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Abstract. In this work, we present sufficient conditions to determine if the
limit cycles of certain differential systems in the plane are algebraic or not. In
particular, we obtain criteria such that the limit cycles of equations derived
from predatory prey models with rational functional response are necessarily
transcendental ovals.
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Resumen. En este trabajo presentamos condiciones necesarias y suficientes
para determinar si los ciclos ĺımite de ciertas ecuaciones diferenciales en el
plano son algebraicos o no. Particularmente, obtenemos criterios para que ci-
clos ĺımite de ciertas ecuaciones derivadas de modelos depredador - presa con
ciertos funcionales racionales de respuesta sean necesariamente óvalos trascen-
dentes.

Palabras y frases clave. ciclos ĺımte algebraicos, series de Puiseux, poĺıgono de
Newton, modelos depredador-presa, funcional de respuesta.

1. Introduction

Since K. Odani’s remarkable work [15], many authors have studied the question
of whether the limit cycles of some polynomial differential systems in the plane
are algebraic or not. Recall that if a limit cycle is contained in the zero set of
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94 HOMERO Dı́AZ–MARı́N & OSVALDO OSUNA

a polynomial in two variables this is called an algebraic limit cycle. Deciding
whether periodic orbits of a system are algebraic or not, can be quite involving.

Some kind of results describe conditions for the existence of limit cycles,
see for instance [6], [8] and [7]. Other kind of results deal with conditions for
the existence and full description of algebraic limit cycles or algebraic solutions
in general, see for instance [12], [5], [16] and [2]. Finally, there are examples
showing the coexistence of both algebraic and trascendental limit cycles, see [9].

There are several tools that have been used in this area. Recently, [2]
describes a bounding technique for the degree of invariant algebraic curves.
This is done by a rather classical approach which consists of bounding the
number of branches of Puiseux series of solutions of the differential equation
passing through singular points either at the affine plane or at infinity. See [13],
[14] and [1] for a detailed standard description of the use of Puiseux series in
differential equations.

Recent developments such as [10] and [11] also use Puiseux series for solu-
tions of polynomial planar differential equations. They study the problem of Li-
ouville integrability as well as the so called Weierstrass integrability, describing
the integrating factors as well as their cofactors in terms of Puiseux–Weierstrass
polynomials.

In this work we present criteria for polynomial planar systems of the form

ẋ = x(a0 + a1y + · · ·+ an−1y
n−1),

ẏ = y(x+ b0 + b1y + · · ·+ bn−1y
n−1 + bny

n), bn 6= 0.
(1)

This class of equations appear in several systems of mathematical biology. We
discuss some examples to illustrate our theoretical results in the context of
models of two-species interactions. Similar results with the same techniques for
systems of two species interactions will also appear in [4].

2. Rational functions as invariant algebraic curves

Throughout this section we present our main results about boundedness of the
degrees degxF (x, y), degxF (x, y), of invariant algebraic curves F (x, y) = 0 for
plane polynomial vector fields of the form (1).

We first study a particular case of system (1) to introduce the main ideas
for analyzing the general case. We consider the following system

ẋ = x(a0 + a1y + a2y
2),

ẏ = y(x+ b0 + b1y + b2y
2 + b3y

3), b3 6= 0.
(2)

System (2) yields the following ODE in the complex domain

dx

dy
=

x(a0 + a1y + a2y
2)

y(x+ b0 + b1y + b2y2 + b3y3)
=
P (y, x)

Q(y, x)
(3)
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whose solutions are Riemann surfaces immersed in Cy × Cx, where Cy ' C
with the compactification Cy = Cy ∪ {∞} ' CP1. The role of x and y as
dependent/independent variables may be interchanged.

Under the change of coordinates η = 1
y , equation (3)yields

dx

dη
= − x(a0η

2 + a1η + a2)

(x+ b0)η3 + b1η2 + b2η + b3
, (4)

which has the trivial solution x ≡ 0. Furthermore, as η → 0 the ODE (4) has
regular points at the infinitude y = ∞ whenever b3 6= 0. Therefore, the only
branch point at infinity can arise at the fixed singular point x = 0.

