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Volumen 56(2022)2, páginas 113-131
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Abstract. In this work we study the dynamics associated to the interaction
of juveniles and adults of the same species, where the harvesting of adults is
not allowed when the number of adults is below a critical value. This study is
carried out by bifurcation analysis, for a Filippov system, in relation to two
parameters: harvesting and protection of the adult species.
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Resumen. En este trabajo se estudia la dinámica entre la interacción de jóvenes
y adultos de una misma especie, donde la explotación de los adultos no es
permitida cuando el número de adultos es inferior a un valor cŕıtico. Este
estudio es llevado a cabo por el análisis de bifurcación, para un sistema de
Filippov, con relación a dos parámetros: explotación y protección de la especie
adulta.
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1. Introduction

A great variety of phenomena in nature are modeled using systems of differen-
tial equations of the form

u̇ = f(u)
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where f : Rn → Rn is a continuous and differentiable vector field. In particular,
these systems are used to explain the dynamics between species that inhabit
the same environment to determine whether or not they become extinct over
time [2, 8].

However, many ecological phenomena are modeled by discontinuous dynam-
ical systems, called Filippov systems [3], described by autonomous differential
equations of the form:

u̇ =

{
f1(u), u ∈ S1 ⊂ R2,

f2(u), u ∈ S2 ⊂ R2,

where S1 and S2 are open sets, separated by a differentiable curve Σ, and the
functions f1(u) and f2(u) are continuous.

In addition to generic bifurcations in continuous dynamical systems [6],
Filippov’s systems could present sliding bifurcations, where variations in the
bifurcation parameter cause alterations in Σ. All possible bifurcations in two-
dimensional Filippov systems were listed by Kuznetsov [7].

Filippov systems can be used to model the dynamics of harvested popula-
tions when they are below a critical threshold, as in the case of timber produc-
tion in harvested forests or fishing activities, in order to create strategies that
maximize their production without risking over-harvesting.

In this case, and assuming that the population does not interact with the
environment, aging is density independent and recruitment is increasing but
saturating with density, there is a simple model, proposed in [1], that describes
the dynamics and is given by: ẋ = −(a+ d1)x+

by

c+ y
,

ẏ = ax− [d2 + f(y)]y,
(1)

with

f(y) =

{
qE, if y > P,

0, if y < P,

where y(t) ≥ 0 describes the adult individuals suitable for harvesting and
reproduction, x(t) ≥ 0 represents the young individuals, a > 0 is the aging rate
of x, b > 0 is the maximun birth rate for each adult in a unit of time, c > 0 is
the average rate of births regardless of environment, q > 0 is the catchability
coefficient, E > 0 is harvesting effort and d1, d2 > 0 are the mortality rate of x
and y, respectively.

The goal of this work is to study computational results for the cases of
bifurcations indicated in a discontinuous model (1), shown in [1], when adults
of the same species are not captured if they fall below a certain fixed population.
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To provide the necessary background, in section 2, we follow [5, 4] and give
a description of basic notions such as equilibria, tangency point, trajectories
and periodic orbits in Filippov plane systems. In section 3 the model to be
studied is presented under certain assumptions. In section 4, a global qualitative
analysis is carried out for each vector field that makes up the proposed model.
Based on this, section 5 provides a local and global analysis of the Filippov
system. Finally, in section 6, a bifurcation analysis is performed on the model
(1) with respect to two parameters: harvesting and protection of the population
to interact.

2. Basic notions of Filippov systems

Let X and Y be vector fields of class Cr, with r > 1, in an open set U ⊂ R2

such that (0, 0) ∈ U . Let f : U → R be a function of class Cr, r > 1, such that
gradf(x, y) 6= 0 for all (x, y) ∈ U and Σ = f−1(0)∩U = {(x, y) ∈ U : f(x, y) =
0} an open and differentiable dividing curve which divides U into two open
regions

Σ+ = {(x, y) ∈ U : f(x, y) > 0} and Σ− = {(x, y) ∈ U : f(x, y) < 0},

with Σ+ and Σ− their closures.

