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ABsTrACT. In this paper, the Fischer matrices of the maximal subgroup G =
217%:(U4(2):2) of Us(2):2 will be derived from the Fischer matrices of the quo-

tient group Q = Z(%jg) >~ 2%:(U4(2):2), where Z(21"®) denotes the center of

the extra-special 2-group 21*8. Using this approach, the Fischer matrices and
associated ordinary character table of G are computed in an elegantly simple
manner. This approach can be used to compute the ordinary character table
of any split extension group of the form 2?’2":G7 n € N, provided the ordinary
irreducible characters of 21*2" extend to ordinary irreducible characters of its

inertia subgroups in 2/7?":G and also that the Fischer matrices M (g;) of the
21+2n:G
quotient group Z*

~ 92n,
za S0
G.

G are known for each class representative g; in
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REsUMEN. En este articulo, las matrices de Fischer del subgrupo maximal G =
218 1 :(U4(2):2) de Us(2):2 serén derivadas a partir de las matrices de Fischer
del grupo cociente Q = ﬁ = 28:(U4(2):2), donde Z(2'78+) denota el
centro del grupo 2-extra especial 2+'78. Usando este enfoque, las matrices
de Fischer y la tabla de caracteres asociadas de G son calculados de una
manera elegante y simple. Este enfoque se puede utilizar para calcular la tabla
de caracteres de cualquier extensién escindida de la forma 2172":G, n € N,
siempre y cuando los caracteres irreducibles ordinarios de 2}:“ " se extiendan
a caracteres irreducibles ordinarios de sus subgrupos de inercia en 2}:’2":G
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2 . . . 21 t2n.q
y también que las matrices de Fischer M(g;) del grupo cociente erzliﬁn) =
+
2" sean conocidas para cada representante de clase g; en G.
Palabras y frases clave. extension escindida, p-grupo extra especial, caracteres
proyectivos irreducibles, multiplicador de Schur, inertia factor groups, matri-
ces de Fischer.

1. Introduction

The maximal subgroup G = 217%:(U4(2):2) (see [4]) of the automorphism group
Us(2):2 of the unitary simple group Us(2) is a split extension of the extra-
special 2-group N = 2}*% by G = Uy(2):2. The center Z(N) 2 2 is isomorphic
to the cyclic group of order 2 and N; = % =~ 28 can be considered as an
eight-dimensional Uy(2):2-module over the finite field GF(2). In fact, up to
isomorphism 2% afforded the unique representation of Uy (2):2 of degree eight

over GF(2) (see [9]).

Computing the table of marks within GAP it is noticed that there are 38
conjugacy classes of non-trivial subgroups of G having index less than 256.
Hence G has 38 non-trivial subgroups G;, where the degree of each of the
permutation characters x(G|G;) of G acting on the classes of a subgroup G;
will be less than 256. Let x(G|Ny) be the permutation character of G acting
on the non-trivial classes of Ny = 28. Then x(G|N;) will be the sum of some of
these 38 permutation characters x(G|G;) such that for any non-trivial g € G it
is required that x(G|Ny)(g) = 2¥ — 1 for some k € {0,1,2,3,4,5,6,7}, i.e. the
number 2¥ —1 of elements of N; which is fixed by g. Using Exercise 4.2.4 in [11],
it can be shown that for any element ¢ in the conjugacy class 5A of G, we have
that x(G|N1)(g) = 0. Therefore, the only possibility for x(G|Ny) will be the
sum of two permutation characters x(G|G1) and x(G|G2) with degrees of 120
and 135, respectively. Hence G has three orbits on IV; of lengths 1, 120 and 135.
It is well known that Ny = V5(2) (counsidered as a vector space of dimension
8 over GF(2)) and its dual space N;:=Hom(N;,C*) are isomorphic to each
other. Since G has only one faithful irreducible eight-dimensional presentation
over GF'(2) it follows that N7 and N7 are also isomorphic as eight-dimensional
modules for G over GF(2). Moreover, N5 can be identified with set set Irr(Ny)
and hence the action of G on the irreducible characters Irr(Ny) of Ny will be
the same as the action of G on ;. Thus G has also three orbits of lengths 1,
120 and 135 on the 256 linear characters of IN;. Since the 256 linear characters
of N come from N7, G will also have three orbits on them with corresponding
stabilizers Hy, Ho and H3 which have indices 1, 120 and 135 in H; = G. The
last outstanding character of N is the unique faithful irreducible character 6s57
of degree sixteen, which form on its own an orbit. Hence G has four orbits on
the set Irr(IV) and by checking the indices of the maximal subgroups of G in the
ATLAS, the inertia factor groups corresponding to these orbits are identified
as Hl = U4(2)Z2, H2 = S}F+2:(2D8)’ H3 = 24254 and H4 = U4(2>2
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ON THE FISCHER MATRICES OF A GROUP OF SHAPE 2§r+2" :G 191

Since G has 4 orbits on Irr(V) it follows that G will also has 4 orbits on the
257 conjugacy classes of elements of N. Hence under the action of G, N splits
up into 4 conjugacy classes of G. The first class contains the identity element,
the second class the central element of order two, the third class 28 — 24 = 240
elements of order 4 and the fourth class 270 elements of order two.

Having identified the inertia factor groups H;, i = 1,2, 3,4, for the action
of G on Irr(IN) we proceed to use the technique of Fischer matrices (see [5]
or [11]) to compute the ordinary irreducible characters of G = 217%:(U4(2):2).
A summary of the method of Fischer matrices will be given in Section 2. In
Section 3, the Fischer matrix M (1A4) of G corresponding to the identity class 14
of G will be computed and together with the decomposition of some ordinary
irreducible characters of Us(2):2 into the set Irr(N) it will be shown that the
irreducible characters Irr(N) of N extend to ordinary irreducible characters of

their inertia subgroups in G. The quotient group @ = ﬁ =~ 28:(U4(2):2)
+

is isomorphic to a subgroup G of Ofy(2) with shape 28:(Uy(2):2) (see [6]).
The current author and others determined the Fischer matrices and ordinary
character table of Gy in [6]. It will be discussed in Section 4 how each Fischer
matrix M(g) of G can be derived from the corresponding Fischer matrix M (9)
of Gy by just adding a row and a column to M (9)-

Note that G is the pre-image of the maximal subgroup Uy (2):2 of index 28 in
Spe(2) under the natural epimorphism modulo N = 2};"8. Hence an isomorphic
copy of G sits maximally inside the maximal subgroup Gy = 2?8:5’]96(2) of Cog
(see [4]). In Section 4, the fusion map of the conjugacy classes of Uy(2):2 into
Spe(2) together with the permutation character of G5 on G and, if necessary,
some of the ordinary irreducible characters of small degrees of G are restricted
to the set Irr(G), to compute the orders of the elements of the conjugacy classes
of G associated with each Fischer matrix M(g) of G. Note that the sizes of the
centralizers of the classes of G coming from a coset Ng are easily determined
by using the column orthogonality relation (see Section 2) of a Fischer matrix
M (g). Having obtained the conjugacy classes and Fischer matrices of G from
each conjugacy class [g] of G and together with the ordinary character tables of
the inertia factor groups H;, the ordinary character table of G (see Section 5)
is constructed following the outline of the method discussed in Section 2. Using
the algebra computer system GAP [8], the power maps of the elements of G
are computed from the ordinary character table of G which was constructed
in Section 5. Finally, the power maps of G and Ug(2):2 together with some
restricted ordinary irreducible characters of Ug(2):2 to G are used to compute
the fusion map of G into Us(2):2.

