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Abstract. Let H be a separable infinite dimensional complex Hilbert space,
and let L(H) denote the algebra of all bounded linear operators on H into
itself. Given A,B ∈ L(H), define the generalized derivation δA,B ∈ L(L(H))
by δA,B(X) = AX−XB. An operator A ∈ L(H) is P -symmetric if AT = TA
implies AT ∗ = T ∗A for all T ∈ C1(H) (trace class operators). In this paper,
we give a generalization of P -symmetric operators. We initiate the study of the

pairs (A,B) of operators A,B ∈ L(H) such that R(δA,B)
W∗

= R(δA∗,B∗)
W∗

,

where R(δA,B)
W∗

denotes the ultraweak closure of the range of δA,B . Such
pairs of operators are called generalized P -symmetric. We establish a char-
acterization of those pairs of operators. Related properties of P -symmetric
operators are also given.

Key words and phrases. Generalized derivation, Fuglede-Putnam property, D-
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Resumen. Sea H un espacio de Hilbert separable sobre los complejos y de-
note por L(H) al álgebra de los operadores acotados de H es śı mismo. Da-
dos A,B ∈ L(H), defina la derivada generalizada δA,B ∈ L(L(H)) como
δA,B(X) = AX −XB. Un operador A ∈ L(H) es P -simétrico si la condición
AT = TA implica que AT ∗ = T ∗A para todo T ∈ C1(H) (los operadores de
clase de traza). En este art́ıculo presentamos una generalización de los oper-
adores P -simétricos. En este art́ıculo estudiamos pares (A,B) de operadores

A,B ∈ L(H) tales que R(δA,B)
W∗

= R(δA∗,B∗)
W∗

, donde R(δA,B)
W∗

denota
la clausura ultradébil del rango δA,B . A esta clase de operadores los llamamos
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146 YOUSSEF BOUHAFSI, MOHAMED ECH-CHAD & ADIL ZOUAKI

operadores P -simétricos generalizados. En este art́ıculo damos una caracteri-
zación de esta clase de pares de operadores y presentamos propiedades de los
operadores P simétricos generalizados.

Palabras y frases clave. Derivada generalizada, propiedad de Fuglede-Putnam,
operador D-simétrico, operador P -simétrico, operador compacto.

1. Introduction and Notation

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of all bounded linear operators acting on H into itself. Given
A,B ∈ L(H), we define the generalized derivation δA,B : L(H) −→ L(H) by
δA,B(X) = AX −XB, we simply write δA for δA,A.

An operator A ∈ L(H) is called D-symmetric if R(δA) = R(δA∗), where
R(δA) denotes the norm closure of the range R(δA) of δA. Clearly A is D-
symmetric if and only if R(δA) is a self-adjoint subspace of L(H). Examples
of D-symmetric operators include the normal operators, isometries and hy-
ponormal weighted shifts. The properties of D-symmetric operators have been
considered in a number of papers (see for example [1], [5], [6], [3], [4], [7], [9],
[10] and [11]).

In [2] it is proved that if A is D-symmetric, then A has the property
(FP )C1(H), that is, AT = TA implies A∗T = TA∗ for every T ∈ C1(H) (trace
class operators). Operators A satisfying the property (FP )C1(H) are termed
P -symmetric.

S. Bouali and J. Charles introduced P -symmetric operators, and they gave
some basic properties of this class of operators ([5], [6]). In this paper, we study

the pairs (A,B) of operators A,B ∈ L(H) with the property that R(δA,B)
W∗

=

R(δA∗,B∗)
W∗

, where R(δA,B)
W∗

denotes the ultraweak closure of R(δA,B). We
call such pairs of operators generalized P -symmetric. We give a characterization
and some properties of P -symmetric pairs (A,B) of bounded linear operators
A and B.

The present paper investigates also the class of P -symmetric operators.
We prove that if A is a rationally cyclic subnormal operator, then A is D-
symmetric. A well-known result of S. Bouali and J. Charles [5] says that an

operator A ∈ L(H) is P -symmetric if and only if R(δA)
W∗

is self-adjoint. So, for
a P -symmetric operator A we consider the following sets: C◦(A) = {C ∈ L(H) :

CL(H) + L(H)C ⊂ R(δA)
W∗

}, I◦(A) = {Z ∈ L(H) : ZR(δA) + R(δA)Z ⊂
R(δA)

W∗

}, B◦(A) = {B ∈ L(H) : R(δB) ⊂ R(δA)
W∗

}. We establish some new
properties concerning these subalgebras of L(H). We present some examples
and counterexamples of P -symmetric and essentially D-symmetric operators.

