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Resumo

Homoquiralidad biológica y el 
análisis de redes estequiomé-
tricas: el modelo de Frank y 
sus variantes

Resumen

El origen de la homoquiralidad biológica se 
ha modelado usando mecanismos de reacción 
con pasos autocatalíticos, de inhibición y 
flujos de entrada y salida. Desde el punto 
de vista de las matemáticas, las ecuaciones 
diferenciales asociadas a tales mecanismos 
deben exhibir biestabilidad. La búsqueda de 
tales bifurcaciones se puede hacer usando 
el análisis de redes estequiométricas. Tal 
algoritmo facilita el trabajo matemático y 
se puede implementar en un programa de 
computadora, con lo que se simplifica el 
análisis y ayuda a entender y mejorar los 
mecanismos de reacción. No obstante, y 
a pesar de la reducción en la complejidad 
que es alcanzada usando el análisis de 
redes estequiométricas, la dificultad y la 
longitud de los polinomios involucrados 
hacen que, en los casos más difíciles y de 
mayor envergadura, la solución de estos no 
sea posible. En este trabajo se ha superado 
parcialmente el problema, adicionando a la 
matriz estequiométrica un conjunto de filas 
que codifican la relacion de dualidad entre 
las diferentes reacciones presentes en la red 
química dada como entrada al programa. 
Así, hemos logrado analizar 28 modelos 
diferentes de homoquiralidad biológica, 
extrayendo de ellos el conjunto de requisitos 
necesarios para tener un modelo cinética y 
termodinámicamente consistente.

Biological homochirality and 
stoichiometric network anal-
ysis: Variations on Frank’s 
model

Abstract

Biological homochirality is modelled using 
chemical reaction mechanisms that include 
autocatalytic and inhibition reactions as 
well as input and output flows. From the 
mathematical point of view, the differential 
equations associated with those mechanisms 
have to exhibit bistability.  The search 
for those bifurcations can be carried out 
using stoichiometric network analysis. This 
algorithm simplifies the mathematical analysis 
and can be implemented in a computer 
programme, which can help us to analyse 
chemical networks. However, regardless of the 
reduction to linear polynomials, which is made 
possible by this algorithm, in some cases, the 
complexity and length of the polynomials 
involved make the analysis unfeasible. 
This problem has been partially solved by 
extending the stoichiometric matrix with 
rows that code the duality relations between 
the different reactions occurring in the 
network given as input. All these facts allow 
us to analyse 28 different network models, 
highlighting the basic requirements needed by 
a chemical mechanism to have spontaneous 
mirror symmetry breaking.

A origem da homoquiralidade biológica foi 
modelada usando mecanismos de reação 
com etapas autocatalíticas, de inibição e 
fluxos de entrada e saída. Do ponto de vista 
da matemática, as equações diferenciais 
associadas a tais mecanismos devem 
ser instáveis. A instabilidade pode ser 
estudada usando o algoritmo de análise 
de redes estequiométricas. Tal algoritmo 
facilita o trabalho matemático e pode ser 
implementado num programa de computador, 
o que simplifica a análise e ajuda a entender 
e melhorar os mecanismos de reação. No 
entanto, e apesar da redução na complexidade 
que é alcançada usando a análise de 
redes estequiométricas, a complexidade e 
comprimento dos polinômios envolvidos 
fazem que, nos casos mais complexos e de 
maior envergadura, a solução dos mesmos 
não seja possível. Neste trabalho, o problema 
foi superado, parcialmente, adicionando à 
matriz estequiométrica um conjunto de linhas 
que codificam a relação de dualidade entre as 
diferentes reações presentes na rede química 
dada como entrada ao programa. Desta forma 
foi possível analisar 28 modelos diferentes de 
homoquiralidade biológica, extraindo deles 
o conjunto de requisitos necessários para ter 
um modelo cinético e termodinamicamente 
consistente.
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Introduction

Homochirality is a characteristic of living beings related to the chirality of 
some molecules [1]. At the molecular level, one of the most representative 
examples of homochirality is the almost exclusive presence of L-amino 
acids in the proteins that characterise life on Earth. Frank proposed a 
simple reaction mechanism to explain homochirality’s emergence [2]. 
Subsequently, Kondepudi and Nelson presented a more elaborated version 
of the same mechanism [3, 4]. Many other authors have proposed variations 
to these models, which are supposed to be better models or, at least, 
completely different models [5, 6]. The analysis of these models gives us 
insights into the requirements that a chemical network must fulfil to produce 
the homochirality phenomenon [7]. The first and direct way to perform 
such an analysis is by computing closed form solutions for the associated 
systems of differential equations [8]. However, this is only possible for the 
simplest models. An alternative is the qualitative study provided by linear 
stability analysis based on spectra of the Jacobian matrixes associated with 
those systems [9]. Nonetheless, if one must handle large matrixes with non-
linear entries, it is difficult to obtain information from them.

