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Abstract. In this paper, we provide an explicit upper bound on the absolute
value of the solutions n < m < 0 to the Diophantine equation F

(k)
n = ±F (k)

m ,
assuming k is even. Here {F (k)

n }n∈Z denotes the k-generalized Fibonacci se-
quence. The upper bound depends only on k.
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Resumen. En este art́ıculo presentamos una cota superior expĺıcita para el
valor absoluto de las soluciones con n < m < 0 de la ecuación Diofantina
F

(k)
n = ±F (k)

m , bajo la hipótesis que k es par. En la ecuación anterior {F (k)
n }n∈Z

denota la sucesión de Fibonacci k-generalizada. La cota superior sólo depende
de k.

Palabras y frases clave. sucesiones de Fibonacci k-generalizadas, multiplicidad
total.

1. Introduction

Let k ≥ 2 be a positive integer. The k-generalized Fibonacci sequence {F (k)
n }n∈Z

is defined by

F
(k)
−k+2 = · · · = F

(k)
0 = 0, F

(k)
1 = 1, (1)

and by

F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k for all n ∈ Z. (2)
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The case k = 2 gives the Fibonacci sequence. There exist several results in

the literature connected to the sequence {F (k)
n }, but few of them deal with

problems when negative subscripts are considered. To construct the sequence
in reverse direction using, for example (1) as initial values, one can apply the
recurrence relation

F
(k)
−t = −F (k)

−t+1 − · · · − F
(k)
−t+k−1 + F

(k)
−t+k,

where the index −t emphasizes the fact that it is negative (t ∈ Z+, t ≥ k− 1).
The main problem with negative subscripts is that while the characteristic

polynomial Tk(x) = xk−xk−1−· · ·−x−1 (of {F (k)
n }∞n=n0

) has a (positive real)

dominating zero, the characteristic polynomial T k(x) = xk +xk−1 + · · ·+x− 1
of the reverse sequence has no one if k is odd. When k is even, then other
difficulty in computations is that, although T k(x) possesses a dominating zero
which is a negative real number but its dominance over the remaining roots is
not strong. This paper supposes that k is even, and according to the previous
observation, we will need to face this difficulty.

Bravo et al. [1] extended the results of [2], and determined the total multi-

plicity of Tribonacci sequence {Tn}n∈Z = {F (3)
n }n∈Z. In particular, they solved

the Diophantine equation Tn = Tm for negative subscripts.

Pethő [6] proved that the Diophantine equation

F (k)
n = F (`)

m

possesses only finitely many solutions (n,m) ∈ Z2 for fixed k ≥ ` ≥ 2. This
result is ineffective, the proof is based on the theory of S-unit equations. On
the other hand, the effective finiteness results of [6] states that if k and ` are
given positive even integers, and the integers n and m satisfy

F (k)
n = ±F (`)

m ,

then |m|, |n| < C, where the constant C depends only on k, `, and on the zeros
of Tk(x) and T`(x).

This paper is devoted to investigate the equation

F (k)
n = ±F (k)

m (3)

for negative subscripts n and m if k = 2κ is even. We explicitly give an upper
bound Bk such that the solutions satisfy |n|, |m| < Bk. This bound is huge,
and cannot be applied to eliminate the solutions to (3). But, in fact, it bounds
explicitly the size of the solutions only in the term of k. In the proof, we do
not use Baker method. The precise result is given here.

Theorem 1.1. If k is even, and n < m < 0 satisfy (3), then

|m| < 1.454k
3+1 log(5k2(1 + 3dk/k)) + 1, |n| < |m|+ dk, (4)

where dk = 1.454k
3+1 log(9k).
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Note that this theorem is true even for the Fibonacci sequence. Moreover
Pethő [6] solved (3) if k = 4, and (4) obviously applies to this case, too. Hence
it is sufficient to justify the theorem for k ≥ 6. Our approach follows the proof
of Theorem 5, Case ii of [6]. In order for this paper to be self-contained, we will
refer the necessary details from that proof.