We conclude this section with some notation and terminology. An operator
on H will always be understood to be a bounded linear transformation from H

Volumen 56, Número 2, Año 2022



A NOTE ON THE RANGE OF A DERIVATION 147

into itself. The algebra of all bounded linear operators on H will be dented by
L(H). Given A ∈ L(H), we shall denote the kernel, the orthogonal complement
of the kernel and the closure of the range of A by ker(A), ker⊥(A) and R(A),
respectively. The spectrum of A will be denoted by σ(A), and the restriction of
A to an invariant subspace M will be denoted by A|M . A closed subspace M
of H is said to reduce A if AM ⊆M and AM⊥ ⊆M⊥, that is, if M and M⊥

are both invariant under A. For λ ∈ C, let λ denote the complex conjugate of
λ. A complex number λ is said to be a reducing eigenvalue for A if ker(A−λI)
reduces A, where I is the identity operator. For vectors x and y in H we denote
by x⊗ y the rank-one operator defined by x⊗ y(z) = 〈z, y〉x for all z ∈ H.

Let K(H), C1(H) and F (H) be respectively the ideal of compact opera-
tors, the ideal of trace class operators and the ideal of finite rank on H. The
trace function is defined on C1(H) by tr(T ) =

∑
n〈Ten, en〉, where (en) is

any complete orthonormal sequence in H. The weakly continuous linear func-
tionals on L(H) are those of the form fT (X) = tr(XT ), where T ∈ F (H).
The ultraweakly continuous linear functionals on L(H) are those of the form
fT (X) = tr(XT ), where T ∈ C1(H).

For A ∈ L(H), let [A] denote the image of A under the canonical projection
of L(H) onto the Calkin algebra L(H)|K(H). An operator A ∈ L(H) is said to
be essentially normal if A∗A−AA∗ is compact, equivalently, if [A] is a normal
element of the Calkin algebra.

Let B be a Banach space and let S be a subspace of B. Denote by B′ the
set of all bounded linear functionals. We define the annihilator of S by

S◦ = {f ∈ B
′

: f(s) = 0 for all s ∈ S}.

Any other notation will be explained as and when required.

2. Preliminaries

Definition 2.1. An operator A ∈ L(H) is called D-symmetric, if R(δA) =
R(δA∗).

Theorem 2.2. [1] If A ∈ L(H), then the following two statements are equiva-
lent.

(1) A is D-symmetric.

(2) (i) [A], the corresponding element of the Calkin algebra, is D-symmetric
and

(ii) AT = TA and T ∈ C1(H) implies A∗T = TA∗.

Definition 2.3. Let A ∈ L(H). Then A is called P -symmetric if AT = TA
and T ∈ C1(H) implies A∗T = TA∗.

Theorem 2.4. [3] Let A ∈ L(H), then
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(1) A is P -symmetric if and only if R(δA)
W∗

is self-adjoint.

(2) P (H) (the set of P -symmetric operators) is self-adjoint.

Proposition 2.5. [3] Let A ∈ L(H). If there exist nonzero vectors f, g ∈ H
such that

(1) Af = λf and A∗f 6= λf ,

(2) A∗g = λg,

then A is not P -symmetric.

Example 2.6. Let (en)n∈N be an orthonormal basis for H. Let H◦ =
∨{e1, e2, e3} denote the linear subspace of H generated by the set {e1, e2, e3}.
Let A◦ be defined by

A◦ =

 1 0 0

1 −1 1

0 0 −1

 ∈ L(H◦).

We next define the operator A = A◦ ⊕ I, with respect to the decomposition
H = H◦ ⊕H⊥◦ , where I is the identity operator. It is easily verified that

Ae2 = −e2 , A
∗e2 = e1 − e2 + e3 6= −e2 and A∗e3 = −e3.

It follows that A is not P -symmetric.

Definition 2.7. An operator A ∈ L(H) is called essentially D-symmetric, if
[A], its corresponding element of the Calkin algebra, is D-symmetric.

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.8. (i) An operator A on H is D-symmetric if and only if A is
essentially D-symmetric and P -symmetric.

(ii) An essentially normal operator A is D-symmetric if and only if A is
P -symmetric.

(iii) An operator in the trace class is P -symmetric if and only if it is normal.

Remark 2.9. Let (en)n∈N (respectively (en)n∈Z) be an orthonormal basis for
H. Let S be the unilateral (respectively bilateral) shift Sen = ωnen+1 where
n ∈ N (respectively n ∈ Z) with nonzero weights ωn. By taking a unitarily
equivalent weighted shift, we may assume that ωn = |ωn| > 0.