Bruce Clarke [10, 11] introduced a helpful change of variables that 
reveal the linearities present in the systems of differential equations: 
Stoichiometric Network Analysis (SNA). In this paper, we summarise 
Clarke’s work, and we transform it into an algorithm implemented in a 
computer programme: Listanalchem second algorithm [12]. The results 
obtained with this algorithm were verified using numerical simulations (time 
series and bifurcation diagrams) [13-15]. Those simulations were performed 
using the Chemkinlator computer programme [16]. The correctness of the 
computed results is remarkable.

We use the aforementioned tools to analyse some of the most 
representative stoichiometric networks (chemical models or chemical 
mechanisms) proposed to explain the origin of biological homochirality, 
including three of the most recent models presented in the literature. We 
begin our study with the first and most straightforward mechanism, the 
one proposed by Frank in 1953. This iconic model is tuned in order to 
obtain models that are consistent with chemical kinetics and the most basic 
thermodynamic principles. Thus, in this way, we obtain new models that 
are tested using our analytical tools. We also used the aforementioned tools 
to analyse other representative models found in the related literature [5, 17, 
18]. These include three recent models, as well as a reaction mechanism 
proposed by Trapp and co-workers [19].  This latter mechanism is intended 
to model Soai’s reaction [20]; which is, to date, the single experimental 
reaction that exhibits asymmetric autocatalysis. The model of Trapp et al. 
seems to be the only proposal that correctly describes Soai’s reaction.  This 
assertion is based on a detailed kinetic analysis and reaction modelling 
corroborating the formation of hemiacetals as the reactive species in Soai´s 
asymmetric autocatalysis.

The result of the total analysis in this work is a set of general 
characteristics that must be exhibited by a thermodynamic and kinetic 
consistent model that can produce homochirality.

Materials and methods

Algorithmic analysis of non-linear chemical 
systems

Suppose we have a chemical system constituted by  chemical species 
and  chemical reactions, its dynamics is driven by a system of differential 
equations such as:

	      	 (1)

where the variables x1,…,xn represent the concentrations of the n chemical 
species, expressed in a convenient and consistent system of units. The 
symbol k represents the r-dimensional vector of reaction rate constants 
that occur in the definition of the functions f1,…,fn. If there exists i ≤ n such 
that fi  is a non-linear function, for example, a polynomial on the variables 
x1,…,xn we say that the above system is an autonomous system of non-linear 
differential equations (a non-linear system, for short). The solutions of 
those (non-linear) systems describe the dynamics of the concentrations of 
the species of interest, and the reaction rate constants should be considered 
variable parameters ranging over an (small) interval of the positive reals. 
The reader must consider the fact that the value of most reaction rate 
constants is not known.

Most non-linear systems cannot be solved by analytical means. Hence, 
the analysis must be a qualitative one based on the linear stability of the 
steady states [9, 21].

Definition 1. We say that (a, k 0) ∈ ℝn × ℝr is a steady-state, if and only if, 
the following equalities hold.

	      	 (2)

Notice that if a system is driven to the state x1=a1,…,xn=an, under the 
well-controlled conditions represented by k0, then nothing occurs; the 
system is stuck at a fixed point of its dynamics. In real life, steady states 
are reached because of friction, dissipation, or entropy growth. However, 
we see dynamics all the time. This happens because physical systems are 
continuously perturbed by external noise, and hence most of the dynamics 
that we see correspond to dynamics that occur when steady states are 
perturbed. Thus, it makes sense to study the dynamics that could occur 
when one perturbates the steady states of the system under study.

The qualitative analysis of non-linear systems studies the dynamics that 
occur near the steady states. Steady states can be either stable or unstable. 
The idea is that all the exciting dynamics occur near unstable states. 
Therefore, it becomes essential to develop mathematical and algorithmic 
tools for the detection of unstable states. The aforesaid problem, called 
stability analysis, can be reduced to matrix analysis.

Let (a, k0 ) be a steady-state, the Jacobian matrix at state (a, k0 ) is the matrix

	              	 (3)

It has been known, for a long time, that the stability (instability) 
properties of a state (a, k0 ) can be deduced from the eigenvalues of Ja, k0

  [9].
Definition 2. Let (a, k0 ) be a steady-state and let λ1,…, λn be the 

eigenvalues of Ja,k0
. We say that (a, k0 ) is stable, if and only if, for all i ≤ n 

the inequality Re (λi) < 0 holds, where Re (λi) denotes the real part of λi. On 
the other hand, we say that (a, k0 ) is unstable, if and only if, there exists i  
such that Re (λi) < 0, and for all i it occurs that Re (λi) ≠ 0.

Remark 1. We say that a matrix is a full rank matrix if and only if the 
set of rows and the set of columns are linearly independent. Notice that the 
Jacobian matrixes of the stable and unstable states are full rank. 

