
YOUNG-LAPLACE EQUATION IN CONVENIENT POLAR COORDINATES
AND ITS IMPLEMENTATION IN MATLAB®

ECUACIÓN DE YOUNG-LAPLACE EN COORDENADAS POLARES
CONVENIENTES Y SU IMPLEMENTACIÓN EN MATLAB®

EQUAÇÃO DE YOUNG-LAPLACE EM COORDENADAS POLARES
ADEQUADAS E SUA PROGRAMAÇÃO EM MATLAB®

Alberto R. Albis1,2, Adriana F. Rincón1

Recibido: 18/06/10 – Aceptado: 12/11/10

A new form of expression for the
Young-Laplace equation is proposed.
The Young-Laplace equation is develo-
ped in a convenient polar coordinate
system and programmed in MatLab®.
The profile generated showed to be in
agreement with those reported in literatu-
re. An algorithm that avoids profile inter-
polation was developed and tested for the
measurement of surface tension from
profiles of pendant drops.

: drop profile, polar coor-
dinates, Young-Laplace equation, Mat-
Lab®.

Se propone una nueva forma para expre-
sar la ecuación de Young-Laplace. Se de-
sarrolló la ecuación de Young-Laplace en
un sistema de coordenadas tipo polar con-
veniente, y su solución se programó en el

software MatLab®. Los perfiles que se
generaron mostraron una excelente coin-
cidencia con los reportados en la literatu-
ra. Se desarrolló un algoritmo que evita la
interpolación en los perfiles, el cual se
evaluó para la determinación de la tensión
superficial a partir de perfiles de gotas
pendientes.

: perfil de gota, coor-
denadas polares, ecuación de Young-La-
place, MatLab.

Propõe-se uma nova forma para expres-
sar a equação de Young-Laplace. Desen-
volveu-se a equação de Young-Laplace
em um sistema de coordenadas tipo polar
adequado e sua solução programou-se no
software MatLab®. Os perfis gerados
mostraram uma excelente coincidência
com os reportados na literatura. Desen-
volveu-se um algoritmo que evita a inter-
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polação nos perfis, o qual foi avaliado
para a determinação da tensão superficial
a partir de perfis de gotas pingentes.

: perfil de gota, coor-
denadas polares, equação de Young-La-
place, MatLab.

Surface and interfacial tension are very
important properties in science and engi-
neering due to the role they play in seve-
ral processes such as emulsification and
foaming. Besides, this property is very
sensitive to the presence of contaminants
and gives insight about the behavior of in-
termolecular forces at interfaces. Relia-
ble values for this property are often re-
quired and trustfully techniques are
needed to measure it.

Many techniques have been developed
to measure surface tension (1). Among
the commonly used methods, drop shape
methods based on the analysis of the sha-
pe and size of a pendant drop has several
advantages: They are absolute methods
and do not depend on the contact angle
between the liquid and the solid surface.
Besides, the amount of sample is small;
they have excellent precision, are appli-
cable to both air-liquid and liquid–liquid
interfaces, and are versatile, simple and
appropriated in several situations, inclu-
ding extreme temperature and pressure.
They have also been used to determinate
the adsorption properties of biological
systems, including protein adsorption at
interfaces (2, 3).

The method is based on the Young-La-
place equation for capillarity. It compares
the generated profile obtained by using a

set of initial parameters that include the
surface tension, with the experimental
profile. The procedure is repeated for se-
veral values of surface tension until a
good agreement between theoretically
calculated and experimental profile is
found (4-6).

Several changes on the original met-
hod have been introduced after its appea-
rance in the 90’s (5, 6). The modifica-
tions include improvements in the
hardware (7), lens, CCD camera, light
source, etc., changes in the algorithms to
included new numerical methods (8-10),
edge detection algorithms (11), and the
application of the method to turbid sam-
ples (7, 12).

One of the disadvantages of using the
Cartesian form of the Young-Laplace
equation is that–for the process of profile
comparison–is necessary to interpolate
the generated profile (13). In this work,
the Young-Laplace equation–describing
the profile of pendant drops–is expressed
in a convenient polar-like coordinate
system to avoid interpolation. The resul-
ting equations are solved in MatLab®
software (2009, The MathWorks), and
the obtained profiles are compared with
data reported in the literature and with re-
sults obtained solving the Cartesian form
of the equation using MatLab®.

