FLAVONOIDES CON ACTIVIDAD ANTIFúngICA AISLADOS DE Piper septulinervium (Miq.) C. DC. (Piperaceae)

ANTIFUNGAL FLAVONOIDS ISOLATED FROM Piper septulinervium (Miq.) C. DC (Piperaceae)

FLAVONOÍDES COM ACTIVIDADE ANTIFúngICA ISOLADOS DE Piper septulinervium (Miq.) C. DC (Piperaceae)

Mónica C. Ávila1,2, Óscar J. Patiño1, Juliet A. Prieto1, Wilman A. Delgado1, Luis E. Cuca1

Recibido: 29/03/11 – Aceptado: 29/04/11

RESUMEN
El fraccionamiento bioguidado del extracto etánico de la parte aérea de Piper septulinervium (Piperaceae) permitió la obtención de dos substancias de tipo flavonoide, activas contra dos cepas de hongos fitopatógenos (Fusarium oxysporum f. sp. dianthi y Botrytis cinerea). Las estructuras de los compuestos aislados fueron determinadas de acuerdo con el análisis espectroscópico (RMN y bi-dimensional, EMAR). La actividad antifúngica fue determinada por ensayo en disco, seguido por bioautografía directa sobre las dos cepas de hongos en prueba.

Palabras clave: Piper septulinervium, Piperaceae, flavonoides, actividad antifúngica.

ABSTRACT
Guided fractionation of ethanolic extract of aerial part of Piper septulinervium (Piperaceae) yielded two flavonoid-type active substances against two strains of phytopathogenic fungi (Fusarium oxysporum f. sp. dianthi and Botrytis cinerea). The structures of isolated compounds were determined by spectroscopic analysis (single-and two-dimensional NMR, HRMS). The antifungal activity was determined by disk test, followed by direct bioautography against the two strains of fungi tested.

Key Words: Piper septulinervium, Piperaceae, flavonoids, antifungal activity.

RESUMO
O fracionamento bio-guiado do extrato etánico da parte aérea de Piper septulinervium (Piperaceae) permitiu obter duas substâncias flavonóidesativas contra duas linhagens de fungos patogênicos (Fusarium oxysporum f. sp. Dianthi e Botrytis cinerea). Mediante a análise espectroscó-
pica (RMN mono e bidimensional, RMS) determinaram-se as estruturas desses compostos. A atividade antifúngica foi determinada pelo teste de disco, seguido por bio-autografia direta sobre duas inha-
gens fúngicas testadas.

Palavras-chave: *Piper septuplinervium*, Piperaeae, flavonóides, atividade antifúngica.

INTRODUCCIÓN

La agricultura en Colombia representa un renglón importante en la economía del país, teniendo en cuenta que esta contribuye con un 20% al producto interno bru-
to (1). Según el Ministerio de Comercio, Industria y Turismo del país, de los 20 productos más exportados por Colombia, 13 son productos agrícolas, entre los que se destacan el café, diversos tipos de fru-
tas y las flores (2).

Varios problemas fitosanitarios afec-
tan los cultivos, como el ataque de pató-
genos que disminuyen notablemente tanto la calidad como la cantidad de la produc-
ción. Las pérdidas en las cosechas debi-
das a enfermedades fúngicas pueden estar cercanas al 12% en el mejor de los casos; los países en desarrollo pueden superar este valor (3).

Para el control de los hongos fitopató-
genos se emplean fungicidas sintéticos, muchos de los cuales son altamente tóxi-
cos tanto para los agricultores como para los consumidores y el ambiente. Por tal motivo, se están buscando alternativas para disminuir al máximo el uso de estas sustancias tóxicas, mediante el desarrollo de nuevos productos fitosanitarios de bajo impacto ambiental y de acción específica (4). Las plantas pueden ser una fuente para encontrar sustancias útiles en el sec-
tor agrícola, pues producen diversos me-
tabolitos secundarios como defensa quí-
mica y han sido usadas empíricamente por el hombre como agentes de protec-
ción de cultivos desde hace muchos años (5). Ejemplo de esto son las especies ve-
getales pertenecientes a la familia Piperae-
ceae, ampliamente utilizadas de manera tradicional en la protección de cultivos y como fuente de fitomedicamentos (6). El género *Piper*, perteneciente a la familia Piperaeae, es el más abundante con un total de 1000 especies; a pesar de su ori-
gen asiático, en el país existe cerca del 20% del total de especies del género *Pi-
per* reportadas en el mundo (7), muchas de las cuales son especies endémicas co-
lobianas, como la especie *Piper septuplinervium*, objeto del presente estudio.