Thus, the stability analysis of the system

	             		  (4)

is reduced to the analysis of the set

	      	 (5)

Polynomial Systems. We say that the non-linear system

	             		  (6)

is a polynomial system, if and only if, for all i ≤ n the function fi is a 
polynomial over the variables x1,…,xn. Suppose that we must analyse a 
polynomial system
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	      	 (7)

and suppose that we know that the parameters range over the small 
interval Ω. Let J :ℝ n × Ω r→ℝ be the function

	           	 (8)

Observe that function  J  is a polynomial over the variables  x1,…, xn , λ, k1,…, kr. 
Moreover, the set of steady states of the dynamical system is the zero set of 
the system of polynomial equations given by

	            	 (9)

This means that the stability analysis of polynomial systems reduces 
to the analysis of a polynomial function defined over an algebraic variety. 
Computational algebraic geometry provides us with the algorithmic tools 
necessary for the stability analysis of polynomial systems. 

Unfortunately, most of the aforementioned algorithms are inefficient, 
and the analysis becomes unfeasible for moderately large values of n 
[22]. This fact indicates that it is worth looking for mathematical tools 
that could reduce the dimensionality of the algebraic objects under study. 
Stoichiometric Network Analysis (SNA) allows us to reduce the degree of 
those algebraic objects.

Basic Concepts of Chemical Networks

A chemical reaction over the chemical species X1,…,Xn is an expression 
analogous to

	 	 (10)

where ν1,…,νn are small integers (some of which could be equal to zero) 
that are negative ν(-) for the reactants and positive ν(+) for the products. The 
above expression indicates that the mixture of | ν1

(-) | units of X1, …, and  
| νn

(-) | units of Xn gives place to ν1
(+) units of X1, …, and νn

(+) units of Xn.
A chemical network over the species {X1,...,Xn} is a set of chemical 

reactions, say {R1,...,Rr}, over this set of species. Let Ω = [(X1,..., Xn), 
(R1,..., Rr )] be a chemical network, where Rj is the reaction

  	 (11)

The network Ω can be encoded into the stoichiometric matrix SΩ, that 
is given by

		                   		  (12)

The entries of the above matrix are called the net stoichiometric 
coefficients. These coefficients can be used to determine the number of units 
of species Xi that remain after the occurrence of the reaction Rj. Observe that 
the rows of SΩ correspond to the species and the columns to the reactions.

It happens that chemical reactions have different rate constants. Let 
(k1,..., kr) be a vector of rate constants and suppose that under some given 
conditions, these are the rate constants of the reactions R1,..., Rr. Then, the 
law of mass action [23] determines that the dynamics of the network, under 
those specific conditions, is governed by the polynomial system:

	   	 (13)

The work of Clarke: Stoichiometric Network 
Analysis (SNA)

Let Ω = [(X1,..., Xn), (R1,..., Rr )] be a chemical network. The velocity function 
of Ω is the function v (X, K ): ℝ+

n ×ℝ+
r→ℝ+

r , defined by:

	    	 (14)

Clarke [10, 11] established that the network kinetic equation can be 
written as

		                   		  (15)

Notice that we are not using the matrix SΩ to linearize the system, 
we are using it to write the polynomial system in matrix form. Good 
notations can provide insight: Clarke’s matrix form suggests that one 
can perform the stability analysis in the velocities space instead of in the 
concentrations space. It happens that switching to the velocities space can 
reduce the dimensionality of some networks. Moreover, this yields a novel 
factorisation of the Jacobian matrix, which was (apparently) discovered 
by Clarke [10], and which is heavily used in SNA. One crucial element 
of this factorisation is the denominated matrix of extreme currents, EΩ. 
The meaning and implications of this matrix have been used to obtain 
insights regarding the behaviour of several models proposed for explaining 
the origin of homochirality from the point of view of spontaneous mirror 
symmetry breaking (SMSB) [24] and entropy production [25]. Vuk 
Radojković and Igor Schreiber have also proposed a method, based on SNA 
and constrained linear optimisation, to estimate rate coefficients and steady-
state concentrations of classical chemical oscillators [26]. We will not 
discuss such topics; instead, we will develop algorithmic methods that can 
be used to compute the parameter values that can produce homochirality in 
a given network model. That is the focus of the following paragraphs.

Clarke’s Factorisation

Clarke’s work is heavily based on a factorisation which can help us to 
simplify the stability analysis of various large chemical mechanisms. This 
factorisation allows us to reduce the degree of the polynomials that occur 
in the dynamic equations. We will present this factorisation in two forms.

The first form of Clarke’s factorisation. The matrix of orders of reaction 
(also called the kinetic matrix) is the matrix

		       	   		  (16)

Observe that the rows of KΩ , in contrast with the rows of SΩ , correspond 
to the reactions (while the columns correspond to the species). As we will 
see, the kinetic matrix is a key ingredient of Clarke’s factorisation. Let us 
select a steady-state (a, k0) and let us say that this state is our reference state. 
The state (a, k0) determines a velocity vector vΩ=(v1,...,vr), which is given by

	         		  (17)

We have, due to the steady-state conditions, that

		                      			  (18)

and this means that the physical velocity determined by the steady-state  
(a, k0) belongs to the kernel of SΩ.
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Now, suppose that for all i ≤ n, the inequality ai>0 holds. Then, we use 
the symbol h to denote the vector . SNA is based on the following 
theorem [27], which corresponds to a factorisation of the Jacobian matrix.