According to [5], a Filippov planar system Z = (X,Y ) is a vector field
defined by

Z(x, y) =

{
X(x, y), (x, y) ∈ Σ+

Y (x, y), (x, y) ∈ Σ−,

where X and Y are of class Cr, r > 1, in Σ+ and Σ−, respectively.

In order to establish the dynamics given by the Filippov planar system
Z = (X,Y ) on U , we need to denote the local trajectory ϕZ(t, p) for a initial
point p ∈ U . For this purpose, it is important to determine whether point p
belongs to Σ+, Σ or Σ−.

If p ∈ Σ+ or p ∈ Σ−, the local trajectory in Z = (X,Y ), with initial
point in p, is defined by a trajectory in the vector fields X or Y , respectively.
However, a trajectory must also be defined for the initial points p ∈ Σ. To do
this, considering Xf(p) = 〈X(p), gradf(p)〉 and Y f(p) = 〈Y (p), gradf(p)〉, Σ
is divided into three disjoint regions given by:

• Crossing region: Σc = {p ∈ Σ : Xf(p) · Y f(p) > 0} as seen in Figure 1,

• Sliding region: Σs = {p ∈ Σ : Xf(p) < 0, Y f(p) > 0} represented by
Figure 2(a),

• Escaping region: Σe = {p ∈ Σ : Xf(p) > 0, Y f(p) < 0} represented by
Figure 2(b),
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Figure 1. Crossing region Σc.
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Figure 2. Regions Σs and Σe.

If the boundary of the regions Σc, Σs or Σe are denoted by ∂Σc, ∂Σs and ∂Σe,
respectively, a point p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe, that is, p ∈ Σ such that Xf(p) = 0
or Y f(p) = 0, is called a tangency point, and it can be classified as:

• quadratic ifXf(p) = 0 andX2f(p) = 〈X(p), gradXf(p)〉 6= 0, or Y f(p) =
0 and Y 2f(p) = 〈Y (p), gradY f(p)〉 6= 0. A quadratic tangency p ∈ Σ
is regular if Xf(p) = 0, X2f(p) 6= 0 and Y f(p) 6= 0; or Y f(p) = 0,
Y 2f(p) 6= 0 and Xf(p) 6= 0. For the first case, a regular quadratic tan-
gency is visible if X2f(p) > 0 and invisible if X2f(p) < 0 as seen in
Figure 3(a). For the second case, p ∈ Σ is visible if Y 2f(p) < 0 and
invisible if Y 2f(p) > 0 as seen in Figure 3(b).

• cubic if Xf(p) = X2f(p) = 0 and X3f(p) =
〈
X(p), gradX2f(p)

〉
6= 0 or

Y f(p) = Y 2f(p) = 0 and Y 3f(p) =
〈
Y (p), gradY 2f(p)

〉
6= 0, as seen in

Figure 3(c).

We will now define the trajectory for an initial point p in Σc, Σs or Σe. As
observed in Figure 1, in Σc, since both vector fields point either towards Σ+

or Σ−, it is enough to match the trajectories of X and Y through that point.
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Figure 3. Example of tangency points in Z = (X,Y ).

According to Filippov’s method [7, 5], the trajectory in Σs or Σe is given by a
convex combination of the vector fields X and Y tangent to Σ, that is,

Zs(p) = λ(p)X(p) + (1− λ(p))Y (p).

X(p)

Σs

Σ+

Σ−

Y (p)

Zs(p)

gradf(p)

p

Figure 4. Construction of trajectories Zs(p).

In view of the Figure 4,

〈Zs(p), gradf(p)〉 = 0,

then

λ(p) =
Y f(p)

Y f(p)−Xf(p)
.

Therefore, the sliding vector field Zs is given by

Zs(p) =
1

Y f(p)−Xf(p)
(Y f(p)X(p)−Xf(p)Y (p)), (2)

defined in Σe ∪ Σs. For p ∈ Σe ∪ Σs, the local trajectory of p is given by this
vector field.