Let us mention that if we consider a rational function, φ(y) = f(y)/g(y)
with α = deg f, β = deg g, then being a solution implies, by straight forward
calculations, that α = β + 2. Hence limy→∞ φ(y) =∞ and therefore we could
only expect a branching pole at y =∞ for algebraic rational solutions. In fact,
φ will have a regular pole at y =∞.

On the other hand, at the infinitude x = ∞, if we set ξ = 0 with ξ = 1/x,
then we have the equation:

dy

dξ
= −y + ξy(b0 + b1y + b2y

2 + b3y
3)

ξ2(a0 + a1y + a2y2)
. (5)

Since in the denominator we have ξ2 = 0, then we have a pole, besides the
singularity arising from the trivial solution y ≡ 0.

The main result regarding equation (2) is the following assertion.

Theorem 2.1. Suppose that:

b3 6= 0. (6)

If there exists an invariant algebraic curve F (x, y) = 0 of equation (3) with x, y -
F (x, y), then degx F = 1 and degy F ≤ 3. In particular, any algebraic (possibly
multivaluated) solution should also be a rational (univaluated) solution, x =
φ(y) = f(y)/g(y), with polynomials f(y), g(y) of degree at most 3. Provided we
exclude the trivial solution, x(y) ≡ 0.

In the proof of Theorem 2.1, which will be given in Section 4, we will study
the Laurent-Puisseux series of branches of solutions, x = φ(y), near infinity,
y =∞,

c0η
−3 + c1η

−2 + c2η
−1 + c3 + c4η + . . . .

The bound degx F = 1 given in Theorem 2.1 corresponds to the unique deter-
mination of the coefficients of solutions along y = ∞ for (4). Meanwhile the
bound degy F ≤ 3 is related to the possible branching number of solutions y(x)
at infinity x =∞.
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A more general result can be proved with the same tools in systems of higher
degree. Namely, as we will see in subsection 4.2, we can prove an analogous of
Theorem 2.1 for higher order systems.

Theorem 2.2. Let us consider the ODE in the complex domain,

dy

dx
=
y(x+ b0 + · · ·+ bn−1y

n−1 + bny
n)

x(a0 + · · ·+ an−1yn−1)
, bn 6= 0. (7)

If there exists an invariant algebraic curve F (x, y) = 0 of equation (7) with x, y -
F (x, y), then degx F = 1 and degy F ≤ n. In particular, any algebraic (possibly
multivaluated) solution should also be a rational (univaluated) solution, x =
φ(y) = f(y)/g(y), with polynomials f(y), g(y) of degree at most n. Provided we
exclude the trivial solution, x(y) ≡ 0.

The proofs of these results will be given in section 4.

3. Predatory-prey models with rational functional response

Equation (7) appears in some models of mathematical biology. Namely, in [5]
the authors analyze non-algebraic nature of limit cycles in general predator-
prey models in the spirit of the seminal work on the subject [15]. They consider
the Rosenzweig–MacArthur predator-prey models

u̇ = ru
(

1− u

K

)
− vp(u),

v̇ = v (−D + γp(u)) ,
(8)

with Holling’s Type I functional-response

p(u) = mu/(a+ u)

and also a Monod–Aldane model with Holling’s Type IV functional-response,

p(u) =
mu

au2 + bu+ 1
.

They claim that whenever it has limit cycles, they should be transcendental
ovals. The proof in [5] reduces the model to a polynomial system of the form
(2). Then the main result states that there can not exist algebraic invariant
curves under some hypotheses. Accordingly, these hypotheses are unavoidable
for their arguments due to examples where there are rational invariant curves
of the form x = φ(y) where φ is a rational function.

We present a generalization of [5] as follows.

Corollary 3.1. Let us consider the predator-prey model (8) with functional-
response

p(u) =
mu

a+ un−1
, n ≥ 3.
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If m,K,D > 0, then any algebraic invariant curve, F (x, y) = 0, is a rational
function x = φ(y) = f(y)/g(y), with polynomials f(y), g(y) of degree at most
n.