Además de la importancia que revisten las especies del género *Piper* por sus usos tradiionales, son relevantes los estudios fitoquímicos los cuales han mostrado la presencia de metabolitos secundarios como amidas, flavonoides, derivados de ácido benzoico y fenil propanoides prin-
cipalmente (8), los que en su mayoría po-
seen actividades insecticidas y antifúngi-
cas comprobadas (9-12). En este trabajo se presenta el aislamiento bioguaido de
do metabolitos tipo flavonoide con activi-
tad antifúngica contra dos cepas de hongos fitopatógenos: *Fusarium oxyspo-
rum* t sp. dianthi, responsable del marchi-
tamiento vascular del clavel, y *Botrytis cinerea* responsable de la enfermedad co-
nocida como moño gris característica de hortalizas y frutas que comúnmente se manifiesta como tizones en las inflores-
cencias, pudrición de los frutos, así como
cancrosis o pudriciones de los tallos (13). Las cepas escogidas para este estudio poseen una importancia económica teniendo en cuenta que los productos agrícolas que se ven afectados por estos hongos son de importancia económica para nuestro país ya que tanto el clavel como las frutas y hortalizas son actualmente productos de exportación y generan importantes dividendos económicos.

MATERIALES Y MÉTODOS

General
En la cromatografía de columna flash se usó sílica gel 60 de 0,040 mm a 0,063 mm Merck®, para la cromatografía en capa delgada se emplearon cromatopacas Merck® de sílica gel HF 254 de 0,3 mm de espesor usando como reveladores luz UV de 254 nm, 365 nm, vapores de I₂ y vainilla-acido fosfórico 50%. Los espectros RMN 1H, RMN 13C, COSY, DEPT, HMBC, HMCA, fueron registrados en un equipo Brucker Avance 400 utilizando TMS como estándar interno. Los puntos de fusión fueron tomados en un equipo Mel-temp II Laboratory Devices. Los espectros de masas EMAR fueron tomados en el equipo LCMS-IT-TOF Shimadzu DGU-20AS.

Material vegetal
La muestra utilizada para este estudio corresponde a la parte aérea de la especie *Piper septulinervium* (Piperaceae), recolectada en la vereda San José Bajo del municipio de Granada (Cundinamarca) y determinada por el biólogo Adolfo Jara Muñoz. Un espécimen reposa en el Herbario Nacional Colombiano del Instituto de Ciencias Naturales con el número COL-517695.

Material biológico
Las cepas fúngicas empleadas en el ensayo corresponden a *F. oxysporum* f. sp. dianthi y *B. cinerea*. Todas las cepas fueron mantenidas en incubadora a 27 ± 1 °C en medio de papa-dextrosa-agar (PDA).

Ensayo de actividad antifúngica
La determinación de la actividad antifúngica del extracto se realizó por el método de difusión en disco (14). El medio de cultivo (PDA) fue inoculado con 100 μL de una suspensión de esporas de 10⁵ UFC en una caja de Petri de 9 mm de diámetro. Se prepararon soluciones en metanol de cada extracto en diferentes concentraciones (50, 40, 25 y 10 μg/μL) y se aplicaron 10 μL de cada solución sobre discos de papel filtro, colocados sobre el medio inoculado, correspondiendo a 500, 400, 250 y 100 μg de cada extracto aplicado. Las cajas de Petri fueron selladas con parafilm e incubadas por tres días a 28 °C. Posteriormente, se midió el halo de inhibición alrededor de los discos de papel en mm y se determinó la CMI de cada extracto, definida como la mínima cantidad de extracto que causa inhibición en el crecimiento del hongo. Cada ensayo se realizó por triplicado y se usaron Benomil e Iprodiona como controles positivos para las cepas de *F. oxysporum* y de *B. cinerea*, respectivamente, en cantidad mínima de 10 μg en ambos casos.