In Z = (X,Y ) the point p ∈ Σs∪Σe is called pseudo-equilibrium if Zs(p) =
0, which is further classified as: stable pseudo-node if p ∈ Σs and (Zs)′(p) < 0

Revista Colombiana de Matemáticas
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as shown in Figure 5(a), unstable pseudo-node if p ∈ Σe and (Zs)′(p) > 0 as
shown in Figure Figure 5(b) and, pseudo-saddle if p ∈ Σs and (Zs)′(p) > 0, as
seen in Figure 5(c), or p ∈ Σe and (Zs)′(p) < 0.

Σs

p

gradf(p)
X(x, y)

Y (x, y)

(a) stable pseudo-
node

Σe

p

gradf(p)
X(p)

Y (p)

(b) unstable pseudo-
node

Σs

p

gradf(p)
X(x, y)

Y (x, y)

(c) pseudo-saddle

Figure 5. Examples of pseudo-equilibrium in Z = (X,Y )
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A B
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Σ

γ1
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(d) Pseudo-cycle

Figure 6. Examples of a periodic orbit, limit cycle, cycle, and a pseudo-cycle in Z =
(X,Y ) represented by the purple curve. The black curves are trajectories
that are not periodic.

Keeping in mind this background, the trajectory over the vector field of Z =
(X,Y ) is defined as follows.
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Definition 2.1. Let ϕX and ϕY the trajectories in the vector fields X and Y
defined for for t ⊂ I ∈ R, respectively. The local trajectory ϕZ in Z = (X,Y )
through a point p is defined as follows:

• For p ∈ Σ+ or p ∈ Σ− such that X(p) 6= 0 or Y (p) 6= 0 respectively,
the trajectory is given by ϕZ(t, p) = ϕX(t, p) or ϕZ(t, p) = ϕX(t, p)
respectively, for t ⊂ I ∈ R.

• For p ∈ Σc such that Xf(p), Y f(p) > 0, as shown in Figure 1(a), and
taking the origin of time at p, the trajectory is defined as ϕZ(t, p) =
ϕY (t, p) for t ⊂ I ∩ {t ≤ 0} and ϕZ(t, p) = ϕX(t, p) for t ⊂ I ∩ {t ≥ 0}.
For the case Xf(p), Y f(p) < 0, as shown in Figure 1(a), the trajectory is
defined as ϕZ(t, p) = ϕY (t, p) for t ⊂ I ∩ {t ≥ 0} and ϕZ(t, p) = ϕX(t, p)
for t ⊂ I ∩ {t ≤ 0}.

• For p ∈ Σe∪Σs such that Zs(p) 6= 0, the trajectory is given by ϕZ(t, p) =
ϕZs(t, p) for t ∈ I ⊂ R, where Zs is the sliding vector field given in (2).

• For p ∈ ∂Σc∪∂Σs∪∂Σe such that the definitions of trajectories for points
in Σ in both sides of p can be extended to p and coincide, the trajectory
through p is this common trajectory. We will call these points regular
tangency points.

• For any other point ϕZ(t, p) = {p} for all t ∈ I ⊂ R. This is the case of
the tangency points in Σ which are not regular and which will be called
singular tangency points and are the critical points of X in Σ+, Y in Σ−

and Zs in Σe ∪ Σs.

• As observed in Figure 6(a), a regular periodic orbit is a orbit Γ={ϕZ(t, p) :
t ∈ R}, which therefore belongs to Σ+∪Σ−∪Σc such that ϕZ(t+T, p) =
ϕZ(t, p) for some T > 0.

• A limit cycle in Σ+, or in Σ−, is a limit cycle in Z = (X,Y ) which is
represented in Figure 6(b).

• A cycle in Z = (X,Y ) is a limit cycle formed by the union of a sequence
of curves γ1, · · · , γn, such that γ2k ⊂ Σs and γ2k+1 ⊂ Σ+ ∪ Σ−, where
the arrival and departure points belong to the closures of γ2k and γ2k+1,
respectively. Figure 6(c) is an example of a cycle where n = 2.