Take for instance the case n = 4, which is not contained in [5]. By a suitable
change of variables and time reparametrization

u = Ky, v =
rK2

m
x,

ds

dt
=

K3

r(a+ u3)
,

the system (8) becomes

ẋ =x
(
−A+ y − Cy3

)
,

ẏ =y
(
−x+A−Ay + y3 − y4

)
,

(9)

with A = a/K3, C = DK2/m. Notice that this system has the form

ẋ = x(a0 + a1y + a2y
2 + a3y

3),

ẏ = y(x+ b0 + b1y + b2y
2 + b3y

3 + b4y
4), b4 6= 0.

(10)

Thys system can be referred to Theorem 2.2. Therefore the only invariant
algebraic curve F (x, y) = 0 should be a graph of a rational function. Moreover,
degyF (x, y) ≤ 4.

On the other hand, there are results that guarantying the existence and
uniqueness of a limit cycle. Such a limit cycle should therefore be trascendental.
The origin is always a saddle point, there is also an equilibrium in (0, 1). There
are two other equilibria, (x1, y1), (x2, y2), with 0 < y1 ≤ y2. They are obtained
by solving simultaneously the following equations:

(1− y)(A+ y3) = x,

y3 − 1

C
y +A = 0.

According to Theorem 6 in [17], under certain conditions, namely

1− 1

C
> A >

2

(3C)3/2
, 5y4

1 + 4y3
1 − 2Ay1 +A > x1,

these equilibria remain within the invariant region 0 ≤ y ≤ 1 and there exists
a limit cycle surrounding (x1, y1).

Conditions hold in [17] for C = 2, and A = 0.1. Numerical evidence suggests
that there is a limit cycle, see Fig. 1. This limit cycle is trascendental according
to Corollary 3.1.
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Figure 1. Solutions of (9) spiraling out and in for initial conditions
(0.37, 0.2), (0.1, 0.3), respectively, seem to emanate from an unsta-
ble limit cycle.

4. Proofs of our results

We start by considering the Newton-Puiseux algorithm to describe explicitly
the nature of solutions at the infinitudes x = ∞ and y = ∞. For further
explanation of the Newton-Puiseux method for ODE, see [1, 13, 14]. The crucial
step of the proof is to apply the following result.

Lemma 4.1 (Theorem 1.4 in [3]). Let G(z, w) = 0 be an invariant algebraic
curve, ∂wG 6= 0 of the polynomial ODE

P (z, w)
dw

dz
−Q(z, w) = 0. (11)

Then degwG is at most the number of Puiseux series

w(z) = c0z
µ +

∞∑
k=1

ckz
k
n +µ, (12)

solving (11), whenever the number of these series is finite. Here µ0 = l0/n with
n, l0 relatively prime integers n ≥ 0.

4.1. Proof of Theorem 2.1

To find an expansion of non-trivial solutions at y =∞, i.e., along η = 0, with
η = 1/y, we regard equation (4). Take the following Puiseux series:

x(η) = c0η
µ0 +

∞∑
k=1

ckη
k
n +µ0 (13)
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Figure 2. Newton polygon for (4)

For equation (4) the corresponding Newton polygon is a triangle rectangle
whose only oblique side is the hypotenuse, see Fig. 2. Therefore, the only slope
to consider is −1/µ0 = 1/3. Accordingly, µ0 = −3. Under substitution

η = η1, x = c0η
µ0

1 + x1,

we regard the least degree coefficient. Then c0 is determined by the following
quadratic relation

3(b3c0 + c20) = 0 ⇒ c0 = 0, −b3 ∈ C. (14)

Assumption 1. We choose the non-vanishing value

c0 = −b3 6= 0. (15)

In the second step, under substitution η1 = η, x = (−b3)η−3
1 + x1, we obtain a

Newton polygon for

b3(3b2 − a2) + b3(3b1 − a1)η1 + b3(3b0 − a0)η2
1+

+x1(3b3η
2
1 + a2η

3
1 + a1η

4
1 + a0η

5
1)+

+(b2η
4
1 + b1η

5
1 + b0η

6
1)
dx1

dη1
+

+η6
1x1

dx1

dη1
= 0

(16)

which has two possible slopes with µ1 = −3,−2. See the corresponding Newton
polygon in Fig. 3.