La determinación de la actividad antifúngica de las fracciones y los compuestos puros se realizó por el método de bioautografía directa (15). Diez microli-
tros de las soluciones de las fracciones y los compuestos puros se prepararon, en diferentes concentraciones correspondientes a 100, 50, 25, 10, 5, 2 y 1 μg de compuestos puros, y 300 μg de fracciones aplicadas. Las muestras se aplicaron a las placas de TLC y se eluyeron en los sistemas cloroformo-metanol (95:5) y n-hexano-AcOEt (8:2). Después de dejar secar los cromatogramas para eliminar totalmente el solvente, se procedió a aspajarlos con una suspensión de esporas de hongos en solución de caldo nutritivo de KH₂PO₄ 0.7%, Na₂HPO₄ 2H₂O 0.3%, KNO₃ 0.4%, MgSO₄·7H₂O 0.1%, NaCl 0.1% y glucosa 30%; posteriormente, las placas se incubaron durante 72 horas en la oscuridad en una cámara húmeda a 25 °C. Finalmente, las placas de TLC se expusieron a la luz UV (254 nm) y a los vapores de yodo para detectar las zonas de inhibición, lo que indica la actividad inhibidora del hongo. Se utilizó Benomil e Iprodiona como control positivo a una cantidad de 1 μg en ambos casos; los disolventes utilizados para las muestras se emplearon como controles negativos.

Extracción y aislamiento

La parte aérea de Piper sepuplinervium seca y molida (980 g) fue sometida a extracción por percolación con etanol al 96%, obteniéndose 70 gramos de extracto, fraccionado por cromatografía en columna flash con la mezcla tolueno-acetato de isopropilo en gradiente desde 9:1 hasta 1:9 y posterior lavado con metanol, obteniendo 18 fracciones totales marcadas como F1 a F18. Las fracciones activas, de acuerdo con la bioautografía en cromatografía en capa delgada sobre sílica gel, fueron purificadas por medio de cromatografía en columna flash sucesiva con las mezclas hexano-acetona y diclorometano-acetona en diferentes proporciones, obteniendo los compuestos 1 (512 mg), 2 (150 mg).

RESULTADOS Y DISCUSIÓN

El compuesto 1 es un sólido blanco que cristaliza en forma de agujas, pf: 189-190 °C, no posee absorción en el UV λmax, presenta coloración amarilla con vainilla-ácido fosfórico, y coloración negra con vapores de I₂, prueba positiva al reativo de FeCl₃, indicando la presencia de OH fenólico. El espectro RMN ¹H (400 MHz, Me₂CO-d₆) muestra la presencia de las señales en δ 7,27 (d, J=7,3 Hz, 4H) y δ 7,17 (m, 1H), características de los hidrógenos de un anillo aromático monosustituido. Las señales de los protones en δ 6,03 (d, J=2,1 Hz, 1H) y δ 5,97 (d, J=2,1, 1H) son características de un anillo aromático tetrasustituido cuyos hidrógenos se encuentran en posición meta. La presencia de los dos anillos aromáticos se confirma por las señales del espectro de RMN ¹³C (100 MHz, Me₂CO-d₆) en δ 92,9, δ 97,9, δ 106,8, δ 127,6, δ 130,1, δ 130,2, δ 143,7, δ 165,5, δ 166,6, δ 169,5, las cuales corresponden a desplazamientos típicos de carbonos sp², en especial carbonos aromáticos que, según el experimento DEPT 135 y en comparación con el espectro RMN ¹⁳C, corresponden a 7 metinos y 5 carbonos cuaternarios, los tres últimos carbonos cuyo desplazamiento químico se debe a la presencia de sustituyentes oxigenados. Es importante anotar que dos de las señales de metinos en δ 130,1 y δ 130,2 poseen el doble de la intensidad de las demás, con lo cual se concluye que cada una corres-