The Young-Laplace equation for capilla-
rity was expressed in a convenient coor-
dinate system, as suggested by Zholob et
al. (13), and further developed by us.
The dimensionless form of the equation
was obtained dividing the radii length by
the radii of curvature at the apex. The re-
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sulting differential equation was numeri-
cally solved using MatLab® software for
different Bond numbers, and the results
are compared with literature data. An al-
gorithm was also written to obtain the
Bond number from experimental profi-
les. The software was tested using experi-
mental-like profiles. The experimen-
tal-like profiles were generated solving
numerically the Young-Laplace equation
and adding random noise to simulate real
experimental profiles.

The Young-Laplace equation [1] was de-
veloped to describe the profile of a menis-
cus inside a capillary, but the subjacent
phenomena is the same that gives drops
their characteristic shapes, therefore it
can be used to described the profile of
pendant and sessile drops (1). In this
equation, the pressure difference, �P, is
described by the two radii of curvature,
R1 and R2, and the surface tension, �. The
pressure difference can be given in terms
of the height, z, and the density differen-
ce, ��, and b is the radii of curvature at
the drop apex as shown in equation [2].
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For symmetric shapes, the radii of curva-
ture R1 and R2 can be expressed as a func-
tion of the arc length and the angle formed
between the x-axis and the tangent line to
the point considered, as presented in
equation [3]:


 �
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where � is the Bond number defined by
equation [4]:

�
�

�
� �

� gb b

a

2 2

2

2
[4]

The Bond number is positive for oblate
revolution figures, i.e., bubbles below a
surface and meniscus in a capillary, and
negative for prolate revolution figures as
pendant drops and pendant bubbles (5,
14). The dimensionless lengths are defi-
ned as shown in the following equations:

x x b

z z b

s s b

�

�

�

,
, [5]

Taking into account geometric considera-
tions, the following set of equations is ob-
tained:

d

ds x
z

� �
�� � �

sin
2 [6]

d x

ds
�cos � [7]

dz

ds
�sin � [8]

The initial conditions are described by
equation [9]:


 � 
 � 
 �x z s0 0 0 0� � � [9]

Equations [6], [7] and [8] have to be sol-
ved simultaneously to obtain the calcula-
ted profile. No analytical solution has
been discovered; therefore, the equations
have to be solved numerically. The algo-
rithm to solve this equation was program-
med in MatLab® using buildup functions
as ODE45. It is noteworthy that the inte-
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gration variable in this case is the dimen-
sionless arc length, whereas in experi-
mental profiles the coordinates are x and
z. This situation force the necessity of in-
terpolating values in the calculated profile
when we try to compare it with experi-
mental ones, increasing the computation
time and decreasing the precision of the
adjustment (13).

These difficulties can be avoided by
using a polar-like coordinate system as
proposed by Zholob et al. (13), as shown
in Figure 1.

The experimental coordinates are ea-
sily converted to this coordinate system
and the Young-Laplace equation is trans-
formed by using � as the integration va-
riable, making the comparison between
experimental and calculated profiles
straightforward. However, some difficul-
ties arise when implementing this coordi-
nate system: The position of the drop cen-
ter depends on the assignment of the split
line; when trying to define dimensionless
magnitudes the zc unavoidably appears in
the equations; and when zc is used to defi-
ne dimensionless magnitudes, the length

of the profile is immediately determined
by choosing the magnitude of zc. These
difficulties make this coordinate system
very awkward to be implemented. In this
work, a more natural polar-like system is
proposed, as shown in Figure 2.