µ4 = 1
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µ1 = −2 µ2 = −1 µ3 = 0

Figure 3. Successive Newton polygons yielding µ1, µ2, µ3, µ4.
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We rewrite the ODE (16) as

A(η1, x1) +B(η1, x1)
dx1

dη1
= 0,

where
dx1

dη1
×
[
B(5,2)η

6
1x1 +

B(3,1)η
4
1 +B(4,1)η

5
1 +B(5,1)η

6
1

]
+

x1

[
A(2,1)η

2
1 +A(3,1)η

3
1 +A(4,1)η

4
1 +A(5,1)η

5
1

]
+

A(0,0) +A(1,0)η1 +A(2,0)η
2
1 = 0.

We do not consider the bad side with slope 1/3. We only consider the good
side of slope −1/µ1 = 1/2, since we require µ1 > µ0 in order to construct the
Puiseux series.

By substitution, η1 = η2, x1 = c1η
µ1

2 + x2, the vanishing condition for the
least order term yields,

3b3c1 + b3(3b2 − a2) = 0⇒ c1 =
a2

3
− b2 6= 0. (17)

In the following step, we have again two possible sides. We do not choose the
bad side side of slope 1/3. We rather consider, µ2 = −1, and the corresponding
ODE

dx2

dη2
×
[
B

(2)
(4,2)η

5
2x2 +

B
(2)
(2,1)η

3
2 +B

(2)
(3,1)η

4
2 +B

(2)
(4,1)η

5
2

]
+

x2

[
A

(2)
(1,1)η2 +A

(2)
(2,1)η

2
2 +A

(2)
(3,1)η

3
2 +A

(2)
(4,1)η

4
2

]
+

A
(2)
(0,0) +A

(2)
(1,0)η2 +A

(2)
(2,0)η

2
2 = 0,

whose Newton Polygon is shown in Fig. 3. By substitution, η2 = η3, x2 =
c2η

µ2

3 + x3, by imposing a vanishing least order term we obtain

0 =
a2

3

(a2

3
− b2

)
− b3(a1 − 3b1) + 3b3c2

⇒

c2 =
a1

3
− b1 +

a2

27b3
(3b2 − a2).

(18)

For each inductive step we choose one of two sides, avoiding the bad side whose
slope is 1/3, because a Puiseux series can only be produced by an increasing
sequence if exponents µi+1 > µi. See a similar terminology in [1]. Therefore,
we choose the side with slope −1/µi where,

µi = i− 3. (19)
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This good side has always lowest vertex A
(i)
(i,0).

We substitute
ηi = ηi+1, xi = ciη

i−3
i+1 + xi+1,

in

dxi
dηi
×
[
B

(i)
(4,2)η

4
i xi +

B
(i)
(1,1)η

2
i +B

(i)
(2,1)η

3
i +B

(i)
(3,1)η

4
i + · · ·+B

(i)
(i+3,1)η

i+4
i

]
+

xi

[
A

(i)
(0,1) +A

(i)
(1,1)ηi +A

(i)
(2,1)η

2
i +A

(i)
(3,1)η

3
i + · · ·+A

(i)
(6−i+3,1)η

i+3
i

]
+

A
(i)
(i,0)η

i
i + · · ·+A(i)

(2i+3,0)η
2i+3
i = 0.

Arising from Ai(i,0) = 0, we get a linear relation which determines that for then
we get a explicitly ci, as follows:

3b3ci +Ri = 0 ⇒ ci = − Ri
3b3

,

where Ri is a sum of rational relations on the system coefficients a0, a1, a2,
b0, b1, b2, b3 whose denominators are bn3 .