28
ponde a dos carbonos que deben ser equivalentes (16). Las señales en δ32,4 y δ47,4, las cuales según el espectro HMQC se correlacionan con las señales en δ2,95 (t, J = 7,7, 2H) y δ3,3 (t, J = 7,7, 2H), respectivamente, junto con la señal en δ206 permiten hacer la conexión entre los fragmentos e identificar el compuesto 1 como 2’, 4’- dixidroxi-6’-metoxidihidrochalcona, comúnmente conocida como uvangoleotina, aislada de especies de las familias Anonaceae (18), Pteroxyllaceae (19), y Zingiberaceae (20). En la Figura 1 se presenta la estructura de la uvangoleotina.

A pesar de que este compuesto ha sido reportado anteriormente, los datos espectroscópicos reportados corresponden a experimentos RMN 13C de 15 MHz (21); por tanto, en la Tabla 1 se reportan los datos espectroscópicos correspondientes a 13C 100 MHz. Este es el primer reporte de la presencia de uvangoleotina en la familia Piperaceae.

El compuesto 2 es un sólido amarillo amoflo cuyo punto de fusión es 261 ºC, posee fluorescencia amarillo intensa en

Tabla 1. Datos RMN 13C (100 MHz) tomados en MeCO-d6

<table>
<thead>
<tr>
<th>C</th>
<th>δ</th>
<th>DEPT</th>
<th>HMQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>143,7</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>C-2</td>
<td>130,2</td>
<td>CH</td>
<td>7,27</td>
</tr>
<tr>
<td>C-3</td>
<td>130,1</td>
<td>CH</td>
<td>7,27</td>
</tr>
<tr>
<td>C-4</td>
<td>127,6</td>
<td>CH</td>
<td>7,17</td>
</tr>
<tr>
<td>C-5</td>
<td>130,1</td>
<td>CH</td>
<td>7,27</td>
</tr>
<tr>
<td>C-6</td>
<td>130,2</td>
<td>CH</td>
<td>7,27</td>
</tr>
<tr>
<td>C-c</td>
<td>47,4</td>
<td>CH3</td>
<td>3,30</td>
</tr>
<tr>
<td>C2</td>
<td>32,4</td>
<td>CH3</td>
<td>2,95</td>
</tr>
<tr>
<td>C=O</td>
<td>206</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>C-1′</td>
<td>106,8</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>C-2′</td>
<td>169,5</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>C-3′</td>
<td>97,9</td>
<td>CH</td>
<td>5,97</td>
</tr>
<tr>
<td>C-4′</td>
<td>166,6</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>C-5′</td>
<td>92,9</td>
<td>CH</td>
<td>6,03</td>
</tr>
<tr>
<td>C-6′</td>
<td>165,5</td>
<td>C</td>
<td>--</td>
</tr>
<tr>
<td>OCH3-6′</td>
<td>57,2</td>
<td>CH3</td>
<td>3,86</td>
</tr>
</tbody>
</table>
Tabla 2. Valores de CMI contra el crecimiento de los dos hongos fitopatógenos para el extracto etánolico de Piper septulinervium y los controles usados por el método de difusión en disco.

<table>
<thead>
<tr>
<th>Muestra ensayada</th>
<th>Cantidad mínima inhibidora (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F. oxysporum f. sp. dianthi</td>
</tr>
<tr>
<td>Extracto etánolico P. septulinervium</td>
<td>100</td>
</tr>
<tr>
<td>Benomil</td>
<td>10</td>
</tr>
<tr>
<td>Iprodiona</td>
<td>---</td>
</tr>
</tbody>
</table>

UV λ365 nm, coloración naranja intensa al revelarse con vainillina-ácido fosfórico, y coloración amarilla con vapores de I₂. Presenta prueba positiva con el reactivo de FeCl₃, indicando la presencia de OH fenólico. La asignación por resonancia magnética nuclear (¹H, ¹³C, DEPT, COSY, HMQC, HMBC), EMAR, y la comparación con los datos reportados en la literatura (17b) permitieron identificar el compuesto 2 como 5,7-dihidroxi-flavona, comúnmente conocida como chrysina, aislada anteriormente de especies de las familias Lamiaceae (22), Fabaceae (23), Chenopodiaceae (24), Orchidaceae (25).