• A pseudo-cycle is the union of a set of trajectories γ1, · · · , γn, contained
in Σ+ or Σ−, such that the end point of some γi coincides with the end
point of the next curve and the initial point of γi coincides with the initial
point of the previous curve. Figure 6(d) shows a pseudo-cycle.

With the basic notions for Filippov systems, we can perform the qualitative
analysis for the model (1).
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3. Model Description

Assume that w(t) ≥ 0 is the density of a species at time t ≥ 0 and that it
does not interact with any other species to subsist in an environment. Suppose
that the population is divided into two groups: young individuals x(t) ≥ 0 and
adults individuals y(t) ≥ 0, where only adults can reproduce and be caught
only when found above a critical value P , that is, when y > P .

x y

d1x d2y

ax

by
c+y

f(y)y

Figure 7. Model construction (5).

As observed in Figure 7 and if aging is density independent and recruitment
is increasing but saturating with density, the evolution of young individuals x
can be described by

ẋ = −(a+ d1)x+
by

c+ y
(3)

where a > 0 is the aging rate of x, d1 > 0 is the mortality rate, b > 0 is the
maximum birth rate for each adult by a unit of time and c > 0 is an auxiliary
parameter affecting the general shape of the per capita growth curve of x.
Similarly, the change in the amount of adult species y with respect to time
t ≥ 0 is given by

ẏ = ax− [d2 + f(y)]y, (4)

where d2 > 0 is the mortality rate of the adult species y and

f(y) =

{
qE, if y > P,

0, if y < P,

with q > 0 the catchability coefficient and E > 0 is harvesting effort.

Therefore, as in [1], this model is described by a Filippov system:

Z(x, y) =



X(x, y) =

−(a + d1)x +
by

c + y
ax− (d2 + qE)y

 , y > P

Y (x, y) =

−(a + d1)x +
by

c + y
ax− d2y

 , y < P

(5)

where
Σ+ = {(x, y) ∈ R2 : x > 0, f(x, y) = y − P > 0},
Σ = {(x, y) ∈ R2 : x > 0, f(x, y) = y − P = 0},
Σ− = {(x, y) ∈ R2 : x > 0, f(x, y) = y − P < 0}.
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4. Qualitative analysis of the vector fields X and Y

First, note that the trajectories in vector fields X or Y remain in the region
Ω =

{
(x, y) ∈ R2 : x, y ≥ 0

}
as noted in the following result:

Lemma 4.1. Ω is invariant under the vector field X or Y .

Proof. For the case of the vector field X, if x = 0, ẋ = by
c+y ≥ 0 for all y ≥ 0.

Similarly, if y = 0, ẏ = ax ≥ 0 for all x ≥ 0. This shows that the paths over
the X field cannot cross the border of Ω and therefore Ω is invariant. A similar
argument demonstrates the invariance of Ω under the vector field Y . �X

On the other hand, the following result guarantees that the vector fields X
and Y do not have limit cycles in Ω.

Lemma 4.2. The vector fields X and Y do not have limit cycles in Ω.

Proof. The vector field Y does not have limit cycles in Ω. Indeed, if

f(x, y) = −(a+ d1)x+ b
y

c+ y
,

and
g(x, y) = ax− (d2 + qE)y,

then
∂f

∂x
+
∂g

∂y
= −(a+ d1 + d2 + qE) < 0

for all (x, y) ∈ Ω. By Bendixson-Dulac criterion [9], the vector field Y does not
have limit cycles in Ω. A similar argument demonstrates that X does not have
limit cycles in Ω. �X

The equilibrium points of the vector field X are given by

QX
0 = (0, 0),

QX
∗ =

(
a[b− c(d2 + qE)]− cd1(d2 + qE)

a(a+ d1)
,
a[b− c(d2 + qE)]− cd1(d2 + qE)

(d2 + qE)(a+ d1)

)
,

and the equilibrium of the vector field Y are

QY
0 = (0, 0),

QY
∗ =

(
a(b− cd2)− cd1d2

a(a+ d1)
,
a(b− cd2)− cd1d2

d2(a+ d1)

)
.