Computations are carried out with the aid of the computer algebra systems
MAGMA [3] and GAP and the notation of ATLAS is mostly followed. For an
update on recent developments around Fischer matrices, interested readers are
referred to the papers [17], [1], [2], [14], [15], [16] and [18].
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192 ABRAHAM LOVE PRINS

The method used in this paper, to construct the Fischer matrices and or-
dinary character table of G, works for any finite split extension of the form
S = 21+27:G. n > 1, provided the ordinary irreducible characters of the
extra-special 2-group 21727 (of type ”+” or type "-”) extend to ordinary irre-
ducible characters of their inertia subgroups H; in S. Furthermore, the Fischer
matrices of the quotient group W =~ 227.(7 are also known. In fact, this

method can be extended to any extension group of the shape E = p'*2".Gy, p
a prime, if such a group E exists.

2. Theory of Fischer Matrices

Since the ordinary character table of G = 217%:(U4(2):2) will be constructed
by the technique of Fischer matrices, a brief overview of this method is given
as found in [20].

Let G = N.G be an extension of N by G, where N is normal in G and
é/N =~ @G. Denote the set of all irreducible characters of a finite group G
by Irr(Gy). Also, define H = {z € G|6” =0} = I5(f) as the inertia group
of € Irr(N) in G then N is normal in H. Let § € G be a lifting of g €
G under the natural homomorphism G — G and [g] be a conjugacy class
of elements with representative g. Let X (g) = {z1,22,--- , 7.} be a set of
representatives of the conjugacy classes of G from the coset Ng whose images
under the natural homomorphism G — G are in [g] and we take x1 = g. Now
let 01 = 1n,0s,--- ,0; be representatives of the orbits of G on Irr(N) such that
for 1 < i < t, we have H; with corresponding inertia factors H;. By Gallagher
[10] we obtain

Irr(G)= UZZI{(z/},;B)éW € TrrProj(H;), with factor set a; '}

where 1); is a projective character of H; with factor set @; such that v; |n
= #;. Note that 3 is a lifting for § into H; and «; is obtained from @;. We
have that Hy= G and H; = G. Choose 41, ya, .., Y, to be representatives of the
a;l—regular conjugacy classes of elements of H; that fuse to [¢g] in G. We define

R(g)={(i,yx) |1 <i<t,H;N[g] # 2,1 <k <r}

and we note that y, runs over representatives of the o Lregular conjugacy
classes of elements of H; which fuse into [g] in G. We define y;, € H; such that
y1, ranges over all representatives of the conjugacy classes of elements of H;
which map to y under the homomorphism H; — H; whose kernel is V.

Lemma 2.1. With notation as above,

W)= Y By 1all

yr: (1,98 ) ER(g) l CE(ylk)|
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ON THE FISCHER MATRICES OF A GROUP OF SHAPE 2§r+2" :G 193

Proof. See [20] o

Then the Fischer matrix M(g) = (agi yk)) is defined as

Gy (s I,
( (i,yk)) (212 Cm(ylk)wl(ylk)>7

with columns indexed by X (g) and rows indexed by R(g) and where S is the
summation over all [ for which y;, ~ x; in G. So, we can write Lemma 2.1 as

WB) ()= D al Bl

yi:(1,y1)ER(g)

The Fischer M(g) (see Figure 1) is partitioned row-wise into blocks, where
each block corresponds to an inertia group H;. We write |[Cz(z;)|, for each
zj € X(g), at the top of the columns of M(g) and at the bottom we write

mj € N, where we define m; = [Cg:Cg(xj)]:|N|lgg(;gj))‘l and C5 = {z €

G|z(Ng) = (Ng)x}. On the left of each row we write |Cy, (yx)|, where the
«; *-regular class [yx] fuses into the class [g] of G. Then in general we can write
M (g) with corresponding weights for rows and columns as follows, where blocks
M;(g) corresponding to the inertia groups H; are separated by horizontal lines.

|Cq(z1)| [Cqlz2)l - |Cglzeg))l
2(9)
[Cal9)l a(1,9) g %1%)
(9)
Cra (Dl | alayyy  alyy) a?%aglgl)
CA¢
‘CH? (2)l a%%yz) a?lyz) o a(Q?yz)
1 2 c(g)
M(g) = 1€ ()l %iy1) Aiyr) (?y)l)
1 2 c(g
Cr, W)l | Ay Oy (i2y2)
c(9)
|Crr, (1)l a%’-‘yyl) a(Zt,yl) o a(’;y)l)
c
Cr, (v2)] a%t7y2) a%t,yz) o a(t,gw)
mi ma T Me(g)

FIGURE 1. The Fischer Matrix M(g)
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In practice we will never compute the y;, or the ordinary irreducible charac-
ter tables of the inertia subgroups H;. The reason for this is that the ordinary
irreducible characters of the H; are in general much larger and more com-
plicated to compute than the one for G. Instead of using the above formal
definition of a Fischer matrix M(g), the arithmetical properties of M (g) below
are used to compute the entries of M (g) (see [12]).

(a) a{l’g) =1forall j ={1,2,..,c(g)}.
(b) [X(9) = |R(g)l

c(g) j o C
(c) ijgl m; a’zi,yk) azi',y;) - ‘5(i7yk)7(i’,y§€) \‘CHG((‘gi‘)\ [V].

() X 0)eRr(9) i) iy O ()] = 6550 |C ()]
(e) M(g) is square and nonsingular.

If N is elementary abelian, then we obtain the following additional properties
of M(g):

L _ G
() @ligh) = 10w

®) el 2 o |
(h) a{i’yk) = af; . (mod p), if [N| = p", for p a prime and n € N

The matrix M (g) is square, where the number of rows is equal to the number
of ai_l— regular classes of the inertia factors H;’s, 1 < ¢ < ¢, which fuse into
[g] in G and the number of columns is equal to the number ¢(g) of conjugacy
classes of G which is obtained from the coset Ng. Then the partial character
table of G on the classes {z1, 22, - ,Te(g)} 1s given by

C1(g) M1(g)
Ca(g) Ma(g)

Ci(g) Milg)

where the Fischer matrix M(g) (see Figure 1) is divided into blocks M;(g) with
each block corresponding to an inertia group H; and C;(g) is the partial char-
acter table of H; with factor set o ! consisting of the columns corresponding
to the o Lregular classes that fuse into [g] in G. We obtain the characters of
G by multiplying the relevant columns of the projective characters of H; with
factor set o ! by the rows of M(g). We can also observe that

t
Ier(G)| = |IrrProj(Hy, 077 )].

i=1
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ON THE FISCHER MATRICES OF A GROUP OF SHAPE 2§r+2" :G 195