If dimensionless variables defined by
equation [10] are used, the curvature and
the second derivate of radii can be related
by equation [11] (15):

r r b� [10]
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Where k is the curvature given by the
Young-Laplace equation and can be ex-
pressed in the previously defined coordi-
nate system by equations [11-14]:
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With initial conditions:


 �
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Where the boundary condition for the
apex symmetry, must be satisfied:


 �
d r

d

2

2 0 0
�

� [16]

The solution of equation [11] to equation
[16] was implemented in MatLab® and
the comparison of the results with the data
reported by Bashforth and Adams (14) is
shown in Figure 3. Experimental and cal-
culated profiles are superimposed. This
can be seen more explicitly in Figure 4,
where the differences between the radii
for the Bashforth and Adams data and the
results of obtained by using the equations
proposed in this work are plotted. As it
can be seen, the error is in the experimen-
tal uncertainty for most of the devices em-

ployed for these determinations
(micrometer level).

Experimental-like profiles were simula-
ted by generating theoretical profiles with
the Young-Laplace equation expressed in
the Cartesian system and introducing ran-
dom noise to the generated profile, as
equation [17]:

x x x

z z z
dist gen error

dist gen error

� �

� �

,
[17]

Where the subscripts exp and gen refer to
the distorted and generated profile, res-
pectively, and xerror and zerror correspond
to the random distortion added to the ge-
nerated profile. The magnitude of the in-
troduced error was selected to be appro-
ximately equivalent to one pixel in a
600x400 picture and it can be positive,
negative or zero for each generated point
(xgen, zgen). The apex position was also
randomly translated from the (0, 0) posi-
tion, and a random inclination of the pro-
file was introduced as well (15):
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 � 
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Where the subscript exp refers to the
coordinates of the experimental-like pro-
file, and (xap, zap) are the new coordinates
of the apex and the inclination angle of the
camera is �.

An algorithm was written to evaluate the
surface tension by using the method des-
cribed previously. Experimental-like
profiles were generated and the perfor-
mance of the algorithm was then tested: a
rough approximation of the apex coordi-
nates and Bond number, �, must be sup-
plied by the user. Using the adequate
form of equation [18] the coordinates are
corrected respect the apex position and
camera inclination (the supposed initial
value for � is 0), and the experimental va-
lues for � and r are calculated. The algo-
rithm initializes the radii of curvature at
the apex by adjusting several points
around the apex to a circle. With these va-
lues for apex position, camera angle incli-

nation and the parameters b and � the
built in MatLab® Levenberg-Mardquardt
method is initialized using as minimiza-
tion function de difference between the
calculated and experimental r, for each
value of the experimental �. No interpola-
tion is necessary in this method because
the calculated r can be obtained at the ex-
perimental � values. The performance of
the algorithm–by using the generated ex-
perimental-like profiles–is showed in Ta-
ble 1. An excellent agreement is found
between theoretical values and the values
found by the algorithm written in this
work. The written algorithm is presented
as an m-file in Appendix.
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Another algorithm is being written to
evaluate the surface tension of solutions
from taken pictures or video of pendant
drops. These algorithms have been wi-
dely described, but our algorithm uses the
form of the Young-Laplace equation pro-
posed here.

A new form of the Young-Laplace equa-
tion in polar-like coordinates was propo-
sed. By using this method, interpolation
is avoided in the calculation of the surface
tension from experimental drop profiles.
The implementation of the algorithm in
MatLab® showed an excellent agreement
between the results obtained and the re-
sults reported in the literature. Moreover,
the test of the algorithm showed that the
implementation in MatLab® can be used
to calculate the surface tension of solu-
tions from drop profiles.
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APPENDIX

421

REVISTA COLOMBIANA DE QUÍMICA, VOLUMEN 39, nro. 3 DE 2010

F
is

ic
o

q
u
ím

ic
a

e
In

o
rg

án
ic

a



422

REVISTA COLOMBIANA DE QUÍMICA, VOLUMEN 39, nro. 3 DE 2010



423

REVISTA COLOMBIANA DE QUÍMICA, VOLUMEN 39, nro. 3 DE 2010

F
is

ic
o

q
u
ím

ic
a

e
In

o
rg

án
ic

a



424

REVISTA COLOMBIANA DE QUÍMICA, VOLUMEN 39, nro. 3 DE 2010



425

REVISTA COLOMBIANA DE QUÍMICA, VOLUMEN 39, nro. 3 DE 2010

F
is

ic
o

q
u
ím

ic
a

e
In

o
rg

án
ic

a