In [6] it is shown that S is P -symmetric if and only if S satisfies the total
products condition, that is,

Σ∞k=1ωk.ωk+1. · · · .ωk+n =∞ for all n ∈ N.
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Example 2.10. We now present an example of an essentially D-symmetric
which is not P -symmetric. We define our operator A as follows.

Let (en)n∈Z be an orthonormal basis for H. Set

Aek =
1

k2 + 1
ek+1 for all k ∈ Z.

It is obvious that A is essentially normal. Then it follows from Theorem 2.1
in [1] ( which is valid in any C∗-algebra), that A is essentially D-symmetric.
However the weights of A don’t satisfy the total products condition, and so A
is not P -symmetric.

Example 2.11. Let (en)n∈Z be an orthonormal basis for H. Define T ∈ L(H)
by {

Te2n = 1
2e2n+1,

T e2n+1 = 2e2n+2.

Since the weights of T satisfy the total products condition, then T is P -
symmetric. It follows from Lemma 2 in [11] that T is not essentiallyD-symmetric.
On the other hand, we have that T 2 is unitary, and hence T 2 is D-symmetric.
But T is not D-symmetric.

3. Main Results

Definition 3.1. Let A,B ∈ L(H) and J be a two-sided ideal of L(H). The
pair (A,B) is said to possess the Fuglede-Putnam property (FP )J if AT = TB
and T ∈ J implies A∗T = TB∗. i.e. ker(δA,B |J ) ⊆ ker(δA∗,B∗ |J ).

Definition 3.2. Let A,B ∈ L(H). The pair (A,B) of operators A and B is
called P -symmetric if

R(δA,B)
W∗

= R(δA∗,B∗)
W∗

.

For A,B ∈ L(H), let R(δA,B)◦ denotes the set of all norm-continuous linear

functionals that vanish on the range R(δA,B) of δA,B . Note also that L(H)
′W∗

is the set of all ultraweakly continuous linear functionals on L(H).

Lemma 3.3. Let A,B ∈ L(H). Then

R(δA,B)◦ = (R(δA,B)◦ ∩K(H)◦)⊕ (ker(δB,A) ∩ C1(H)).

The proof of the preceding lemma is the same as the proof of Theorem 3 [12].

Theorem 3.4. Let A,B ∈ L(H). The pair (A,B) is P -symmetric if and only
if (A,B) ∈ (FP )C1(H) and (B,A) ∈ (FP )C1(H).
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Proof. Observe that the assertion R(δA,B)
W∗

= R(δA∗,B∗)
W∗

is equivalent to

R(δA,B)◦ ∩ L(H)
′W∗

= R(δA∗,B∗)
◦ ∩ L(H)

′W∗

.

We get from lemma 3.1 that

R(δA,B)◦ = (R(δA,B)◦ ∩K(H)◦)⊕ (ker(δB,A) ∩ C1(H)).

Hence, it follows that

R(δA,B)◦ ∩ L(H)
′W∗

' ker(δB,A) ∩ C1(H).

Consequently, we have R(δA,B)
W∗

= R(δA∗,B∗)
W∗

if and only if

ker(δB,A) ∩ C1(H) = ker(δB∗,A∗) ∩ C1(H).

This completes the proof. �X

Theorem 3.5. Let A,B ∈ L(H). If there exist nonzero vectors x, y ∈ H, and
some λ ∈ C such that

(1) Bx = λx and B∗x 6= λx,

(2) A∗y = λy, then the pair (A,B) is not P -symmetric.

Proof. We must show that R(δA,B)
W∗

6= R(δA∗,B∗)
W∗

. Clearly we have that

R(δA,B)
W∗

= R(δA∗,B∗)
W∗

if and only if

fT ∈ R(δA,B)◦ ⇐⇒ fT ∈ R(δA∗,B∗)
◦,

for every T ∈ C1(H).

It suffices to exhibit a trace class operator T for which fT ∈ R(δA,B)◦ but
fT 6∈ R(δA∗,B∗)

◦. Let us define the rank one operator T = x⊗ y.

Then for any Y ∈ L(H) we have

fT (δA,B(Y )) = tr[(AY − Y B)T ] = tr(Y TA)− tr(Y BT )

= tr(Y ◦ (x⊗A∗y))− tr(Y ◦ (Bx⊗ y))

= tr(λY T )− tr(λY T ) = 0.

Define an operator X ∈ L(H) by X = y ⊗ (B − λ)∗x. Then, it follows that

fT (δA∗,B∗(X)) = tr[(A∗X −XB∗)T ]

= tr[{(A∗ − λ)X −X(B∗ − λ)}T ]

= tr[(A∗ − λ)XT ]− tr[X(B∗ − λ)T ]

= tr[(A∗ − λ)y ⊗ T ∗(B − λ)∗x]− tr[(y ⊗ (B − λ)∗x)(B − λ)∗(x⊗ y)].