3. On the type of characters of the inertia factors H;

The group G = 2,%%:(U4(2):2) can be regarded as the 2-fold cover
Z(N) (28:(U4(2):2)) for the group G; = 28:(Uy(2):2). Using Fischer-Clifford
theory we noticed that G will have two orbits on Z(N) = Z(G) = 2, with one
orbit containing the identity element 17y and the second orbit the central el-
ement z of order two. Hence the orbits will have both G as their respective set
stabilizer. By Lemma 5.2 in [7], G; will also have two orbits on Irr(Z(N)) con-
taining one element each and with corresponding inertia factors H; = Hy = G;.
To construct the ordinary character table of 2'(2%:(U4(2):2)) via the technique
of Fischer matrices, we will then require the ordinary character table of H;
and an irreducible projective character table of Hy with factor set a of order
two. The ordinary character table of Gy = 28:(Uy(2):2) was constructed in [6]
using Fischer matrices and it was shown that Us(2):2 acts irreducibly on its
unique eight-dimensional module 28, where Uy(2):2 has three orbits of lenghts
1, 120 and 135 on Irr(2%) with corresponding inertia factor groups Us(2):2,
3172:(2Dg) and 24:8,. Since G| is a split extension and 2° elementary abelian,
only the ordinary character tables of the inertia factor groups of 2% in G| were
used in construction the set Irr(G1) as a consequence of Mackey’s Theorem in
[10]. Hence we will also use the ordinary character tables of the inertia factors
Hy = Uy(2):2, Hy = 317:(2Dg) and Hz = 24:5, of Irr(2}"®) in G to construct
the ordinary character table of G = 217:(U4(2):2) using Fischer matrices. To
determine which type of irreducible characters (ordinary or projective) will be
used for Hy = Uy(2):2, we will use the Fischer matrix M(1g) together with
decompositions of some ordinary characters of small degrees of Ug(2):2 into the
ordinary irreducible characters of N. We can add here that for the first ¢(g) — 1
rows of each Fischer matrix M (g) of size c¢(g) the properties (f), (g) and (h)
found in Section 2 are also applicable since 28 is elementary abelian.

Having obtained the inertia factors Hy = Uy(2):2, Hy = 317:(2Ds), H3 =
24:S, and Hy = Uy(2):2 for the action of G on Irr(N), we can form the Fischer
matrix M (1A) corresponding to the identity coset N1g = N as below. Prop-
erties (a) and (f) (see Section 2) were used to find the entries for the first row
and the first three entries of the first column of M (1A).

26542080 26542080 110592 98304

51840 1 1 1 1
432 120 a b c
M@A) = g4, 135 d e f
51840 g h i j

1 1 240 270

The column weights above the matrix M(1A) are the centralizer orders
|C& ()] of the four classes [z;] of G coming from the identity coset N and the
weights below are the values m;. Whereas, the row weights to the left of the
matrix M(1A) represent the centralizer orders |Cpy, (1A)| of the inertia factors
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196 ABRAHAM LOVE PRINS

H; on the identity element 1A. Applying the remaining Fischer matrix M(g)
properties in Section 2 to the above matrix, the entries of M (1A4) are completed
and shown below.

26542080 26542080 110592 98304

51840 1 1 1 1
432 120 120 8 -8
MQAA) = 55, 135 135 -9 7
51840 16 -16 0 0
1 1 240 270
[zlg 1A [z2] [z3] [z4]
|C=(z)| || 26542080 26542080 110592 98304
X1 1 1 1 1
X26 120 120 8 -8
X40 135 135 -9 7
X60 16¢ -16¢ 0 0

TABLE 1. The partial character table of G for coset N

Table 1 is the partial ordinary character table of G on the classes 1A,
[z2], [z3] and [z4] of G coming from N , where each of the 4 lines of Table 1
corresponds to the first row of entries of the sub-matrices C;(1A4)M;(1A),i =
1,2,3,4. M;(1A) and C;(1A) correspond to the rows of the Fischer-Clifford
matrix M(1A) and columns of the character tables (ordinary or projective) of
the inertia factors H;, respectively, which are associated with the classes [1A4],
of the inertia factors H; which fuse into the class [1A]g of G. Also, note that the
character values in the 1st column of Table 1 are the degrees of the ordinary
irreducible characters x1, x26, x40 and xeo of G. The characters X1, X26, X40
and ygp occupy the first position for each block of characters coming from an
inertia subgroup H; of G. Also note that H;, H, and Hs will contribute 25,
14 and 20 ordinary irreducible characters, respectively, towards the set Irr(G).
The reason for this is that it was found earlier that we will use the ordinary
irreducible characters of the inertia factors Hy, Hs and Hjz in the construction
of the set Irr(G) and it only remains to determine whether we will use the
ordinary character table of Hy or the set IrrProj(Hy, o) of irreducible projective
characters with factor set a of order 2. It can be readily being verified in GAP
that the Schur multiplier M (Hy) = 2 of Hy is a cyclic group of order 2 and
hence will have two sets of irreducible projective character tables, i.e. Irr(Hy)
and IrrProj(Hy, ). Now deg(x1) = 1, deg(x26) = 120 and deg(x40) = 135
and deg(xeo) = 16¢ (see Table 1) are the degrees of the ordinary irreducible
characters of G’ which occupy the first position in each block of the set Irr(G)
which corresponds to the inertia groups Hi, Ho, Hs and Hy. The number ¢
is the degree of one of the irreducible characters which is contained in either
Irr(Hy) or IrrProj(Hy, «).
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A small part of the ordinary character table of Us(2):2 (see ATLAS or
GAP library) is found in Table 2, which contains the values of the irreducible
characters 22a and 231a on the classes 14, 24, 2B, 2D and 44 of Us(2):2.

Wlus(2):2 14 2A 2B 2D 4A
[Cug(2)2(w)| | 18393661440 26542080 294912 2903040 110592
22a 22 10 6 8 6
231a 231 39 7 21 23

TABLE 2. The partial character table of Us(2):2

Taking into account how the centralizer orders of the classes 14, [x3], [x3]
and [z4] of G (see Table 1) can divide those of the classes of Ug(2):2, we obtain
that the classes 14, 24, 2B, 2D and 4D of Us(2):2 (see Table 2) are the
only candidates for the classes 1A, [z2], [z3] and [z4] of G to fuse into. Notice
that [z4] can either fuse into 2A or 2B of Ug(2):2. Now it is obvious that
the other two non-trivial classes [z2] and [z3] of G will fuse into the classes
2A and 4A of Ug(2):2, respectively. Suppose that [z4] will fuse into 24 of
Us(2):2, then the inner product < (22a)y, 1y >ny= —2,4375 of the restriction
of 22a € Trr(Us(2):2) to N with the identity character 1y of N will give us a
negative rational number which is impossible. Now, if we assume that [z,4] will
fuse into 2B of Us(2):2 then < (22a)n,1ny >ny= 6 and this shows that [z4] will
fuse into 2B of Ug(2):2. See Table 3 for the fusion map of classes of G' coming
from the identity coset IV into the classes of Us(2):2.

ICq(@i)| | [xlg — [y U22):2 | [Cuq2):2(¥)l

26542080 1A 1A 18393661440

26542080 [z2] 2A 26542080
110592 [3] 4A 110592
98304 [z4] 2B 294912

TABLE 3. The fusion map of classes of G from N into classes of Us(2):2

By obtaining the orders of the elements in the classes [x3], [x3] and [z4]
of G and also their fusion into Ug(2):2 we can now proceed to decompose the
ordinary irreducible character 22a of Ug(2):2 with degree of 22 into the set
Irr(N) which is represented in Table 1. Now

(22a) N =< (22a)n, 1N > (x1)N+ < (22a) N, (x26)N > (X26) N+ < (22a) N, (X40)N > (X40)N +
< (22a)n, (x60)N > (X60)N =6 X Iny +0 X (x26)N + 0 X (xa0)~ + ¢ X (X60)N
=6x1n+cXx (x60)N

Since the deg(22a)=22=6deg(1x)+cdeg(xe0) =6(1)+c(16c)=6-+16¢2, it fol-
lows that ¢ = 1 because c is the degree of one of the irreducible characters
belonging either to Irr(Hy) or IrrProj(Hy, o). Therefore it shows that we will
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use the ordinary irreducible character table of H4. Hence each of the irreducible
characters of Irr(V) extends to an ordinary irreducible character of its inertia
group H;.