Theorem 1. Let Ja,  k0  be the Jacobian matrix of a system at the steady-
state (a, K 0), we have that

       	 (19)

The second form of Clarke’s factorisation. Physical velocities must 
satisfy the constraint v(  X, K )i ≥ 0. Moreover, at a steady-state (a, k0), the 
physical velocities must satisfy a further constraint, given by the equation

	    	      			  (20)

Solutions to the above two constraints are called currents. The set of all 
currents is equal to

		     		  (21)

and it contains the set of physical velocities that can occur at steady 
states. Notice that the dimension of CΩ, that we denote with the symbol c, 
satisfies the inequality

		                        			   (22)

where d = dim (SΩ) is the dimension of SΩ, which is the number of 
linearly independent rows (columns) of SΩ while r is the total number of 
reactions in the chemical network Ω. If d is big enough, the size of CΩ could 
be small, and this could help us to ease the analysis. Unfortunately, this 
dimensionality reduction does not always occur, and it strongly depends on 
the model (the number of reactions and its stoichiometric matrix). In many 
cases, the dimension of CΩ is enormous: the inequality c ≧ r – d is just a 
lower bound. Then, it could happen that the problem becomes one of  larger 
dimension when switching from the concentration to the velocities space.

Note that CΩ is a convex cone, (called the current cone). Also note that 
CΩ is polyhedral. The current polytope is equal to

		     		  (23)

ΠΩ is a polytope in the geometrical sense, and this means that it is the 
convex hull of a finite set that we call the set of nodes of this polytope.

Remark 2. Given a finite set of linear inequalities and linear equalities 
defining a polytope Π, the set of nodes of Π can be computed by algorithmic 
means.

Thus, given a network Ω, one can effectively associate to Ω a matrix 
EΩ

* such that the columns of EΩ
* are the non-zero nodes of ΠΩ. The matrix 

EΩ
* is a rational matrix, and it can be scaled to obtain an integer matrix EΩ. 

The matrix EΩ is called the matrix of extreme currents, and their columns 
are called extreme currents (they are the extreme rays of the current cone).

Now, let Ω = [(X1,..., Xn ),(R1,..., Rr )] be a network. According to the first 
form of Clarke’s factorisation, we can write the Jacobian matrix at (a, k 0 ) 
as Ja, k 0 = SΩ ⋅ [diag (vΩ )] ⋅ KΩ ⋅ [diag(h)].

Recall that vΩ is a current. It means that vΩ is a positive linear 
combination of extreme currents; hence it can be written as

	    	                			   (24)

for some vector j ∈ ℝs
+. Let eij be the ij-th entry of the matrix EΩ. We have 

that for all i ≤ r the equality

	    	                			  (25)

holds. 
Let diag (EΩ ⋅ j) be the matrix

	 (26)

then, we have that

	           	 (27)

The above factorisation of Ja, k0
 corresponds to the second and final form 

of Clarke’s factorisation.

Implications of Stoichiometric Network Analysis 
(SNA): Reduction to Convex Parameters

The matrix

	              		  (28)

is a scaling matrix with non-negative entries, and hence it does not 
influence the signature of the eigenvalues of Ja, k 0. Thus, we can focus on 
the matrix VΩ   =  SΩ  ⋅  diag ( EΩ ⋅ j) KΩ . Note that SΩ  and KΩ  are constant 
(numerical) matrixes that do not depend on our reference state. It is also 
the case with the matrix EΩ . Then, we can forget the reference state (a,k0). 
Also, we can see that the entries of diag ( EΩ ⋅ j ) are linear functions that 
depend on the convex parameters j1,…, js. In that case, we can forget the 
numerical values of  j1,…, js that allowed us to express the velocity VΩ as a 
convex combination of extreme currents, and we can consider them as the 
new parameters related to the nonlinearities in concentrations (mass action 
law) but without their exponents or cross-products.

We use the symbol VΩ to denote the non-numerical (symbolic) matrix

		        		  (29)

called the current matrix, and which is the matrix that we want to 
analyse. Note that the current matrix encodes the Jacobian matrixes of all 
the steady states, and its entries are linear polynomials over the variables 
j1,…, js. Observe that we obtain an important dimensionality reduction 
by using SNA: the degree of the polynomial entries of VΩ matrix  is one. 
Notice that this was possible due to the factorisation of the Jacobian matrix.

The aforementioned reduction can become useless if the number of 
parameters grows considerably. Note that we are using s parameters, the 
parameters j1,…, js, where s is equal to the number of extreme currents 
(extreme rays of the current cone). We cannot compute, in advance, the 
exact value of the number of extreme currents that we denote with the 
symbol #ECΩ but we have that

	            		  (30)

Note that the number of extreme currents can be so huge that the 
analysis becomes impractical or at least very demanding. Remember that 
we want to analyse the set

	         	 (31)
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which is a parameterised set of n×n matrixes that are initially given 
through n+r parameters. SNA allows us to encode this set into a symbolic 
n×n  matrix that is given by s parameters.