After substitution we get, we get

dxi+1

dηi+1
×
[
B

(i+1)
(4,2) η

4
i+1xi+1 +

B
(i+1)
(1,1) η

2
i +B

(i+1)
(2,1) η

3
i+1 +B

(i+1)
(3,1) η

4
i+1 + · · ·+B

(i+1)
(i+4,1)η

i+5
i+1

]
+

xi+1

[
A

(i+1)
(0,1) +A

(i+1)
(1,1) ηi +A

(i+1)
(2,1) η

2
i+1 +A

(i+1)
(3,1) η

3
i+1 + · · ·+A

(i+4)
(i+4,1)η

i+4
i

]
+

A
(i+1)
(i+1,0)η

i+1
i+1 + · · ·+A(i+1)

(2i+5,0)η
2i+5
i+1 = 0.

The process of construction of the (i + 1)−th Newton polygon from the i−th
polygon can be illustrated schematically as a directed graph shown in Fig. 4.
Here, the new vertices that must be added in the (i + 1)−th Newton poly-
gon, appear as squares. The vertex (i, 0) should be suppressed. Circled vertices

indicate the presence of the coefficient B
(i)
(·,·) in the corresponding monomial.

Arrows are marked between two vertices (a, b) and (d, c) if during the sub-
stitution the monomial with powers (a, b) contributes with new terms for the
monomial corresponding to (c, d). The arrow from (0, 1) to (i, 0) corresponds to
the good side. Take for instance, i = 3. There is only good side corresponding to
µ3 = 3−3 = 0. See the Newton polygon in Fig. 3. Hence, η3 = η4, x3 = c3η

0
4+x4.

0 = 3b3c3 +R3

⇒

c3 =
a0

3
− b0 −

a1

9b3
(a2 − b2)− a2

81b23

(
−18b1b3 − 2a2b2 + 6b22

)
.
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Figure 4. Inductive construction of Newton polygons.

Let us justify Assumption 1. If we had chosen c0 = 0 instead of c0 = −b3, then
straightforward calculations of the successive least order term yields,

b3c1 = 0⇒ c1 = 0⇒ b3c2 = 0⇒ c2 = 0⇒ . . . ,

which lead to the Puiseux series of the trivial solution x ≡ 0.

We can apply Lemma 4.1. Hence degx F ≤ 1.

Now we calculate the order in y of a suitable invariant algebraic curve.
To find an expansion of non-trivial solutions along ξ = 0, with ξ = 1/x, in
equation (5), we adopt the following Puiseux series expansion:

y(ξ) = c0ξ
µ +

∞∑
k=1

ckξ
k
n +µ, (20)

where µ = n/l0 and 1/µ is one of many possible slopes of the correspond-
ing Newton polygon, and l0, n are relatively prime integers. For equation (5)
the Newton polygon is a triangle rectangle whose only oblique side is the hy-
pothenuse, see Fig. 5. When we consider equation (5), the only slope to be
taking into account is −1/µ0 = 3. See Fig. 6. Under substitution ξ = ξ1, y =

c0ξ
−1/3
1 + y1, by imposing a vanishing condition the least order term, then we

get

c0 + b3c
4
0 = 0, c0 = 0,

−1
3
√
b3
,
ω

3
√
b3
,
ω

3
√
b3
∈ C (21)

where ω is a generating cubic root of −1. The value c0 = 0 corresponds to the
value at infinity of the trivial solution y(x) ≡ 0. Furthermore, we obtain the
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Figure 5. Newton Polygon of (5)

ODE, i = 1(
A(0,0) +A(0,1)y1

)
+
(
A(1/3,0) +A(1/3,1)y1 +A(1/3,2)y

2
1

)
ξ

1/3
1 +

+
(
A(2/3,0) +A(2/3,1)y1 +A(2/3,2)y

2
1 +A(2/3,3)y

3
1

)
ξ

2/3
1 +

+
(
A(1,1)y1 +A(1,2)y

2
1 +A(1,3)y

3
1 +A(1,4)y

4
1

)
ξ1+

+
[
B(1/3,1)ξ

4/3
1 +B(2/3,1)ξ

5/3
1 +B(1,1)ξ

2
1

] dy1

dξ1
+

+
[
B(2/3,2)ξ

5/3
1 +B(1,2)ξ

2
1

]
y1
dy1

dξ1
+B(1,3)ξ

2
1y

2
1

dy1

dξ1
= 0

(22)

whose Newton polygon is shown in Fig. 6. The calculation of the unique good
side yields µ1 = 0. The substitution ξ1 = ξ2, y1 = c1ξ

0
2 + y2 yields

3b3c1 + b2 −
a

3
⇒ c1 =

a2/3− b2
3b3

.