4. Fischer matrices and conjugacy classes of G

In this section, the Fischer matrices and the conjugacy classes of G will be
determined from those of a subgroup G of O(2) with shape 251:(U4(2):2) (see

[6]) which is an isomorphic copy of the quotient group Q = % Also, the
+

fusion of G into the group Gy will help to determine the orders of the classes
of G.

In [11] and [13] the Fischer matrices of the maximal subgroups G, = 24%:
Spe(2) and G5 = 2};"22'002 of the sporadic simple groups Cos and the Baby
Monster B, respectively, were computed. It was mentioned in these publications
(see also Remark 7 in [2]) that the Fischer matrices of their quotients groups

QQ = G, = 2825p6(2) and Qg =

Gs
z(211%) z(217%?)
in [13]) can be obtained by removing the first column and last row of each Fis-
cher matrix of G5 and G5. In both cases, as in our case, the ordinary irreducible
characters of 21++8 and 2}:'22 extend to ordinary irreducible characters of their

=~ 222 Coy (see proof of Lemma 7

inertia subgroups in G5 and G3. Therefore, only the ordinary character tables
of the inertia factors are involved in the construction of the character tables
of G and Gs. Since the action of our group G on Irr(21++8) follows a similar
pattern as the actions of G5 and G5 on Irr(2}®) and Irr(2}72?), respectively,
the results obtained in [11] and [13] will be applicable to G. Also, an isomorphic
copy of G sits maximally inside G5 and so, the Fischer matrices of G can be
obtained by adding a first row and a last column to the Fischer matrices of G;.
The nature of these rows and columns are described in the two lemmas below
which were taken from [13] and adjusted for G. The proofs of these lemmas for
the case of G will follow the exact pattern as that for G3 [13] with differences
in notation. For the notation use in Lemma 4.1 and Lemma 4.2 the reader is
referred to Section 2 of this paper.

Lemma 4.1. For every c(g) x c(g) Fischer matriz M(g) of G the sum of the
first c(g) — 1 rows equals the (componentwise) square of the last row.

Proof. See proof of Lemma 6 of [13]. o

Lemma 4.2. For each M(g) of G, the z;’s in the set X(g) (in Section 2)

can be ordered in such a way that the last row of each M(g) is of the form

95, —4;,0, ...,0] with ¢; a power of 2 and we may choose xo=zx1 with z the
: i Y 1 _ .2 _ 1Cc(9)l ;

central involution in G. Also i) = Yige) = Cr, ()] for1<i<3,1<k<r.

Proof. See proof of Lemma 7 of [13]. vf
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From Lemma 4.1 and Lemma 4.2 the first two columns and last row of each
matrix M(g) of G are known and so are the values of all y € Irr(G) on the
classes [z1] and [z2] of G coming from a coset Ng. Note that the character
X6o € Irr(G) in Table 1 is the extension of the unique faithful irreducible
character 657 of N of degree sixteen. Also, xgo is the equivalent of the character
n € Irr(G3) used in the proofs of Lemma 6 and Lemma 7 in [13]. Moreover,
(x80) y = 0357 is the lifting of the regular character of N/Z(N) 22 Ny and hence

the sum of the 256 linear characters of N. Observe that

X%o = X1+ X26 + X40,

where x1,x26 and xeo (see Table 1) are the extensions v, i = 1,2, 3, of the
representatives of the three orbits of G on the linear characters of N to their
respective inertia groups H;, which are induced to G. This shows that ),
i = 1,2,3, are uniquely determined linear characters of the inertia subgroups
H;, i =1,2,3, of G and hence we will not consider any projective characters
of the inertia groups H; in the construction of the ordinary character table
of G (as it was established in Section 3). In addition, the ordinary irreducible
character ygo of G is made completely known by Lemma 4.2 and therefore also
all the faithful irreducible characters of G.

Since G is a split extension of an elementary abelian group 28 by Uy(2):2
we have that if the first column and last row of a Fischer matrix M (g) of G is
removed then we are left with the Fischer matrix M (g) of G1. Having computed
the Fischer matrices of G; in Table 4 of [6] , we can just add to the Fischer
matrices of G a first column and a last row (as described in Lemma 4.2)
to obtain the Fischer matrices of G. The fusion maps for the inertia factors
H, and Hj into H; are available in [6]. For example, consider the Fischer
matrix M(QD) of G corresponding to the coset Nyg of 28 in G;, where ¢ is a
representative of the class 2D of involutions in Uy(2):2 (see [6]). The coset N1g
splits into four classes {2H,4F,4G,4H} of G with their respective centralizer
orders indicated in the row above the matrix M (2D).

1536 1536 256 192

96 1 1 1 1
~ 12 8 -8 0 0
M(2D) = 96 1 1 1 -1
12 6 6 -2 0

Using Lemma 4.2, a first column and a last row are inserted to the ma-
trix M (2D) to obtained the required Fischer matrix M (2D) (see below) of G
corresponding to the class 2D of Uy(2):2.
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3072 3072 1536 256 192

96 s 1 1 111
12 8 8 8 0 0
M@D)= 96 | 1 1 11 -
12| 6 6 6 -2 0
96\ 4 —4 0 0 0

Notice that the coset Ng corresponding to the class 2D of Uy(2):2 splits
into five classes [x1], [z2], [73], [z4] and [z5] of G with their centralizer orders
found in the row on top of the matrix M (2D), respectively. These centralizer
orders |Cg(x;)| were computed using the column orthogonality relation (d)
for Fischer matrices in Section 2. The next step is to find the orders of the
elements contain in the five classes. For this purpose, we will make use of the
permutation character x(G2|G) = la+27a of G on the conjugacy classes of G
together with Proposition 7.5.1 in [12]. Moreover, the elements of the above five
classes will have orders o(z;) € {2,4, 8}, since 2?8 is an extra-special 2-group.

The class of involutions 2D of U4(2):2 is the only conjugacy class of Uy(2):2
that is fusing into the class of involutions 2D of Spg(2) (see Table 7.7 in [12]).
Then it follows from Proposition 7.5.1 in [12] that the classes of G coming
from the coset Ng, g € 2D of Uy(2):2, will fuse into the classes of Gy coming
from the coset Ng, g € 2D of Sps(2). In Example 3.8.17 of [11], the technique
of Fischer matrices is applied to the group Gy which is a maximal subgroup
of the Conway sporadic simple group Coy. The computation of the Fischer
matrix of Gy corresponding to the class 2D of Spg(2) is left as Exercise 3.8.3
n [11]. Using a permutation representation of G obtained from the online
ATLAS [21] and a similar GAP routine as used in [16], the five classes [y;],
j = 1,2,...,5, of Gy corresponding to the coset Ng, g € 2D of Sps(2) are
computed and the information about them are shown in Table 4 below. Taking
in consideration, the sizes |Cz(x;)| of the centralizers of the elements in the
classes [z;], j =,1,2,..,5, of G and those of the corresponding classes [y;] of
G together with the values of the permutation character x(Gz|G) of G2 on
the classes of G, we deduce that the orders o(z;) of the elements in the classes
[x1], [x2] and [z4] will be all 4 whereas the orders of elements in conjugacy
classes [x3] and [z5] will be 2 and 8 respectively. All of the above-mentioned
information is summarized in Table 4 below.

lvila, [y1] [y2]  [ys]  [yal [vs]
o(y;) 4 4 2 4 8
|Cq, (y;)| | 12288 12288 6144 1024 768
[z]lz [1] [x2]  [w3]  [xa] [x5]
o(xj) 4 4 2 4 8
|C=(;)] 3072 3072 1536 256 192
x(G2|G) 4 4 4 4 4