If ab > c(d2 + qE)(a + d1), and since c(d2 + qE)(a + d1) > cd2(a + d1), then
QX
∗ , Q

Y
∗ ∈ Ω. If ab < cd2(a+ d1), then QX

∗ , Q
Y
∗ /∈ Ω.
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The Jacobian matrix of the vector field X evaluated at QX
0 is given by

DX(QX
0 ) =

−(a+ d1)
b

c
a −(d2 + qE)

 ,
with

detDX(QX
0 ) = (a+ d1)(d2 + qE)− ab

c
,

and
trDY (QX

0 ) = −(a+ d1 + d2 + qE) < 0.

If ab > c(d2 +qE)(a+d1) then QX
0 is locally unstable. If ab < c(d2 +qE)(a+d1)

then QX
0 is locally stable.

The Jacobian matrix of the vector field Y evaluated at QY
0 is given by

DY (QY
0 ) =

−(a+ d1)
b

c
a −d2

 ,
with

detDY (QY
0 ) = (a+ d1)d2 −

ab

c
,

and
trDY (QY

0 ) = −(a+ d1 + d2) < 0.

If ab > cd2(a+ d1) then detDY (QY
0 ) < 0 and, by Grobman-Hartman Theorem

[9], QY
0 is locally unstable. However, if ab < cd2(a + d1) then QY

0 is locally
stable.

On the other hand, if ab > cd2(a + d1), the Jacobian matrix in the vector
field Y evaluated at QY

∗ ,

DY (QY
∗ ) =

−(a+ d1)
cd2

2(a+ d1)2

a2b
a −d2

 ,
with

detDY (QY
∗ ) =

d2(a+ d1)[a(b− cd2)− cd1d2]

ab
> 0,

trDY (QY
∗ ) = −(a+ d1 + d2) < 0,

and
4 = [trDY (QY

∗ )]2 − 4detDY (QY
∗ ) > 0

because

ab(a+ d1 + d2)2 > d2(a+ d1)(ab− acd2 − cd1d2)

> d2(a+ d1)[cd2(a+ d1)− acd2 − cd1d2] = 0.
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Thus,QY
∗ is a locally stable node. Furthermore, since Ω is invariant and does not

have limit cycles on the vector field Y , by the Poincaré - Bendixson Theorem
[9], every trajectory in Y converges to the equilibrium QY

∗ , and so QY
∗ is a

globally asymptotically stable equilibrium. Similarly, when substituting d2 for
d2 + qE, then QX

∗ is a globally asymptotically stable equilibrium in the vector
field X. Therefore, the following result has been proved.

Theorem 4.3. If ab < cd2(a + d1) then QX
∗ , Q

Y
∗ /∈ Ω and QX

0 or QY
0 are

globally asymptotically stable equilibria on the vector field X or Y , respectively.
If ab > c(d2 + qE)(a + d1) then QX

∗ or QY
∗ are globally asymptotically stable

equilibria on the vector field X or Y , respectively.

5. Qualitative analysis of the Filippov system Z = (X,Y )

For a qualitative analysis of the Filippov system (5), we will determine regions
Σs, Σc, Σe and calculate the sliding vector field Zs (2). Indeed, for all p ∈ Σ,

Xf(p) = 〈X(p), gradf(p)〉 = ax− (d2 + qE)P,

and
Y f(p) = 〈Y (p), gradf(p)〉 = ax− d2P,

such that

Xf(p) · Y f(p) = (ax− d2P )(ax− (d2 + qE)P ) < 0,

and one of the following conditions must hold:

• ax− d2P > 0 and ax− (d2 + qE)P < 0, that is, d2P
a < x < d2+qE

a P ,

• ax−d2P < 0 and ax−(d2+qE)P > 0, equivalent to, d2+qE
a P < x < d2

a P .