Now we introduce some notation and some background that will be heplful
for the rest of the paper. It is known that for any k ≥ 2 the polynomial Tk(x)
has simple zeros, the largest one in absolute value is a positive real number
denoted by α1, which is greater than 1. Tk(x) is a Pisot polynomial, i.e. all
zeros but α1 lie inside the unit circle. The other zeros are complex non-real
numbers, except if k is even. In this case there exist a second real zero, say
αk, which is negative, and has the unique smallest absolute value among all
the zeros. If two zeros have common absolute value then they form a complex
conjugate pair (see [6]). Hence the zeros of the characteristic polynomial Tk(x)
can be ordered by

|αk| < |αk−1| = |αk−2| < · · · < |α3| = |α2| < α1

assuming k is even.

For any k ≥ 2, Dresden and Du [3] gave the simplified explicit formula

F (k)
n =

k∑
j=1

gk(αj)α
n−1
j forn ≥ 0, (5)

where

gk(x) =
x− 1

2 + (k + 1)(x− 2)
. (6)

Note that (5) is also true for any n ∈ Z.

Keeping in mind that k = 2κ is even, we consider equation (3) for negative

subscripts n < m < 0. Clearly, F
(k)
−k+1 = 1, F

(k)
−k = −1, and F

(k)
−k−1 = 0 follow

from (1) and (2). Hence, without loss of generality, we may suppose m ≤ −k+2.

Here we list up a few estimates will be used later. The first three lemmas
do not depend on the parity of k ≥ 2.

Lemma 1.2. For k ≥ 2 the following inequalities hold.

2− 1

2k−1
< α1 < 2− 1

2k
.

Proof. This is Lemma 3.6, and a consequence of Theorem 3.9 in [7]. �X

Lemma 1.3. If j 6= 1, then 3−1/k < |αj |.

Proof. See Lemma 2.1 in [5]. �X
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Lemma 1.4. If |αj | > |αi|, then

|αj |
|αi|

> ck := 1 +
1

1.454k3
.

Proof. This statement is Corollay 3 in [4]. �X

Lemma 1.5. Assume that k ≥ 4 is even. Then

|αk| <
2k − 1

2k + 1
.

Proof. Consider the graph of the polynomial function

fk(x) = (x− 1)Tk(x) = xk+1 − 2xk + 1.

For negative x the function is increasing and reaches its relative maximum at
x0 = 0. Put ak = −(2k − 1)/(2k + 1). It is sufficient to show that fk(ak) =
akk(ak − 2) + 1 < 0. Equivalently we prove

2k + 1

6k + 1
<

(
2k − 1

2k + 1

)k
. (7)

The left-hand side is a decreasing sequence which tends to 1/3 (as k → ∞).
The right-hand side is an increasing sequence, and it tends to 1/e. Since (7)
holds if k = 4, then it holds for all even k > 4, too. �X

2. Proof of Theorem 1.1

2.1. Preparation

First we carry out a few preliminary computations. We arrange these results
in lemmas as follows.

Lemma 2.1. Suppose that k ≥ 2 is even. Then |gk(αk)| > 2(1+3−1/k)
6k+3 holds.

Proof. Apply (6), which together with the fact −1 < αk < 0 and Lemmas 1.3,
1.5 provides

|gk(αk)| = |αk − 1|
|2 + (k + 1)(αk − 2)|

=
1− αk

−2 + (k + 1)(2− αk)

>
1 + 3−1/k

−2 + (k + 1)
(

3− 2
2k+1

) =
(2k + 1)(1 + 3−1/k)

6k2 + 3k − 1

>
2(1 + 3−1/k)

6k + 3
.

�X
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Lemma 2.2. For 2 ≤ j ≤ k we have |gk(αj)| < 2
k−1 .