= −‖(B − λ)∗x‖2.‖y‖2 6= 0,

which completes the proof. �X
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Example 3.6. Let (en)n≥1 be an orthonormal basis for H. Let H◦ =
∨{e1, e2, e3}, and set

B◦ =

 −i i 0

0 1 0

0 −1 i

 ∈ L(H◦).

Define the operator B ∈ L(H) by B = B◦⊕I with respect to the decomposition
H = H◦ ⊕ H⊥◦ , and let A = ie2 ⊗ e2. A straightforward computation gives
Be3 = ie3, B∗e3 = −e2 − ie3 6= −ie3 and A∗e2 = −ie2. Then it follows from
Theorem 3.2 that (A,B) is not P -symmetric.

Theorem 3.7. Let A,B ∈ L(H). If A and B are P -symmetric operators such
that σ(A) ∩ σ(B) = φ, then the pair (A,B) is P -symmetric.

Proof. Assume that A and B are P -symmetric operators with disjoint spectra.

Let T ∈ R(δA,B)
W∗

, then there exists a sequence (Xα)α of elements in L(H)
such that (AXα −XαB)α converges in the ultra-weak topology (or the weak ∗

operator topology) to T , in symbols we write AXα −XαB
W∗−→ T .

On H ⊕H consider the operators L, S and Yα defined as

L =

(
A 0

0 B

)
, S =

(
0 T

0 0

)
, Yα =

(
0 Xα

0 0

)
.

It follows that

δL(Yα) =

(
0 δA,B(Xα)

0 0

)
W∗−→

(
0 T

0 0

)
= S.

Hence, we get S ∈ R(δL)
W∗

. Since A and B are P -symmetric with disjoint
spectra, then we obtain from Theorem 2.6 in [3], that L is P -symmetric. Thus,

there exists a sequence (Zα)α in L(H ⊕ H) for which δL∗(Zα)
W∗−→ S. A sim-

ple calculation shows that there exists a sequence (Uα)α in L(H) such that

δA∗,B∗(Uα)
W∗−→ T . Then we conclude that R(δA,B)

W∗

⊆ R(δA∗,B∗)
W∗

.

The argument to verify the reverse inclusion is identical to the above and
thus the proof is complete. �X

Corollary 3.8. Let A,B ∈ L(H). If (A,B) is P -symmetric, then

A∗R(δA,B) +R(δA,B)B∗ ⊂ R(δA,B)
W∗

.

Proof. Suppose that (A,B) is P -symmetric. Then we have

R(δA,B)
W∗

= R(δA∗,B∗)
W∗

.
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If X is any operator in L(H) then

A∗δA∗,B∗(X) = δA∗,B∗(A
∗X),

and
δA∗,B∗(X)B∗ = δA∗,B∗(XB

∗).

From this it follows that

A∗R(δA,B) ⊂ A∗R(δA,B)
W∗

= A∗R(δA∗,B∗)
W∗

⊂ R(δA∗,B∗)
W∗

= R(δA,B)
W∗

.

By the same argument as above, we prove that R(δA,B)B∗ ⊂ R(δA,B)
W∗

. So
the proof is complete. �X

Remark 3.9. Let A,B ∈ L(H). Suppose that (A,B) is P -symmetric and let
T ∈ C1(H) such that AT = TB. Then we get

δA,B(AT ) = 0⇒ δA∗,B∗(AT ) = 0.

Hence, it follows readily that

(A∗A−AA∗)T = T (BB∗ −B∗B) = ATT ∗ − TT ∗A = T ∗TB −BT ∗T = 0.

Then we have R(T ) reduces A, and ker⊥(T ) reduces B, and A|R(T ), B| ker⊥(T )
are unitarily equivalent normal operators.

Definition 3.10. An operator A on a Hilbert space H is subnormal, if there
is a Hilbert space K containing H and a normal operator N on K, such that
N(H) ⊆ H and A = N |H (the restriction of N to H).

Definition 3.11. An operator A ∈ L(H) is called rationally cyclic if there is
an e ∈ H such that

H = {r(A)e : r ∈ Rat(σ(A))},

where Rat(σ(A)) is the set of rational functions with poles off σ(A), and e is
called a rationally cyclic vector for A.

Theorem 3.12. Let A ∈ L(H). If A is a rationally cyclic subnormal operator,
then A is D-symmetric.