TABLE 4. The orders o(z;) of elements of G from the coset Ng, g € 2D
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In a similar manner, as described above, we obtained the conjugacy classes
[z;] and the Fischer matrices M(g;) of G corresponding to the remaining classes
[g:] of G and this information is listed in Table 5 and Table 6, respectively.

e | [Cc(g)l | oz | 2P 3P 5P [Ca(@)] | = W@ || [9le | ICc(g)l | [zlz | 2P 3P 5P| |C5(@)] | = Wlue)
1A 51840 1A | 1A 14 1A | 26542080 1A 24 1440 2C | 1A 20 20 46080 2D
2A 1A 24 24 | 26542080 2A 2D 1A 2D 2D 46080 2E
4A 24 4A 4A 110592 4A 4B 2B 4B 4B 1536 4H
2B 1A 2B 2B 98304 2B
2B 1152 2E 1A 2F 2E 147456 2B 2C 192 2H 1A 2H 2H 6144 2B
2F 1A 2F 2F 147456 24 21 14 21 21 6144 2C
4C | 24 40 4ac 12288 4B 4E 2B 4F 4E 1024 4C
2G| 142G 2G 8192 2C 4F | 2B 4F 4F 512 4F
4D | 2B 4D 4D 1536 4E 4G 2B 4G 4G 512 4D
2D 96 4H | 2B 4H 4H 3072 4H 34 648 6A 34 24 6A 5184 6A
a1 2B ar A1 3072 4G 3A 34 14 3A 5184 3B
2.J 14 2.J 2J 1536 2E 124 | 64 44 124 864 124
4J 2B 47 4] 256 AT
8A 4A  8A 8A 192 8D
3B 216 3B | 3B 1A 3B 432 3C 3C 108 3C | 3C 3456 34
6B | 3B 24 68 432 65 6C 3C 3456 68
12B | 6C 288 12B
6D 3C 192 6D
4A 96 4K | 2H 4K 4K 768 41 4B 96 4M 2F 3072 4A
AL | 2H AL 4L 768 4G AN 2F 3072 4B
8B | 4E 8B 8B 128 8G 40 2E 1536 4C
4P 2E 768 4D
8C | 4C  8C 128 8A
4c 32 4Q | 2H  4Q  4Q 256 4H 4D 16 48 | 2H 48 128 4F
4R | 2H 4R 4R 256 a1 AT 2H AT 128 4FE
8D | 4E 8D 8D 128 8F 8F 4E  8F 64 8B
8E | 4E 8E 8E 164 8E 8G 4G 8G 8C
5A 10 5A 54  5A 1A 20 5A 6A 72 6E 3A  2F 576 6C
104 | 54 104 24 20 104 6F 3A 2F 6A
12C° | 64 4C 120 96 12C
6B 36 6G | 3C 2D 6G 288 6.7 6C 36 67 3B 2F 61 72 6E
6H | 3C 2C 6H 288 6H 6.J 3B 2E 6.J 72 6F
12D | 6D 4B 12D 48 127
6D 36 6K | 3B 2C 6K 72 6K 6E 36 6M 3¢ 2E  6M 288 6D
6L 3B 2D 6L 72 6L 6N 3¢ 2F 6N 288 6B
12E | 6D 4D 12F 48 12F
6F 24 60 | 3B 2H 60 48 6F 6G 12 12F | 6D 41 12F 96 12G
6P | 3B 21 6P 48 6G 12G | 6D 4H 12G 96 121
6Q | 3¢ 27 6Q 48 6.
24A | 12B 8A 244 24 24A
8A 8 8H 140 8H 8H 64 8F 9A 9 9A 94 34 9A 18 9A
81 40 8T 81 64 8G 184 | 94 64 184 18 184
16A | 8C' 16A 16B 32 16A
8J | 4M  8J 8J 32 8D 104 10 10B | 54 20 10C
16B | 8C' 16B 164 32 168 10C | 54 20 10B
124 12 12H | 60 4L 12H 24 12J 12B 12 12J 6F 96 12C
121 | 60 4K 121 24 12K 12K | 6F 96 124
12L GE 48 12F
12M | 6F 48 12D
12N GE 48 12F

TABLE 5. The classes of G
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M(g)

M(g)

M(g)

8
3
—12
0

24
3
36
8

24
3
36
8

M(2B)

1 1
15 -1
4 0

1
15
4

M(24)

1
120 8
135 -9
-16 0

120
135
16

M(14) = {

M(2C)

M(34)

6

1
-1
0

1
3
-2

1
3
2

M(6B)

1
-1
0

1
3
-2

1
3
2

M(6A)

M(54) = [

TABLE 6. The Fischer Matrices of G
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5. The character table of G

Using the information of the classes of G in Table 5, the ordinary irreducible
characters of the inertia factors H; and the Fischer matrices in Table 6, the
ordinary character table of G (see Table 7) is successfully constructed using the
outline given in Section 2 of this paper. Consistency and accuracy checks of the
character table of G have been carried out the aid of Programme E in [19] to-
gether with the computation of the class multiplication coefficients of the classes
of G. The set of ordinary irreducible characters of G will be partitioned into 4
blocks A = {x;]|1 < j < 25}, Ag = {x;]26 < j <39}, As = {x;]40 < j < 59}
and Ay = {x;]60 < j < 84} corresponding to the inertia factor groups Hy, H,
Hs and Hy, respectively, where x; € Irr(G). Since G = 2'Gy is a two-fold
cover of G, the ordinary characters of G; = 28:(Uy(2):2) (see Table 5 in [6])
are found in blocks Ay to Ag and a set IrrProj(G1, «) of irreducible projective
characters with factor set o of order 2 for G; can be obtained from block Ay.

Using Programme E in GAP, the unique p-power maps of the elements of
G are computed (see Table 5) from our Table 7. Also, using the power maps
of G and Ug(2):2, the permutation character x(Us(2):2|G) = 1la + 252a + 440a
of Ug(2):2 on the classes of G and the restriction of some characters of small