Computing instability regions

Let Ω be a chemical network. We want to introduce an algorithm that 
can compute an approximation to the set of unstable steady states of Ω. Let  
(a, k0) be a steady-state and let J(a,  k 0 ) be the Jacobian matrix at (a, k0). If all 
the eigenvalues of J(a,  k 0 ) have a strictly negative real part; then the system is 
stable. Thus, we are interested in computing the set

  	 (32)

Suppose that the characteristic polynomial of J(a,  k 0 ) is equal to

		                			   (33)

Each one of the terms αi ( j, h) is a polynomial expression over the 
parameters j and h. The coefficient αi ( j, h) is equal to the sum of all 
diagonal minors of J(a,  k 0 ) of order i [28]. On that account, the coefficient   
αi ( j, h) is equal to the sum of all diagonal minors of VΩ of dimension i×i  
multiplied by the corresponding sets of reciprocal concentrations. Note 
that parameters j and h are non-negative, therefore any negative term in 
the characteristic polynomial of J(a,  k 0 ) implies the existence of a diagonal 
minor of VΩ of order i, whose polynomial expression contains a monomial 
preceded by a minus sign. We say that a such minor of VΩ is a source of 
instability. The detection of all the minors that are sources of instability 
(unstable minors) can be carried out using symbolic algebra [29, 30].

Note that each diagonal minor is determined by a set I ⊂ {1, ..., n}. Let 
VΩ

I 1 ,…,VΩ
Ir be the unstable minors; we say that VΩ

Im is an essential source 
of instability (essential minor), if and only if, for all i ≠ m the set Im  is 
not a superset of Ii. Each essential minor VΩ

Im determines a polynomial, its 
determinant, which can be written as

 (34)

where Am is the set of indices for which ai
m < 0, and Bm is the set of indices 

for which ai
m ≧ 0. We have that set VΩ

Im < 0 if and only if, the inequality

		  		  (35)

holds. The above polynomial inequality is the instability condition for 
minor VΩ

Im. We use the symbol CI, Ω to denote the latter inequality, and we use 
the symbol DI, Ω to denote the set

		   		  (36)

Given J0 ∈ ℝ+
s, it encodes a chemical velocity vΩ-j0

. Thus, if we compute 
J0 ∈ ℝ+

s such that the  inequality CI, Ω holds for j0 then there must exist at 
least one steady-state (a, k0) whose velocity is equal to vΩ-j0

. The above facts 
indicate that the computation of ⋃I DI, Ω can be of help in the analysis of 
network Ω. Moreover, the sets DI,Ω are semialgebraic, and semialgebraic 
sets behave very well from an algorithmic point of view: they can be tested 
and sampled by algorithmic means [31].

We will present an algorithm derived from the above facts, which can 
be used in the stability analysis of reaction networks, particularly in this 
work, those related to SMSB [32]. The algorithm is intended to search for 
reaction rate constants that are good candidates for encoding unstable steady 
states. These calculations are implemented as the second algorithm of the 
Listanalchem computer programme [12]. The algorithm works as follows:

1.	 Define the model, Ω, to be analysed in terms of its species X, 
and reactions R. If the model has only two species, they are the 
enantiomers. If there are more than two species, the first two 

defined in the species list must be the enantiomers. If there are more 
than two pairs of enantiomers, they must be defined explicitly, and 
the sixth Listanalchem algorithm must be used [33] (this will not 
be discussed here).

2.	 Compute SΩ, and extend SΩ. The matrix SΩ is extended with rows 
that code the duality relation between reactions. This operation 
decreases the size of the EΩ matrix and the running time of the entire 
algorithm, enabling it to analyse large mechanisms (networks), 
something that is usually not possible when matrix SΩ is not 
extended. This important fact can be tested using Listanalchem, 
matrix  SΩ and its extended version.

3.	 Compute KΩ, vΩ, EΩ, diag (EΩ ⋅ j)  and VΩ. In this work, matrix EΩ 
is calculated based either on a previously reported algorithm [29], 
or on the code of COPASI software [34],  both modified to work 
with singular matrixes.

4.	 Compute all the unstable minors of VΩ. In our computer 
programme, the maximum size of the essential minors is limited 
to five to avoid long computations. If ⋃I DI, Ω is empty, there are no 
unstable minors, and the programme finishes, otherwise it goes to 
the next step.

5.	 Compute the system of inequalities and equalities that must be 
satisfied.

6.	 Compute the intervals where the above system of inequalities and 
equalities are satisfied. If the inequalities are linear, the solutions 
are found. Otherwise, a heuristic approach is taken to linearise the 
inequalities. Finding the intervals where the system of inequalities 
and equalities are satisfied is not an easy task because of the 
nonlinearities [31]. In our computer programme, the solutions of 
linear systems are found using Reduce [35], which cannot solve 
non-linear systems. We use a heuristic and naïve procedure that 
turns the non-linear inequalities into linear ones. The procedure 
finds, iteratively, the most common ji’s in the non-linear system 
and replaces them with positive random values, repeating this 
operation until the system becomes linear. The selected values may 
not produce a solvable linear system, but if they do, we can check 
for the intervals at which they are satisfied with the help of Reduce 
[35]. If the procedure fails to produce a solvable linear system, the 
set of values can be re-sampled as many times as desired. This step 
aims to obtain a set of intervals where the system of inequalities 
and equalities is satisfied.