Proof. Use again (6). Then we have

|gk(αj)| =
|αj − 1|

|2 + (k + 1)(αj − 2)|
≤ |αj |+ 1

| − 2k + (k + 1)αj |

<
2

|2k − (k + 1)|αj ||
<

2

2k − (k + 1)
=

2

k − 1
.

�X

Lemma 2.3. If k ≥ 2, then |gk(α1)| < 2k−1
2(2k−k−1)

.

Proof. Observe that Lemma 1.2 implies −(k + 1)/2k−1 < (k + 1)(α1 − 2) <
−(k + 1)/2k. Thus (k + 1)(α1 − 2) is always negative, but its absolute value is
less than or equal to 3/2 if k ≥ 2. Combining this argument with the definition
of the function gk given in (6) and Lemma 1.2, it leads to

|gk(α1)| = |α1 − 1|
|2 + (k + 1)(α1 − 2)|

<
1− 2−k

2 + (k + 1)(α1 − 2)

<
1− 2−k

2− (k + 1)21−k =
2k − 1

2(2k − k − 1)
.

�X

Lemma 2.4. If k ≥ 6 is even and 2 ≤ j ≤ k − 1, then
|gk(αj)|
|gk(αk)| < 4.26.

Proof. Lemmas 2.1 and 2.2 show that

|gk(αj)|
|gk(αk)|

<
(6k + 3)31/k

(k − 1)(31/k + 1)
.

The last expression is monotone decreasing and tends to 3. Hence its value at
k = 6 gives the upper bound indicated in the lemma. �X

Lemma 2.5. If k ≥ 6 is even, then |gk(α1)|
|gk(αk)| < 0.453(2k + 1).

Proof. Lemmas 2.1 and 2.3 imply that

|gk(α1)|
|gk(αk)|

<
3

2
(2k + 1) · 2k − 1

2(2k − k − 1)
· 1

1 + 3−1/k
.

The last two fractions are monotone decreasing, and each tends to 1/2 (as
k → ∞). Hence ruling out 2k + 1, the remaining part at k = 6 confirms the
statement of the lemma. �X
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Lemma 2.6. Assume that k ≥ 2 is even. Then |α1|
|αk| > 2.

Proof. Comparing the bounds of the numerator and denominator (see Lemmas
1.2 and 1.5), we see that

|α1|
|αk|

>
2k + 1

2k − 1
· 2k − 1

2k−1
,

and this sequence decreasingly tends to 2. �X

2.2. The proof

Now we turn our attention to the principal part of the proof. Recall that n <
m ≤ −k + 2, and k ≥ 6. Hence m ≤ −4. We combine equation (3) and the
explicit formula (5) with (6), which give

gk(αk)αm−1
k +

k−1∑
j=1

gk(αj)α
m−1
j = ±

gk(αk)αn−1
k +

k−1∑
j=1

gk(αj)α
n−1
j

 ,

or equivalently

gk(αk)αm−1
k

(
1∓ αn−mk

)
=

k−1∑
j=1

gk(αj)α
m−1
j

(
−1± αn−mj

)
.

It leads immediately to

1∓ αn−mk =

k−1∑
j=1

gk(αj)

gk(αk)

(
αj
αk

)m−1 (
−1± αn−mj

)
. (8)

The first part of the proof will consist of finding a bound for |n − m| (recall
that n −m < 0). Therefore take the absolute value of the two sides of (8) to
conclude ∣∣1∓ αn−mk

∣∣ ≤ k−1∑
j=2

∣∣∣∣ gk(αj)

gk(αk)

∣∣∣∣ ∣∣∣∣αjαk
∣∣∣∣m−1 ∣∣−1± αn−mj

∣∣
+

∣∣∣∣gk(α1)

gk(αk)

∣∣∣∣ ∣∣∣∣α1

αk

∣∣∣∣m−1 ∣∣−1± αn−m1

∣∣ .(9)

On the right-hand side of the above formula we have separated the term cor-
responding to α1 since this requires different treatment.