However, the last condition does not occur since d2

a < d2+qE
a . Therefore,

Σs =

{
(x, y) ∈ R2 :

d2P

a
< x <

(d2 + qE)P

a
, y = P

}
,

Σc =

{
(x, y) ∈ R2 : x <

d2P

a
or

(d2 + qE)P

a
< x, y = P

}
,

Σe = ∅.

The sliding vector field Zs is given by

Zs(p) =


bP − x(a+ d1)(c+ P )

c+ P

0

 ,
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with equilibria

PN =

(
bP

(a+ d1)(c+ P )
, P

)
, (6)

which corresponds to a stable pseudo-node, because for all p ∈ Σs,

d

dx

(
bP − x(a+ d1)(c+ P )

c+ P

)
= −(a+ d1) < 0.

The sliding segment has two tangency points, Xf(p) = 0 or Y f(p) = 0 with
p ∈ Σ, given by

T1 =

(
d2

a
P, P

)
, (7)

and

T2 =

(
d2 + qE

a
P, P

)
. (8)

The tangency point T2 is visible if

X2f(T2) =
P{a[b− (c+ P )(d2 + qE)]− d1(c+ P )(d2 + qE)}

c+ P
> 0,

that is,

P <
ab

(a+ d1)(d2 + qE)
− c, (9)

and invisible if X2f(T2) < 0, that is,

P >
ab

(a+ d1)(d2 + qE)
− c. (10)

Similarly, the tangency point T1 is visible if

P >
ab

d2(a+ d1)
− c (11)

and invisible if

P <
ab

d2(a+ d1)
− c. (12)

As seen in Figure 8, PN is at the intersection of Σs ≡ T1T2 and the nullclines
ẋ, ẏ = 0.

If ab > c(d2 + qE)(a + d1), that is ab > cd2(a + d1), the equilibria QX
∗ ,

QY
∗ and pseudo-equilibrium PN are not present simultaneously in the phase

portrait of the Filippov system (5) as demonstrated by the following result:

Lemma 5.1. If ab > c(d2 + qE)(a + d1), the equilibria PN , QX
∗ and QY

∗ do
not coexist in the Filippov system (5).
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Σ+

Σ−
ẏ = 0

ẏ = 0

ẋ = 0

Σ
PN

T1

T2

d2

a P d2+qE
a P(0, 0)

x

y

P

Figure 8. Nullclines ẋ = 0 and ẏ = 0, slidind segment T1T2, PN and phase portrait
of the Filippov system (5) with parameters: a = c = d1 = d2 = q = E = 1,
b = 3, P = 0.3.

Proof. If the pseudo-node PN exists, that is PN ∈ T1T2 ≡ Σs, from (6), (7)
and (8) we have that

d2

a
<

b

(a+ d1)(c+ P )
<
d2 + qE

a
,

equivalenty,
ab

(d1 + a)(d2 + qE)
− c < P <

ab

d2(d1 + a)
− c.

If P < ab
d2(d1+a) − c, then a(b−cd2)−cd1d2

d2(a+d1) > P and so QY
∗ /∈ Σ−, that is, QY

∗
is not defined for the Filippov system (5). Similarly, if ab

(d1+a)(d2+qE) − c < P,

then a[b−c(d2+qE)]−cd1(d2+qE)
(d2+qE)(a+d1) < P and QX

∗ /∈ Σ+.

Conversely, ifQY
∗ belongs to the Filippov system (5), that is, a(b−cd2)−cd1d2

d2(a+d1) <

P , then ab
d2(d1+a) − c < P and so PN /∈ Σs. Similarly, if QX

∗ exist, then
ab

(d1+a)(d2+qE) − c > P and PN /∈ Σs.