degrees of Us(2):2 to the set Irr(G) in Table 7, the fusion map of the classes of
G into the classes of Ug(2):2 is computed (see last column of Table 5).
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TABLE 7. The character table of G = 2
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9l 14 24 2B 2C 2D 34 3B
[#lg]] 1A 24 4A2B[2C 2D 4B| 2E 2F 4C 2G 4D|2H 2I AF 4F 4G|AH 4I 2J 4.J 8A|6A 3A 12A[3B 6B
Xao 135 135 -9 7|15 15 -1| 39 39 -9 7 -1[15 15 -1 -1 -1] 7 7 7 -1 -1 0 0 O] 0 O
Xar| 135 135 -9 7]-15-15 1/ -33-33 15 -1 -1 3 3 3 -5 3| 5 5 5-3 11 0 0 0 0 0
Xa2| 135 135 -9 7|15 15 -1/ -33-33 15 -1 -1| 3 3 3 -5 3/ -5 -5 -5 3 -1 0 0 0 0 0O
Xas| 135 135 -9 7|-15-15 1| 39 39 -9 7 -1{15 15 -1 -1 -1] -7 -7 -7 1 11 0 0 0 0 0
Xaa| 270 270-18 14]-30-30 2| 6 6 6 6 -2/ 1818 2 -6 2/ -2 -2 2-2 2/ 0 0 0 0 0
X5 | 270 270-18 14/30 30 2| 6 6 6 6 -2(18 18 2 -6 2 2 2 2 2-21 0 0 0 0 0
Xa6 || 405 405-27 21|-45-45 3| -27-27 21 5 -3| -3 -3 13 -3 -3 3 3 3-5 3 0 0 O 0 0
Xa7|| 405 405-27 21]-45-45 3| 45 45 -3 13 3] 9 9 9 1 -7/ -9 -9 9-1 3 0 0 0 0 0
Xas | 405 405-27 21|45 45 -3| -27 27 21 5 -3| -3 -3 13 -3 3] -3 -3 -3 5 -3 0 0 0 0 O
Xao || 405 405-27 21|45 45 -3| 45 45 -3 13 3] 9 9 9 1 -7 9 9 9 1 -3 0 0 O 0 0
Xso0|| 540 540-36 28-30-30 2| 60 60-36 -4 4[-12-12 4 -4 4 2 2 2 2 -2 0 0 0 0 0
Xs1 || 540 540 -36 28|-30 -30 -84 -84 12-20 4|12 12 -4 4 -4 2 2 2 2210 0 0 0 0
Xs2 || 540 540-36 28/ 30 30 -2| 60 60-36 -4 4[-12-12 4 -4 4 -2 2 2-2 2/ 0 0 0 0 0
Xs3 || 540 540-36 28|30 30 -2| -84 -84 12-20 4/ 12 12 -4 4 4| 2 2 -2 -2 2( 0 0 0 0 O
Xs4| 810 810-54 42 0 0 0| -54 -54 42 10 -6/ 6 -6 -6 -6 10| 0 0 0 0 0 0 0 0 0 0
Xss || 810 810-54 42 0 0 0| 90 90 -6 26 -6/ 18 18-14 2 2| 0 0 0 0 0/ 0 0 ©0f 0 0
Xs6|l 810 810-54 42| 0 0 O 18 18 18 18 -6/-18-18 -2 6 -2[-12-12-12 4 0| 0 0 O 0 0
Xs7 | 810 810-54 42/ 0 0 0 18 18 18 18 -6-18-18 -2 6 -2{12 12 12 -4 0/ 0 0 0] 0 0
Xsg 1080 1080 -72 56/-60 -60 4| -24 -24-24-24 8 0 0 0 0 O 4 4 4 4 -4 0 0 0 0 0
Xs0 1080 1080 -72 56| 60 60 -4| -24 -24-24-24 8 0 0 0 0 0/ -4 -4 -4 -4 4 0 0 0 0 0
Xeo| 16 -16 0 0 4 4 0f 8 -8 0 0 0 44 0 0 0 4-4 00 0 2-2 0 1-1
Xei| 16 -16 0 0 -4 4 00 8 -8 0 0 0 4 -4 00 0 -4 4 000 2-2 0 1-1
Xe2| 96 -96 0 0|-16 16 0/ -16 16 0 0 0 8 -8 0 0 0/ 0 0 0 0 0 -6 6 0 3 -3
Xes| 96 -96 0 0/16-16 0/ -16 16 0 0 0| 8 -8 0 0 0L 0 0 0 0 0/ -6 6 O 3 -3
Xea| 160 <160 0 0] 0 0 0/ -48 48 0 0 0O 8 -8 0 0 0/ 0 0 0 0 0 2 -2 0/-2 2
Xes | 240 240 0 0[-20 20 0f -8 8 0 O O -4 4 0 0 0/12-12 0 0 0/12-12 0 3 -3
Xes || 240 -240 0 0]-20 20 0| 56-56 0 0 0[12-12 0 0 O -4 4 0 0 06 6 O 0 0
Xe7 | 240 -240 0 0/20-20 0f -8 8 0 O O -4 4 0 0 0/-1212 0 0 0/12-12 0 3 -3
Xes| 240 -240 0 0/20-20 0| 56-56 0 0 0[12-12 0 0 O 4 -4 0 0 0/-6 6 0 0 0
Xeo | 320 -320 0 0]-40 40 0| 32-32 0 0 0/16-16 0 0 0 -8 8 0 0 0] 4 -4 0 5 -5
X7o| 320 -320 0 0/40-40 0 32-32 0 0 0/ 16-16 0 0 0 8 -8 0 0 0 4 -4 0] 5 -5
X1/ 320 <320 0 0/ 0 0 0| 32-32 0 0 0[-1616 0 0 0 0 0 0 0 0}-14 14 o0 2 -2
X2 || 384 -384 0 0]-16 16 0] 64-64 0 0 0 0 0 0 0 0]-16 16 0 0 0[12-12 0 0 0
X73| 384 -384¢ 0 0/16-16 0 64-64 0 0O O 0 0 0 0 0/16-16 0 0 0/12-12 0] 0 0
X74| 480 -480 0 0]-40 40 0| -80 80 O 0 0] 8 -8 0 0O O 8 -8 0 0 0] 6 -6 0 3 -3
X7s | 480 -480 0 0/ 40-40 0/ -80 80 0 O O 8 -8 0 0 0/ -8 8 0 0 0 6 -6 0] 3 -3
X76 | 960 -960 0 0|-40 40 0/ -32 32 0 0 0/ 16-16 0 0 0/ -8 8 0 0 0/12-12 0/ -3 3
x77 | 960 -960 0 0[40-40 0| -32 32 0 O 0/ 16-16 0 0 0 8 -8 0 0 0/12-12 0/ -3 3
X7s| 960 960 0 0] 0 0 O 96-96 0 0 0/ 16-16 0 0 0 0 0 0 0 0/ -6 6 0/ -6 6
X70 [1024-1024 0 0|-64 64 0 0 0 0O 0O O 0O 0 0 0 0 0 0 0 O 0]-16 16 0] 4 -4
Xs0([1024-1024 0 0/64-64 0 0O 0 0 0 0 0 0 0 0 O 0 0 0 O 0}-16 16 0 4 -4
Xs1 [1280-1280 0 0] 0 0 0128128 0 0O O 0 0 0 0 0 0 0 0 O 0/-20 20 0] -4 4
xs2 1296 -1296 0 0/ 36-36 0| 72-72 0 0 0[-1212 0 0 0]-1212 0 0 0/ 0 0 ©0f 0 0
Xs3 1296 -1296 0 0]-36 36 0| 72-72 0 0 0[-1212 0 0 0/12-12 0 0 0] 0 0 ©Of 0 0
Xs4[1440-1440 0 0] 0 0 0/ -48 48 0 0 0[-2424 0 0 0/ 0 0 0 0 0/18-18 0] 0 0

The character table of G = 217%:(U4(2):2)(continued)
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65