7.	 Sampling: compute one element of the solution set of the linearised 
system obtained in the previous step. Random values, generated 
inside the ranges where the linear system is satisfied, are assigned 
to j1,…, jk.

8.	 Given the values computed in step 7, compute the corresponding 
reaction rate constants k1,…, kr, using the relation vΩ = EΩ ⋅ j. 
Convenient values are assigned to the concentrations when 
necessary.

9.	 Test the results by numerical simulations using the respective 
differential equations and including bifurcation diagrams. In this 
work, this is carried out using our software called Chemkinlator [16].

Concerning steps 4 and 7, some remarks are in order. It is true that given 
the semialgebraic definition of ⋃I DI, Ω, it is possible to check by algorithmic 
means if the latter set is non-empty, and it is also true that one can compute 
points within ⋃I DI, Ω (provided it is non-empty). But it also happens that the 
set ⋃I DI, Ω could be infinite, and it becomes infinite for most of the chemical 
networks that one would care to analyse with those tools. Note that, in those 
cases, the finite samples that we compute can be non-representative. We can 
reduce the set of target states using chemical-based heuristics or physical 
constraints, such as solubility or diffusion-controlled rate constants [36]. 
However, the approach in this work is to sample the instability region, 
make simulations with that set of rate constants, and then expand the region 
of analysis through the construction of bifurcation diagrams (step 9 of 
the algorithm). In this way, we explore the hyperspace region around the 
unstable points that are computed by the sampling process.



Rev. Colomb. Quim., vol. 50, no. 3, pp. 43-53, 2021

Biological homochirality and stoichiometric network analysis: Variations on Frank’s model

47

Results and discussion

The reaction networks discussed below can be found in the folder “models” 
of Listanalchem as “*.py” files. The corresponding name files can be 
found aside from the titles of the subsequent sections, where we analyse 
different network models of biological homochirality. Also, the respective 
plots, equivalent to figures 1 and 2, can be obtained from the data given 
by Listanalchem, second algorithm (SNA), and Chemkinlator, the two 
computer programmes used here to obtain the results discussed below.

Frank like models

This section presents a sequence of network models derived from the Frank 
model. The sequence can be understood as a progression along which the 
original Frank model is being fixed, making it consistent with the most 
fundamental thermodynamic and kinetic principles.

Frank model (Frank.py, 1953)

The first ever proposed model of biological homochirality was the Frank 
model [2], which we present below.

	             		  (37)

			    			   (38)

The Frank model is a network of irreversible reactions that guarantees 
the SMSB due to the autocatalytic reactions (37), the inhibition reaction 
(38), and the open condition represented by the absence of reverse reactions. 
The irreversibility of one reaction can be understood as a backward rate 
with a very low value. This can be due to low product concentration. It 
is also possible to understand the low backward rate as an inherent low 
value for the backward rate constant. Unfortunately, when someone 
proposes a mechanism, the reasons for removing the reverse reactions are 
not presented, or they are mentioned briefly. This fact can be a source of 
misunderstandings, given that introducing a one-way reaction violates the 
principle of microscopic reversibility (detailed balance) [38–41]. In that 
case, an improvement to the Frank model is to turn its three reactions into 
reversible ones, which will be carried out in the next section. For now, 
observe that the product of the Frank model’s third irreversible reaction 
is irrelevant, and it does not have an explicit name; it is a generic product 
represented by a square, which means anything. 

In conclusion, the Frank model is a network constituted of two 
autocatalytic (positive feedback) and one inhibition (negative feedback) 
reactions [42], which are irreversible. Moreover, it is an open system with 
an unspecified product. Frank model generates SMSB for any set satisfying 
the conditions k0 = k1 > 0 and k2 > 0. Thus, this is a model that always 
generates SMSB. These facts can be verified using Listanalchem, second 
algorithm, and the file “Frank.py”.

 
Reversible Frank model (Frank-Rev.py, this work)

The following reactions give the reversible Frank model

	     	 (39)

			    			   (40)

This model behaves similarly to the Frank model. However, this second 
model is not always unstable (as is the previous one), and only a particular 
set of rate constants can produce SMSB, as its bifurcation diagram shows 
in figure 1. 

Figure 1. The bifurcation diagram of the Frank reversible model. The simulation 
parameters are shown on the left side of the figure, a snapshot of the Chemkinlator 
computer programme [16] used to make the simulations. The initial difference in the 
enantiomers concentration is 1 × 10-15, equivalent to an enantiomeric excess (ee) of 
≈ 1 × 10-9 %.

Observe that this model retains the unspecified product ∎, which, 
together with the reverse reaction in Eq. (40), implies a continuous input 
of the reagents L and D. In this way, the model satisfies the open system 
requirement that seems to be necessary for SMSB.