It remains to verify that QX
∗ and QY

∗ do not coexist. Indeed, since

a(b− cd2)− cd1d2

d2(a+ d1)
>
a[b− c(d2 + qE)]− cd1(d2 + qE)

(d2 + qE)(a+ d1)
,

if QX
∗ exist, that is, a[b−c(d2+qE)]−cd1(d2+qE)

(d2+qE)(a+d1) > P , then P < a(b−cd2)−cd1d2

d2(a+d1) and

so QY
∗ /∈ Σ−.

If QY
∗ exists, that is, a(b−cd2)−cd1d2

d2(a+d1) < P , then a[b−c(d2+qE)]−cd1(d2+qE)
(d2+qE)(a+d1) < P

and so QX
∗ /∈ Σ+. �X
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We can now derive the following result using Theorem 4.3 and Lemma 5.1,
as illustrated in Figures 8, 9, and 10.

Σ+

Σ−
ẏ = 0

ẏ = 0

ẋ = 0
Σ

T1 T2

d2

a P d2+qE
a P(0, 0)

x

y

P

QX
∗

0 0.1 0.2 0.3 0.4
Young population x(t)

0

0.1

0.2

0.3

0.4

A
du

lt 
po

pu
la

tio
n 

y(
t)

Figure 9. Nullclines ẋ = 0 and ẏ = 0, slidind segment T1T2, QX
∗ and phase portrait

of the Filippov system (5) with parameters: a = c = d1 = d2 = q = 1,
E = 0.2, b = 3, P = 0.13.

Theorem 5.2. If PN , QX
∗ or QY

∗ exist in the Filippov system (5), these are
globally asymptotically stable nodes.

However, if ab < cd2(a + d1), that is QX
∗ and QY

∗ does not exist in the
Filippov system (5), the equilibrium QX

0 and the pseudo-equilibrium PN are
not defined in the Filippov system (5). Consequently, and as in Theorem 4.3,
the equilibrium QY

0 is globally asymptotically stable in the Filippov system (5)
for all P,E > 0 as observed in Figure 11.

Lemma 5.3. If ab < cd2(a + d1), then the equlibrium QX
0 and the pseudo-

equilibrium PN do not belong in the Filippov system (5).

Proof. Clearly, QX
0 does not exist for system (5) since P > 0. Similarly, if the

pseudo-node PN exists, that is PN ∈ T1T2 ≡ Σs, then

d2

a
<

b

(a+ d1)(c+ P )
<
d2 + qE

a
,

equivalently,

ab

(d1 + a)(d2 + qE)
− c < P <

ab

d2(d1 + a)
− c.

Since ab < cd2(a + d1), then ab
d2(d1+a) − c < 0 and therefore P < 0, a contra-

diction. �X

Volumen 56, Número 2, Año 2022



DYNAMICS WITH PROTECTION AND HARVESTING OF A SPECIES 127

Σ+
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Figure 10. Nullclines ẋ = 0 and ẏ = 0, slidind segment T1T2, QY
∗ and phase portrait

of the Filippov system (5) with parameters: a = c = d1 = d2 = q = 1,
E = 0.5, b = 3, P = 0.8.
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Figure 11. Nullclines ẋ = 0 and ẏ = 0, slidind segment T1T2, QY
0 and phase portrait

of the Filippov system (5) with parameters: a = c = d1 = d2 = q = 1,
E = 1, b = 2, P = 0.5.
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6. Bifurcation analysis

Finally, we analyze the cases in which the parameters E and P can significantly
modify the phase diagrams for the Filippov system (5) through the collision of
the elements found by the qualitative analysis given in section 5.

Clearly, for the case where ab < cd2(a+ d1), and in view of Lemma 5.3, the
system (5) has a single globally asymptotically stable equilibrium QY

0 indepen-
dently of the parameters P and E, as shown in Figure 11.