1

-2

-2

0

-2

-2

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

0

2
-2

-2

-2

0

0
0
0
0
0

0 0

0 0

0 0

0
0

0

0

0 0

0

0

6A

1| -1

1| -2
3000

2

1
-3

1
-3
2

2

2

1| -1

-2

-2
-2

2

2

2 2

2 2

-1 -1
-1
2

-1 -1

-1 -1
2

2
-3

2
2
-3

-3 0

0
0

0 0

2

2

0
-3

0
-3

-3 00

-1

10 0
1
1

2200 0
2
2

-6
-6

-6

-1 00

1

3

3

-1 00

0

0

0

0

5A

1

1
0
0

0

0

0

0} -2

0
0
-1
-1
0
0
0
0
0
-1

-1
-1

0

1
1

-1 0 0

0
1
1
0

1
1

o 3 3
o 3 3
0 3 3
o 3 3
0f 6 6

0

0} -6

o 3 3
o 3 3

0

o 3 3

0

0] 0
0

0

4D

1

-2 221 0

2
14

1 -1

-1 -1
1

-1 -1

1
0

1

0 0] 0

0

0

0

0

0

0

0

0

0 0 0 0

0

000 0 0 00

-1 -1
-1 -1

-1 -1
-1 -1

0 0

0

0 0 0f 0

0] 0

0 0 0 0

0

0

0

0

0

e

11

2

1 -1 -1

200 0 0 0

2

2

141

1 -1

1
1

1

1

1

-1 -1
-2

-2/ 0

-2

-2

0 0 0

0

0 0 0

0

200 0 0 0] 0

-2 -2

-2

0

-1 -1
1

1 -1
1

1

1

0

0 0 0

0

0 0 0

0

4B

1

1

1

1

2 2 2 2 2

2 2 2 2 202 2 2 2000 0 01
2 2 2 2 2 00 0 0]-2
3 3 3 3 3

-1

-1 -1 -1 -1

3 3 3 3 3

-1

-1 -1 -1 -1} -1 -1

0

0

0

0

0

00 0 0 02 2 2 200 0 00
4 4 4 4 400 0 000 0 00

0 0 0 0

0

000 0 O0O0OO0OTO0OTO0OO0O0OO0TOQ 0

-2
-2

200 0 0 0O O O Of O

-2 -2
-2 -2 -2

-2
-2

00 0 0 02 2 2 2000 000

0 0 0 0 O

4 4 4 4 40 0 00

00 00O O0O0OO0OTUOTUO0OO0OO0OTO0OTO 0
00 00O 0 O0OO0OTO0OTO0OO0OOTO0OTOQ O
0 0 0 0 0 0 O

-3
-3

-3
-3

-3 -3
-3 -3

-3
-3

2 2 2 2 200 0 0 02 2 2 200

-4 00 0 0 00 0 0 O 0

-4 00 0 0 00 0

-4

-4 12

4

-4 000 0 0 00 0 O O O
-4 00 0 0 00 0 0 O 0

4
412

-8

-4
-8

-8 8 000 0 0 00 0 0 00

0 0 0 0O 00O O0OTOOOCTO0OO0TO0

0
-8

o 0 0

0

-8 000 0 0 00 0 O O O
-8 000 0 0 00 O O O O

00
-8 24
24
-8
-8

-8

-8 8 0

-8
-8

-8 8 000 0 0 00 0O 0 00

0 0 0 0O 00O O0OTOOOTO0OO0TO0O

0 0

0

0

0

0 0 0 0 00O O0OOOOCTO0 OO0

4A

141 -1

2
-2

0

2
-2

2
-2

0 0

14141

-3

-3

-3

1

-2 -2
2

-2
2

2

0

0

0

-4 -4

4

2 2 2

-2

-2

-2

0 0

0

00 0

0 0 0

-3 -3

-3

0 0

0

0 0 0] 12 12

00 0

0

0

0

0

0

3C

0 0

0
0
4
0
3

0
0
4
0
3

0 0

4 4
0 0

3 3

3 3 3 3 3 3
-1
-1

3

1
1

-1 -1
-1 -1

2

2 200 0 0

2

3
3 3 0 0 0
3 3] 4 4 4

3
3
3

3
3
3
-3
-3

3 3

-3
-3

-3
-3

-3
-3

-2

-2
-2
2

2
2

2
2

200 0 0

2

0 0 3 3 3
0 0

0
0
0
[§
6
6
6

0

0

0 0 0 0 O

2
2
2
2
4
4
4

0
6
6
6
6

-2 0 0 0 12 12

-2
-2

200 0 0
-4 0 0 0

4

12 12

12 12
12 12

-4 0 0 0

0 0 0 0 O

0
0
0
0
-6
-6

0
0

0 0 0 0 O 24

0
0 0 0 0 O
22 200 0 0

20200

0
-6
-6

0 0 0 0 O

0 0

e

[#]5||3C 6C 12B 6D|4K 4L 8B|4M 4N 40 4P 8C|4Q 4R 8D 8E|4S AT 8F 8G|5A 10A|6E 6F 12C|6G 6H 12D

X2

X3

X7

X8

X9

X10

X11

X12

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35
X

36

X37

X38

X39

:(U4(2):2)(continued)
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G
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6B

3

3
-3
3
-3

3

-3
-3

0

0

0
0
0

-2

2
4

2
4
4

0

0

2

-2

0

-2

-2

0

2

0

-4

0
0
0

6A

0

0

0
0
0
0

0
0
0
0

0

0

0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
-6

0
0
0
0

0
0
0

0
-2
-2
-2
-2

0] 2

0
0
0
0

6

-2 0] 2

2
4
2
-4
-4
2

2

4
4
-2

0] 2
0

-4 0] 2

4
-2
-2

4

4
-6

2
2
-4
-4

0] 2

0] 2
0

6

0
0
4

0
0
0
0

0
4

0 0
0 0
-6

6

0

0

0
0
0

0

0

0

0
0
0
0
0
0
0
0
0
0
0
-1
-1
-1
-1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
-1
-1
0