Reversible Frank model with explicit product P (Frank-Rev-P.
py, this work)

The inclusion of the explicit product P in the Frank model produces: 

	          	 (41)

		    	      			   (42)

which now makes the system a closed one, and it is stable, as the second 
law of thermodynamics predicts. No SMSB is possible with this model. 
When this model is compared with the previous two, it becomes apparent 
that inflows of the reagents, as well as outflows of the products, are both 
necessary to produce instability. 

A thermodynamic and kinetic consistent Frank model with two 
precursors (Frank-Rev-P-AB.py, this work)

Once the thermodynamic principle of detailed balance is explicit in the 
Frank model, some kinetics issues must be considered. First, the mass balance 
is not evident in reactions like those of the original Frank model Eq. (37) 
or the equivalent Eq. (39) and (41). Second, the first-order kinetics of those 
reactions are not the most common in chemistry [43]. Finally, a complete 
and explicit mechanism must show the origin of the enantiomeric species. 
The following model is a proposal to solve the aforementioned issues:

	 (43)

	 (44)

		            			   (45)
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However, no SMSB is possible with this model because it is a closed 
system and thus a stable one. It is then reasonable to include an input of the 
precursor reagents A, B, and an output of the whole reaction mixture, as it 
is made in the classical Continuous well-Stirred Tank Reactor (CSTR) [44]. 
The following section presents this open system. 

Open reversible Frank model with two precursors (Frank-Rev- 
P-AB-CSTR.py, this work)

The previous model in an open system, a standard CSTR reactor [44],  can 
be represented as follows:

	 	  	 (46)

	 (47)

	 (48)

	 (49)

       	 (50)

This model is thermodynamically and kinetically correct. The open 
system condition, a required source of instability, is included as the input 
Eq. (46) and output Eq. (50), which are irreversible. This model can produce 
homochirality, since it can be proved using SNA. However, it is important to 
highlight that the SNA algorithm that uses the stoichiometric matrix SΩ with 
no extension (the process that add rows to code the duality relation between 
reactions), was not able to analyse this network, which has associated a 
large matrix of extreme currents, the matrix EΩ which has 17 rows and 25 
columns. This matrix becomes, after extension, a matrix with 17 rows and 
only seven columns. This fact corresponds to an important characteristic of 
the implemented algorithm, which improves the applicability of SNA in the 
analysis of network models of biological homochirality. These facts can be 
checked using Listanalchem second algorithm, the file Frank-Rev-P-AB-
CSTR.py, and changing the option “dual-pairs-in-ec” from “False” (SΩ not 
extended) to “True” (SΩ extended).

Kondepudi-Nelson model (Kondepudi-Nelson.py, 1983)

The chronologically successive network model of homochirality is the 
Kondepudi-Nelson model (KN) shown below [3, 4, 45].

    	 (51)

  	 (52)

	 (53)

Observe that this model is essentially the same as the thermodynamic 
and kinetic consistent Frank model Eq. (43 - 45), except Eq. (53), which 
has become the irreversible inhibition Eq. (38) of the Frank model, and 
the trimolecular character of Eq. (52) respect to Eq. (44). Kondepudi-
Nelson considers A and B as constants (i.e., they consider a pool chemical 
approximation [21]). This fact turns the KN model into an open system, 
with only two variables, XL and XD. If reagents A and B are not constant, 
then two problems appear; first, the trimolecular reactions Eq. (52) are 
very uncommon in real systems, as well as the incapability of the model to 
produce SMSB; see the output of Listanalchem using the file “Kondepudi-
Nelson-AS.py”. 

We can summarise this first set of Frank-type models comparing the 
most relevant aspects of them, as shown in Table 1.

Table 1. Comparison of the most relevant characteristics of the Frank-type models 
discussed in this work.

Frank 
reversible Kondepudi-Nelson Frank reversible with flow

Observe that the Frank and Kondepudi-Nelson models constitute the core 
of the “all explicit” Frank reversible model with flow, right column on Table 
1. This latter model is our proposal, and which evidences the requirements 
for a thermodynamic and kinetic consistent model producing SMSB. These 
facts are not always explicit in the literature, which is probably an important 
source of misunderstandings [38 - 41], and this is something that we want 
to avoid here. Of course, being so explicit has consequences: larger models 
and larger matrixes. However, we have partially surpassed this problem 
in this study, as mentioned before, using a suitable preprocessing of the 
stoichiometric matrixes.

Calvin model, 1969

Melvin Calvin proposed a model to explain the origin of homochirality 
[17, 6]. His model can be presented in three different forms, as shown below.