For the case that ab > c(d2+qE)(a+d1), if PN exists in the Filippov system
(5), a collision of PN with T1 and a collision of PN with T2 are characterized
by PN ≡ T1 and PN ≡ T2, respectively, that is,

P =
ab

(d1 + a)d2
− c, (13)

and

P =
ab

(d1 + a)(d2 + qE)
− c, (14)

which generates three bifurcation regions as seen in Figure 12(a). The bifur-

cation curves (13) and (14) intersect at the point
(

0, ab
(d1+a)d2

− c
)

and form

a collision between T1 and T2, so PN and Σc are not defined in the Filippov
system (5). Otherwise, the pseudo-node PN is formed through the intersection
of the nullcline ẋ = 0 with the sliding vector field Zs as seen in Figure 8. Like-
wise, if the nullcline ẋ = 0 intersects the nullcline ẏ = 0, the equilibrium QX

∗
or QY

∗ is formed depending on whether the point of intersections is below or
above Σ, respectively, as observed in Figures 9 and 10.

From (6), (7) and (8), the pseudo-node PN exists if PN ∈ T1T2, that is,

ab

(d1 + a)(d2 + qE)
− c < P <

ab

d2(d1 + a)
− c.

In this case, the pseudo-node PN exists only in region 2, as shown in Figure
12(c).

From (9) and (10), the tangency point T2 is visible in region 3, as shown
in Figure 12(d), and invisible in regions 1 and 2, as shown in Figure 12(b,c)
respectively. From (11) and (12), the tangency point T2 is visible in region 1,
as shown in Figure 12(b), and invisible in regions 2 and 3, as shown in Figure
12(c,d) respectively.

On the other hand, QY
∗ is a point in the Filippov system (5) if ab

d2(d1+a)−c < P ,

and does not belong to the Filippov system (5) if ab
d2(d1+a)−c > P . From Figure

12, QY
∗ exists in region 3 and does not exist in regions 1 and 2. Similarly, QX

∗
exists in region 1 since ab

(d1+a)(d2+qE) − c < P , and does not exist in regions 2

and 3.
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(a) Bifurcation curves in the plane (E,P )
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(c) Region 2
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(d) Region 3

Figure 12. Bifurcation diagram of the Filippov system (5) in the space (E,P ), and
phase portraits that characterize each region, for the following parame-
ters: a = c = d1 = d2 = q = 1 and b = 3. Black point: Q∗

X,Y . Red point:
PN .

To determine if there are more bifurcations in the Filippov system (5), it re-
mains to verify the collision between T1 and T2. However, this is not possible

since d2P
a < (d2+qE)P

a . Therefore, Figure 12 shows the phase portraits for re-
gions 1 to 4 of the Filippov system (5).

Conclusions

In this work, we analyze computational results for the different cases of bifur-
cations in the discontinuous model (5), proposed in [1]. The model (5) is used
to analyze the dynamics of a species that is grown in a controlled environment,
and isolated from predators, in order to harvest the adult species when it is
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above the threshold value, as in the case of timber production in harvested
forests or fishing activities.

The existence of an internal equilibrium for model (5) is of vital importance
in determining the overall stability of the system. If there is no internal equi-
librium point in the X and Y fields, i.e., ab < c(a+ d1), the species, young and
adult, will go extinct over time, regardless of the threshold value P and the
catching capacity of the adult species E. However, if ab > c(a+d1), the species
will not go extinct, but will tend to stabilize over time, that is, it will tend in
at least one equilibrium either of the X, Y or sliding field Zs.

On the other hand, since the vector fields X and Y do not exhibit limit
cycles, the complexity of showing the bifurcation cases for the Filippov system
(5) is significantly reduced. This type of result means that the two groups of
species do not exhibit a significant number of changes in their phase portrait.
Since there are no periodic orbits, there will be no oscillations in the number
of the two groups, hence the species should stabilize.

Since the bifurcation diagram shows all possible dynamics for the proposed
model, if the objective is to control the species by increasing the level of catch-
ability with low threshold of protection in the species so that it does not go
extinct, in addition to the condition ab > c(a+ d1), P and E should be chosen
such that ab

(d1+a)(d2+qE) − c < P < ab
d2(d1+a) − c, that is, in region two.
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