists a quantum error-correcting
code with parameters [[55, 9, 5]] over F11.

Example 4.8. Let Rm = F13[y]/〈ym − 1〉 where m ∈ {2, 3, 4, 6}. Then

x8 − 1 = (x+ 1)(x+ 5)(x+ 8)(x+ 12)(x2 + 5)(x2 + 8)

over F13. We obtain some quantum error-correcting codes from cyclic codes
over Rm.

(1) Let m = 2, p1(x) = (x+ 8)(x2 + 8) and p2(x) = (x+ 5)(x2 + 5). Then

C = 〈
2∑

i=1

pi(x)ei〉

is a (8, 1310, 3) cyclic code over R where C⊥ ⊆ C. Thus we have a quan-
tum error-correcting code with parameters [[16, 4, 3]] over F13.
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(2) Let m = 3, p1(x) = x+ 8, p2(x) = x2 + 8 and p3(x) = x2 + 5. Then

C = 〈
3∑

i=1

pi(x)ei〉

is a (8, 1319, 2) cyclic code over R where C⊥ ⊆ C, which proves the
existing of a quantum error-correcting code with parameters [[24, 14, 2]]
over F13.

(3) Let m = 4,
p1(x) = p2(x) = (x+ 8)(x2 + 8)

and
p3(x) = p4(x) = (x+ 5)(x2 + 5).

Then C = 〈
∑4

i=1 pi(x)ei〉 is a (32, 1320, 3) cyclic code over R where
C⊥ ⊆ C. Therefore there exists a quantum error-correcting code with
parameters [[32, 8, 3]] over F13.

(4) Let m = 6,

p1(x) = (x+ 8),

p2(x) = (x+ 5),

p3(x) = p4(x) = (x2 + 8),

p5(x) = p6(x) = (x2 + 5).

Then

C = 〈
6∑

i=1

pi(x)ei〉

is a (48, 1338, 2) cyclic code over R where C⊥ ⊆ C. Hence there exists a
quantum error-correcting code with parameters [[48, 28, 2]] over F13.
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