Uvangoletina y chrysina son objeto de investigación continua por su importante y comprobada actividad citotóxica sobre varias líneas celulares. Además, se ha comprobado la actividad antifúngica in vitro de la chrysina sobre cinco cepas de hongos, entre las cuales se encuentra la forma especial cepae del hongo Fusarium oxysporum, la cual ataca específicamente cultivos de ajo y cebolla (25). En esta investigación, mediante el aislamiento bioenguado del extracto etánolico de la parte aérea de Piper septulinervium, se evidenció la importante actividad antifúngica contra Fusarium oxysporum f. sp. dianthi y Botrytis cinerea de los anteriores compuestos de tipo flavonoide, representada en los valores determinados en la cantidad mínima inhibidora, los cuales se presentan en las Tablas 2 y 3.

La Tabla 2 evidencia la cantidad mínima inhibitoria del extracto de Piper septulinervium, comparada con los controles utilizados para el ensayo, que corresponden a los principios activos de fungicidas comerciales comúnmente utilizados en el tratamiento en campo de las enfermedades causadas por las cepas de hongos objeto de esta investigación. Si

Tabla 3. Valores de CMI contra el crecimiento de los dos hongos fitopatógenos para los compuestos puros y los controles usados por el método de bioautografía directa.

<table>
<thead>
<tr>
<th>Muestra ensayada</th>
<th>Cantidad mínima inhibidora (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F. oxysporum f. sp. dianthi</td>
</tr>
<tr>
<td>Uvangoletina</td>
<td>2</td>
</tr>
<tr>
<td>Chrysina</td>
<td>2</td>
</tr>
<tr>
<td>Benomil</td>
<td>1</td>
</tr>
<tr>
<td>Iprodiona</td>
<td>---</td>
</tr>
</tbody>
</table>

30
bien las cantidades mínimas inhibitorias de los controles no son comparables con la obtenida para el extracto. Es importante tener en cuenta que los controles usados en el ensayo son compuestos puros y los extractos vegetales son mezclas muy complejas de cientos de compuestos en diversas cantidades; por eso se ensayan concentraciones relativamente altas de forma que es bastante posible que los metabolitos causantes de la actividad ejerzan su efecto en cantidades muy pequeñas. Lo anterior se confirma con los resultados de la Tabla 3, pues a diferencia de lo que sucede con el extracto, las cantidades mínimas inhibitorias presentadas por uvangoletina (1) y chrysin (2) son comparables con los controles positivos usados en el ensayo. Es de destacar que los compuestos aislados tienen mayor efecto sobre la Fusarium oxysporum f. sp. dianthi, lo cual es un resultado bastante importante, considerando que las mayores pérdidas de los productores de clavel se deben al marchitamiento vascular de los esquejes, causado por Fusarium oxysporum f. sp. dianthi. Esta situación repercute enormemente en las divisas por exportaciones si se tiene en cuenta que Colombia es el segundo exportador mundial después de Holanda. (26)

AGRADECIMIENTOS
Los autores agradecemos:

Al Laboratorio de investigación hospedero-patógeno del Departamento de Química de la Universidad Nacional de Colombia y al Laboratorio de Bromatología y Fitoquímica del Jardín Botánico José Celestino Mutis de la ciudad de Bogotá por proporcionar el material biológico usado en esta investigación.

Al Herbario Nacional Colombiano de la Universidad Nacional de Colombia por la determinación de las especies vegetales utilizadas en la presente investigación.

A los laboratorios de Resonancia Magnética Nuclear y Cromatografía líquida-espectrometría de masas del Departamento de Química de la Universidad Nacional de Colombia por la toma de los espectros utilizados en la elucidación estructural.

REFERENCIAS BIBLIOGRÁFICAS

4. Lizarazo, K.; Mendoza, C.; Carreño, R. Efecto de extractos vegetales de Polygonum hydropiperoides, Solanum nigrum y Calliandra pittieri.