0

1
1
1
1

1
1

-1
-1

1
1

4D

-1 -1

1

1
1
-1 -1

-3
-3 -3

31
1

1

3
-3

1

1

-1

3

-1 -1

-2 0

-2 200

2

22 0 0

2 0 0[O0

-2 0 0/ 0

4C

-1 -1 3 3

3 3

-1 -3
1

3
1 -3

1
3
4

13 3

1
-4 4 0,0 0 0 0O

-3

-4 00 0 0 0Of O

-1 -1 1

1 -3 1]-1 -1

1

1
-1

1
3

-3

2200 0 0 00
-2 200 0 0 0O
-2 200 0 0 0O

2
2

2
2

200 0 0 0] 0

2200 0 0 0] 0
-2 .2/0 0 0 OO

2

2

-2 0 0 2
22 2 0 0[02-2 00

-4 4 0 000 0 0 O

-4 0 000 0 0 O

2 2 0 0-2 2 0 0[O0

22 0 0 2

2 0 0/-2 2 0 0] 0

-2 2 0 0] 2

-4 4 0 00 0 0 0O

-4 0 00 0 0 OO

-4 0 000 0 0 0] 0
-4 4 0 00 0 0 0O

-2 2 0 0/-2 2 0 0

22 0 0/-2 2 0 0

4B

-1

3 3 3 3

3

-1 -1 -1

1
1
2

3

3

3

3 3 3 3
6 6 6 6
6 6 6 6

-3
-3
-3
-3

2| 4 4
1 3 3

-3

-3
-3
-3
-3

-3
-3
-3
-3

301
-3
-3

1 -3
1 -1 -1

0 0 0 0 0 2 2 2
0 0 0 0 0
0 0 0 0 O

0 0 0 0 0 2 2 2

-6
-6

-6 20 0 0 02 2 2

-6 20 0 0 0-2

-6
-6

-6
-6

2002 2 2

2

6 6 6 6

0O 0 0 0 O OO O OOO O OO0
0O 0 0 0 0 0O O O0O0O0O O0 0O

4
4
8
8
8

-4 0 0 0 2

-4 0 0 0

-8 0 0 0

-8 0 0 0 4

-8 0 0 00 0 O 04 4 0 00

-4 4 0 0 0] 2

4 4 0 0 0

0 0 0 00

0 0 0 0 0 4

0 0 0 0 0 O0O0OO0OUOO0OO0OTO0OO0
0O 0 0 0 O 0O OOOOTO0OO0
-8 8 00 00O O O 00 0 0 00
-8 8 00 000 0 O 00 O 0 OO0

0 0 0 0 0 4

0 0 0 00

0O 0 00 O0OTOUOTOO0OOT OO
0O 0 0 0 O 0O OOO0OTO0OO0

0O 0 0 0 O OO O OO0O O OO0

-8 0 0 00 0 0 0 4-4 0 00

8

4A

-1
-1

3 3
3 3
-3
-3

1

-3

301
0
0

0

0

-1
301

0
0

3 3
-3
-3

1
-1

-3

3 3
-6
6
6
-6

-6 2

2
2

6
6
-6 2

6 -2

6
6

-6 2

0 0 0
0 0 0

2

0

-2

-2 2 0

-4 0

4 4 0

-2 2 0/12-12 0 0 0

-6 6 0

2
6

-2 0] 12-12 0 0 O 2

-6 0

4 4 0

-4 0

-8 0
-8 8 0

8

-4 0
4 4 0

-6 0/-12 12 0 0 O

6

-6 6 0-12 12 0 0 0] 2

3C

1
1
1
1

-3
-3
-3
-3

9 9
9 9
9 9
9 9
-9

0 0

0
0
0
0

0
0
0
0

0 0
0 0
0 0

1
1
1
1

-3
-3
-3
-3

9 9
9 9
9

9

9 9
0
0
0
0
-9
-9
4
4
0
0

0 0 0 0 0
0 0 0 0 0

0 0
0 0

0
0
0
0
9
9
-4
-4
0
0

-1
-1

3
3

0 0
0 0

0 0 4

0 0

0 0 0 0 0

0 0
0 0
0 0
0 0
0 0

16 -16
0

0

12-12
0

0

12-12

-4
-4
8

4
4
-8

0 0 4

0 0 0O 0 016-16 0 0 0O 0 0O 0 0f0O0 0 O Of O

0 0 0 0 O
0 0 0 0 0

0 0

12-12
12-12
12-12
12-12
-12 12

0 0

0 0] 4
0 0

0 0 0 O O016-16 0 0 00 0 O 0 OO O 0 O 0

0 0 0 0 O
0 0 0 0 0
0 0 0 0 0

0 0
0 0

0
8
8
-8
0
0
0

0
-8
-8

8

0

0

0

0 0 0 0 0

[z]5||3C 6C 12B 6D[4K 4L 8B|4M 4N 40 4P 8C|4Q 4R 8D 8E|4S 4T 8F 8G|5A 10A|6E 6F 12C|6G 6H 12D

X40

X41

X42

X43

X44

X46

X471

X48

X49

X50

X51

X52

X53

X54

X55

X58

X60

X61

X62

X63

X64

X65

X66

X671

X68

X69

X70

X71

X72

X73

X74

X75

X76

yr7 [-12 12

X178

X79

X80

X381

X82

X83

X84

:(U4(2):2)(continued)
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12B

-3

-3

124

0

0

104

9A

0

0

8A

0
0
0

0
0
0

0
0
0

1
-1 -1

-1

-1 -1

0

0
0
0

00
0

0

0

0

00

0

0

0

00

0

0

0
0
0
0
0
0

00
00
0
0
0
0

0
0
0
0

-1

-1 -1
0

-1 -1

0
2

0
2

0 -2

0

-2 -2

0

0
0

0
0

A 0 -A 0

A

0 00-40

0
0
0
0
0
0
0

00

0

00
0
0
0
0
0

0
0
0
0
0

6G

-1 -1 -1

0
0

-1

-1 -1

-1

0

0

-1 -1 -1

0
-1

-1

-1 -1

-1

-1 -1

-1
1

1
-1

1

-1 -1

-1

2
2

-2
-2

-2
-2

0

0

0

0

0

0

0

2 2 0

2

6F

-1 -1
-1 -1
2

00
1 -1

00
00

0
0
0
0

0

00

0
0
0
0

00

00
0
0

0

6E

1
-2

-2
-2
0

-2

0

0

2

2

2

1

2 2 2
-1
-1

-2
-1
-1
-1
-1
-1
-1

0

-2
-1
-1
-1
-1
-1
-1
0
0
0
2

-1 -1 -1
-1 -1 -1

-1
-1

2
0
0
0
0

0

2
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0 0 0
0
0
0
0

0

0

0
0
0

0
0
0
0
0

0

0 0 0

0

0
0

6D

-1 -1

-1 -1

)

)

-1 -1

-1 -1

2 2
-2

-1
1

-2
-1
1

11

1

2
-2

2
-2

6C

1
1

1
1

0 0 0 0

2

2

-1 -1

1

1

200 0

-2

2 2
2 2
-1 -1
-1 -1
-1 -1

11

0 0o 0 0

2 200 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

0o 0 0

0 0o 0 0
0 0o 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0o 0 0
0 0o 0 0
0 0o 0 0
0 0 0 0
0 0 0 0

0

e

[2]g||61 6J|6K 6L|6M 6N 12E|60 6P|12F 12G 6Q 24A|8H 81 16A 8J 16B|9A 18A[10B 10C|12H 12I|12J 12K 12L 12M 12N

X2

X3

X5

X7

X8

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X36

X37

X38

X39

2, B=—1— 23

where A =2

:(U4(2):2)(continued)
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12B

124

104

9A

8A

1-1

-1-1
-1 -1

0

0

0

00

0
0
0
0
0
0
0
0
0
0

0
0

0
0

0

0

00
0
0
0
0 00

0
0
0

0

0

00

0

0

00
0

0

0
0
0
0

2
0
0
0

-2

0
0
0

0

2

2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

0

00
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00

2 -2

2
0

2
0

6G

-1 -1

-1

-1

-1 -1

-1

-1

-1

-1 -1

-1
-1

-1 -1

-1

0

0

1 -1

1
-1 -1

-1

0

-2

)

0

0

2

2

0

0

0

0

6F

0 0
0

0

00

00
0
0
0

0

00
00

0
0
0

0

00

00

00

1

-2

0 0
0
0

6E

-1
-1
-1
-1

3 3
3 3

3
3

3
3

1
0
0
0
0
1
1

-3
0
0
0
0

-3

-3

-3

-3
0
0
0
0
3
3

-3

0
0
-3
-3
-3
-3
0
0
0
0
3
3

0
0
0
0
-1
-1

2

0

0

0

20

2

2

4 0
0

4
-2

0 -1

2
2

-2

0

0

0
0

-4
0
0
0

4
0
0
0

0
0
0

6D

0 0

1

-1
-1

2

-2

1

-1

)

2
-2

2

1 -1

)

2

0

0

6C

0 0 0 0
0 0 0 0
0 0o 0 0
0 0o 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0 0 0 0
0 0o 0 0
0 0o 0 0
0 0o 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

0 0 0

0 0o 0 0
0 0o 0 0

-1
1 -1
1 -1
1
0

-1

0 0 0

2 2
1
2

1
2

1 -1

2
-2
-2

2

2

1
1
1

-1
-1
-1

0 0 0 0

0 0

-2

2

0

0 0 0
0 0o 0 0
0 0 0 0

e

[2]g]|61 6J|6K 6L|6M 6N 12E|60 6P|12F 12G 6Q 24A|8H 81 16A 8J 16B|9A 18A[10B 10C|12H 12I|12J 12K 12L 12M 12N

X40
X41

X42

X43

X44

X45

X46

Xa7
X48
X49

X5

5

X52

X53

X54

X56

8
9

X60

X61

X62

X63

X64

X66

Xe7

X68

X69

X71

X72

X73

X74

X715

X76

X7

X78

X79

X80
X81

X82

X83

X84

:(U4(2):2)(continued)
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