µ2 = 1/3

�
�
�
�
�
��

�
��

�
�
�
�
�
��

B
BB

.

.

.

.

.

.

.

. .

..

.

. .

.

.

.

.

..

. .

.. .

µ1 = 0

Figure 6. First Newton polygons for equation (5).
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In general for i ≥ 2, the only good side of the Newton polygon yields

µi =
i− 1

3
.

Thus, we substitute ξi = ξi+1, yi = ciξ
µi

i+1 + yi+1. For the least order term

(A(0,1)ci +Ri)ξ
µi

i+1 = 0 ⇒ ci = −Ri/3.

We again show schematically the process to obtain the (i+1)−th Newton poly-
gon from the i−th polygon as a directed graph shown in Fig. 7. The new vertices
that must be added in the (i+ 1)−th Newton polygon, appear as squares. The
vertex that must be suppressed is marked with a cross. Circled vertices indicate

the presence of the coefficient B
(i)
(·,·) in the corresponding monomial. Arrows are

marked between two vertices (a, b) and (d, c) if during the substitution the
monomial with powers (a, b) contributes with new terms for the monomial cor-
responding to (c, d). The arrow from (0, 1) to ((i− 1)/3, 0) corresponds to the
good side. We have deleted intermediate arrows so that our drawing is clean.
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Figure 7. Constructive procedure of Newton polygons for equation (5).

Therefore, the 3 different values of c0 give rise to three different branches
or Puiseux series.

Therefore, by Lemma 4.1 we have degy F ≤ 3.

This ends the proof of Theorem 2.1

4.2. Rational solution for higher degree ODE

Let us consider the ODE (7). At y = ∞ we adopt the rational change of
variable, η = 1/y. Thus (7) becomes

(
xηn + b0η

n−1 + · · ·+ bn−1η + bn
) dx
dη

+ x
(
a0η

n−1 + · · ·+ an−2η + an−1

)
= 0,

(23)
whose Newton polygon is shown in Fig. 8.
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n− 1

((((
((((

(((
((((

((

. . . . .

.
µ0 = −n

−1

Figure 8. Newton polygon for (23)

Here µ0 = −n, and by the change of coordinates η = η1, x = c0η
−n
1 +x1 we

get

ηn1 x1
dx1

dη1
+

η1
dx1

dη1

(
β

(1)
n−1η

n−1
1 + . . . β

(1)
1 η1 + β

(1)
0

)
+

+x1

(
α

(1)
0 ηn−1

1 + · · ·+ α
(1)
n−1 +

α
(1)
n

η1

)
+

+
(
γ

(1)
0 η−1

1 + · · ·+ γ
(1)
n−1η

−n
1

)
= 0.

where

α
(1)
k =ak, β

(1)
k = bk, γ

(1)
k = ak − nbk, k = 0, . . . , n− 1;

α(1)
n =bn.

In general, the successive Newton polygons have a basis that is translated
towards the right. We get µ1 = −n+ 1, µ2 = −n+ 2, . . . . See Fig. 9. Under the
change of coordinates:

ηi−1 = ηi, xi−1 = ci−1η
µi−1

i + xi

for i = 2, 3, . . . , n− 1, we get

ηni
dxi
dηi

+ ηi
dxi
dηi

(
β

(i)
n−1η

n−1
i + . . . β

(i)
1 ηi + β

(i)
0

)
+

+xi

(
α

(i)
0 ηn−1

i + · · ·+ α
(i)
n−1 + α(i)

n η−1
i

)
+

+
(
γ

(i)
0 ηi−1

i + · · ·+ γ
(i)
n−1η

i−n
i

)
= 0.

(24)
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n− 1
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��.. ..

. . . . .

. .

.

.

. . . .