Clearly, for the left-hand side of (9) 0 < |αk|n−m − 1 ≤
∣∣1∓ αn−mk

∣∣ holds.
For the right-hand side of (9) (in short, RHS) we apply Lemmas 2.1, 2.2,. . . ,2.6.
Besides we also need an additional argument presented by∣∣−1± αn−m1

∣∣ ≤ α−1
1 + 1 <

1

2− 1
2k−1

+ 1 =
2k−1

2k − 1
+ 1.
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The last sequence is decreasing, and k ≥ 6 implies that it does not exceed
1 + 32/63 < 1.51. Thus

RHS ≤ (k − 2) ·
(
4.26cm−1

k

(
1 + cn−mk |αk|n−m

))
+ 0.453(2k + 1) · 2m−1 · 1.51

< 4.304k − 8.498 + 4.26(k − 2)cn−mk |αk|n−m,(10)

where in the second inequality we used the fact that cm−1
k < 1 (the definition

of ck is given at Lemma 1.4), and m− 1 ≤ −5. Consequently

|αk|n−m − 1 < 4.304k − 8.498 + 4.26(k − 2)cn−mk |αk|n−m.

Add +1 to both sides, and divide the inequality by cn−mk |αk|n−m, which to-
gether with the fact 1 < cn−mk |αk|n−m (since 1 > |αj | > ck|αk| for 2 ≤ j ≤ k−1)
yields

cm−nk < 4.304k − 7.498 + 4.26(k − 2) < 9k − 16.

Finally we find

m− n = |n−m| < log(9k − 16)

log ck
<

log(9k − 16)
1

1.454 · 1.454−k3
= 1.454k

3+1 log(9k). (11)

Put dk = 1.454k
3+1 log(9k).

For the second part of the proof, we return to (8), and knowing the upper
bound (11) on |n−m| we target to bound m and n. Clearly,

∣∣1∓ αn−mk

∣∣ · |αk|m−1 =

∣∣∣∣∣∣
k−1∑
j=1

gk(αj)

gk(αk)
αj

m−1
(
−1± αn−mj

)∣∣∣∣∣∣ . (12)

First observe that∣∣1∓ αn−mk

∣∣ ≥ |αk|−1 − 1 >
2k + 1

2k − 1
− 1 =

2

2k − 1
.

Similarly, as we handled (9), and obtained (10), we treat the right-hand side
of (12) which we denote by RHS1. So

RHS1 ≤ (k − 2) · 4.26 · |αk−1|m−1(1 + |αk|n−m)

+ 0.453(2k + 1)|α1|m−1(1 + αn−m1 )

≤ 4.26(k − 2)|αk−1|m−1(1 + |αk|−dk)

+ 0.453(2k + 1)

(
2k−1

2k − 1

)5(
1 +

(
2k−1

2k − 1

))
≤ 4.26(k − 2)cm−1

k |αk|m−1(1 + |αk|−dk) + 0.024(2k + 1).
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Combining (12) and the two previous arguments, together with Lemma 1.5 it
yields

2

4k2 − 1
< 4.26

k − 2

2k + 1
cm−1
k (1 + |αk|−dk) + 0.024

(
2k + 1

2k − 1

)m−1

,

and then
1

4k2
<
(
1.065(1 + |αk|−dk) + 0.012

)
cm−1
k .

Indeed, ck = 1 + 1.454−k
3

< (2k + 1)/(2k − 1). Now

1

k2
<
(
4.26(1 + |αk|−dk) + 0.048

)
cm−1
k < 4.27(1 + |αk|−dk)cm−1

k ,

which, via |αk| > 3−1/k leads to

c
|m−1|
k < 4.27k2(1 + 3dk/k).

Hence

|m− 1| < log(5k2(1 + 3dk/k))

log(1 + 1.454−k3)
< 1.454k

3+1 log(5k2(1 + 3dk/k)).

Then the proof is complete.
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