Proof. Suppose that A is a rationally cyclic subnormal operator, and let T ∈
C1(H) be such that AT = TA. It follows from Yoshino’s result [14] that T is
subnormal. It is well-known that any compact subnormal operator is normal.
We get that T is normal . Hence, it follows from Fuglede-Putnam theorem that
AT = TA implies AT ∗ = T ∗A. Thus, A is P -symmetric.

Since A is a rationally cyclic subnormal operator, it results from Shaw and
Berger’s Theorem [2] that [A] is normal. Then A is essentially D-symmetric.
This proves that A is D-symmetric. �X
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Definition 3.13. Let A ∈ L(H). The commutant {A}′ of A is defined by:

{A}
′

= {B ∈ L(H) : AB = BA}.

The bicommutant {A}′′ of A is defined by:

{A}
′′

= {C ∈ L(H) : CB = BC , for all B ∈ {A}
′
}.

Remark 3.14. It is known that A is P -symmetric if and only if R(δA)
W∗

is
a self-adjoint subspace of L(H). Hence, for a P -symmetric operator A, it is
natural to introduce the following subalgebras:

C◦(A) = {C ∈ L(H) : CL(H) + L(H)C ⊂ R(δA)
W∗

},

I◦(A) = {Z ∈ L(H) : ZR(δA) +R(δA)Z ⊂ R(δA)
W∗

},

B◦(A) = {B ∈ L(H) : R(δB) ⊂ R(δA)
W∗

}.
It is well-known that if H is of finite dimension ([13]), then

C◦(A) = {0}, I◦(A) = {A}
′
, B◦(A) = {A}

′′
.

In [4] S. Bouali and J. Charles proved that if A is normal with finite spectrum
then

C◦(A) = {0}, I◦(A) = {A}
′
, B◦(A) = {A}

′′
.

Theorem 3.15. Let A ∈ L(H) be a P -symmetric operator. Then the following
statements are equivalent:

(i) K(H) ⊂ R(δA)
W∗

.

(ii) A has no reducing eigenvalues.

(iii) K(H) ⊂ C◦(A).

Proof. (i) ⇒ (ii) If A has a reducing eigenvalue, then (Sx, x) = 0 for all

S ∈ R(δA)
W∗

, and some non-zero x ∈ H. It follows that K(H) 6⊂ R(δA)
W∗

.

(ii) ⇒ (i) Suppose that K(H) 6⊂ R(δA)
W∗

. Then there exist a non-zero T
in the trace class such that fT vanishes on R(δA), that is, AT = TA. Since A
is P -symmetric, then AT = TA and T ∈ C1(H) implies AT ∗ = T ∗A. It follows
that A(T +T ∗) = (T +T ∗)A and A(T −T ∗) = (T −T ∗)A. Hence A commutes
with a non-zero trace class operator. Consequently, A has a finite dimensional
reducing subspace H◦. Clearly, A|H◦ is P -symmetric, and so A|H◦ is normal
by Corollary 2.1 (iii). Thus T has a reducing eigenvalue.

The remaining equivalence (ii)⇔ (iii) is obvious.

We include the following properties for the sake of completeness. We omit
the proofs which are based entirely on those of C. Gupta and P. Ramanujan
for D-symmetric operators [8]. �X
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Corollary 3.16. Let A ∈ L(H) be a P -symmetric operator with C◦(A) =
K(H). Then we have the following assertions:

(i) A is essentially normal.

(ii) A has no reducing eigenvalue.

(iii) Each projection in R(δA)
W∗

is finite dimensional.

(iv) I◦(A) = {Z ∈ L(H) : AZ − ZA ∈ K(H)}.

(v) B◦(A)|C◦(A) is a commutative C∗-algebra of the Calkin algebra L(H)|K(H).

Acknowledgement. The Authors are grateful to the referee for several help-
ful suggestions. Also, they wish to express thanks to Professor S. Bouali for
encouragements and for some useful discussions during the preparation of this
note.

References

[1] J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams, C∗-
algebras and derivation ranges, Acta Sci. Math. (Szeged) 40 (1978), no. 3-
4, 211–227.

[2] C. A. Bergerand and B. I. Shaw, Self-commutators of multicyclic hyponor-
mal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973),
1193–1199.

[3] S. Bouali and Y. Bouhafsi, On the range-kernel orthogonality and p-
symmetric operators, Math. Inequal. Appl. 9 (2006), no. 3, 511–519.

[4] , P -symmetric operators and the range of a subnormal derivation,
Acta Sci. Math(Szeged) 72 (2006), no. 3-4, 701–708.

[5] S. Bouali and J. Charles, Extension de la notion d’opérateur D-symétrique
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