. . .
n− 1−n 1− n

Figure 9. Successive Newton pentagons for i = 1, 2 in (24).

We have unique determination for the coefficients, ci, of the Laurent-Puiseux
series of x at η = 0 or y =∞, as follows,

ciα
(i)
n + γ

(i)
n−1 = 0. (25)

For instance, in order to calculate the first coefficients c0, . . . , cn, the coefficients

α
(i)
n , γ

(i)
n−1, are defined recursively by the following relations:

α
(2)
k =α

(1)
k , β

(2)
k = β

(1)
k ,

γ
(2)
k =c1α

(1)
k − (n− 1)c1β

(1)
k + γ

(1)
k−1, k = 0, . . . , n− 2;

α(2)
n =α(1)

n − (n− 1)c1, α
(2)
n−1 = α

(1)
n−1, β

(2)
n−1 = β

(1)
n−1 + c1;

γ
(2)
n−1 =c1α0 − (n− 1)c1

(
β

(1)
n−1 + c1

)
+ γ

(1)
n−2, γ

(2)
0 = c1α

(1)
0 − (1− n)c1β

(1)
0 ;

and for i = 2, . . . , n:

α
(i+1)
n−i =α

(i)
n−i − ci, β

(i+1)
n−i = β

(i)
n−i − ci(n− i),

α(i+1)
n =α(i)

n , α
(i+1)
k = α

(i)
k , β

(i+1)
k = β

(i)
k , k = 2, . . . , n̂− i, . . . , n− 1, ,

γ
(i+1)
n−1 =ci

(
(i− n)β

(i)
n−1 + α

(i)
n−1

)
+ γ

(i)
n−2

γ
(i+1)
0 =ci

(
α

(i)
0 − (n− i)β(i)

0

)
.

The unique determination (25) implies that degF (x, y) ≤ 1.

We estimate the degree in y of an algebraic solution of the ODE (7). At
x =∞ we adopt the rational change of variable, ξ = 1/x. Thus (7) becomes

ξ2 dy

dξ
(a0 + a1y + · · ·+ an−1y

n−1)y + ξ(b0 + b1y + · · ·+ bny
n) = 0 (26)

which, under the substitution y = c0ξ
−1/n
1 + y1, gives the least order term

c0(bn + cn0 ) = 0 ⇒ c0 = 0, c0 =
ωin

n
√
|bn|

, i = 1 . . . , n,
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where ωin are the complex n−roots of sign (bn). Furthermore, we get an equation
in ξ1, y1, whose Newton polygon is shown in Fig. 10.

Along the following steps there is a unique determination of the coefficients
ci under the following substitution:

ξi = ξi+a, yi = ciξ
(i−1)/n
i+1 + yi+1,

which is similar to (25).

(1, n)

i
. .

.

. ..

.
�
�
�
�
�
�
�
�
�
�
� .

. i

Figure 10. Newton polygon for (26).

The successive Newton polygons are shown in Fig. 11. We avoid detailed
description since the main ideas of the proof where already exposed in the case
n = 3.

Volumen 56, Número 1, Año 2022



CURVES RATIONAL INVARIANT 109

n+i
n

i
i

i
. .

.

.. . .

. . .

. . .

.

.

Q
Q
Q
Qs . . . . . . . .

. . .

. .

.

.

Q
Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
Q
QQs

.
Z
Z
Z
Z
Z
Z
Z
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(1, n)

(0, 1)

(
1
n , 2
)
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i

Figure 11. (i+ 1)−st Newton polygon fron i−th polygon.

References

[1] J. Cano, An extension of the Newton-Puiseux polygon construction to give
solutions of Pfaffian forms, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 1,
125–142.

[2] M. V. Demina, Invariant algebraic curves for Liénard dynamical systems
revisited, Applied Mathematics Letters 84 (2018), 42–48.

[3] , Novel algebraic aspects of Liouvillian integrability for two-
dimensional polynomial dynamical systems, Phys. Lett. A 382 (2018),
no. 20, 1353–1360.
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e-mail: osvaldo.osuna@umich.mx

Revista Colombiana de Matemáticas