These models do not produce SMSB. Let us modify these models to 
make them capable of producing SMSB. First, we make them open using a 
CSTR, but this is not enough for the production of  SMSB, as can be verified 
by checking the files Calvin-#-CSTR.py, where the symbol # represents one 
of the numbers 1, 2, or 3 that label the different versions of the Calvin model. 
Second, we observe that these three models have two pairs of enantiomers 
(L – A, D – A, and L – B, D – B), but they do not have an inhibition reaction 
(negative feedback) as the one in the Frank-type models. In some specific 
models, inhibition reactions are necessary to produce SMSB, as was proved 
in reference [7]. Accordingly, the three Calvin models were added with an 
inhibition reaction: 

It was observed that SMSB is still not possible according to SNA 
(see files Calvin-#-CSTR-Inhibition.py, second algorithm). However, 
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when a more specific analysis is made, using the fifth [46] and sixth [33] 
Listanalchem algorithms, it was found that SMSB exists in versions 2 and 
3 of the model (see files Calvin-2-CSTR-Inhibition.py and Calvin-3-CSTR-
Inhibition.py, fifth and sixth algorithms), but it does not appear in version 1, 
see file Calvin-1-CSTR-Inhibition.py. This fact means that the heuristic (the 
work with the minors of the current matrix VΩ used in the second algorithm-
SNA of Listanalchem to find the instability) is not 100 % effective, and 
some false negatives, like those presented before, are eventually obtained.

Nevertheless, as we have seen (and we will see with the following 
models), those cases are not common, making the SNA useful most of the 
time. Also, it is important to note, in this point, that the samples taken by 
the fifth and sixth Listanalchem algorithms need some minor adjustment to 
make the SMSB evident. Usually, it is enough to increase the perturbation 
of the initial enantiomeric excess or draw the bifurcation diagrams to see 
the range of the rate constants where the SMSB is possible. This work can 
be carried out using Chemkinlator [16]. These facts will not be discussed 
in detail because it is not within the scope of this work which is dedicated 
only to the SNA algorithm, but those interested can use Listanalchem and 
Chemkinlator to explore them. The critical fact here is that the additional 
work needed to find SMSB in these versions of the Calvin model 
demonstrated that in those models, it is not easy to find SMSB.

Finally, to end with the Calvin model, we have added limited 
enantioselectivity (LES) reactions [47]:

instead of the inhibition reaction. The result was no SMSB is possible. 
However, if those four LES reactions are not forced to have the same values 
as the autocatalytic rate constants, as must be the case, then SMSB becomes 
possible in Calvin-1-CSTR-LES.py and Calvin-2-CSTR-LES.py but not in 
Calvin-3-CSTR-LES.py. Some authors have used this fact to obtain SMSB 
[18], but there is no way to justify four different rate constants for those 
four reactions. Thus, in conclusion, the Calvin model as initially proposed 
is stable.

Iwamoto model, 2003

Iwamoto proposed a reaction model including Michaelis-Menten type 
catalytic reactions. Iwamoto argues that his model is different from Frank 
and Kondepudi-Nelson’s models [5]. He presented two versions of his 
proposal: perfect and imperfect. The latter classification is based on the 
stereoselectivity R1, R1a, R2, R2a, or stereospecificity R3, R3a, R4, R4a, 
as shown in Table 2.

Iwamoto assumes constant concentrations for P, ZL, ZD, YL, YD and Q. 
Under these conditions, the mechanisms are reduced to the two columns 
on the right of Table 2, labeled with the expression “Equivalent to”. We 
analysed this model using our tools (Listanalchem second algorithm - SNA).

Iwamoto perfect model (Iwamoto-Perfect.py)

The perfect version of the Iwamoto model is an open system due to the 
irreversible reactions R5, R6 and also to the reversibility of the reactions that 
have either constant (not explicit) reagents or constant products (reactions 
R0, R3, R4). These reactions, together with the autocatalytic reactions 
(positive feedback) R1, R2, and the negative feedback given by reactions 
R3, R4 (the consumption of the isomeric-autocatalytic species), make this 
model capable of producing SMSB. Notwithstanding, the region where the 
model is unstable is small, as Figure 2 shows.

Figure 2. The Bifurcation diagrams of the Iwamoto perfect model showing A) the 
small unstable region when the perturbation is small (ee of order ≈ 1 × 10-5 %), and B) 
when the perturbation is larger, ee ≈ 2 × 10-2 %. The time series in C) highlights the 
unbounded growth of the concentration of ED, and the time series in D) corresponds to 
the imperfect version. In C), the SMSB is evident, while in D) racemisation is evident, 
which means that no SMSB is produced in the imperfect model, although this second 
system is also unstable, due to the unlimited growth of the concentrations of EL and ED.
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In Figure 2 A, the initial difference between the concentrations of the 
two enantiomers, the enantiomeric excess (ee), is of order 1 × 10-5 %. If the 
initial difference between those concentrations increases to ee ≈ 2 × 10-2 
%, we can observe a larger instability region in the bifurcation diagrams, 
as shown in Figure 2 B. On the other hand, we have to observe that this 
model shows an unbounded growth of the concentration of the ED species, 
Figure 2 C.

Iwamoto imperfect model (Iwamoto-Imperfect.py)

If we add to the perfect model the imperfect stereoselectivity reactions 
R1a, R2a, and the imperfect stereospecificity reactions R3a, R4a, we get 
the imperfect model. When the tuples R1, R1a, R2, R2a, and R3, R3a, R4, 
R4a have the same rate constants, then the Listanalchem programme, SNA 
algorithm, finds an unstable region. However, the values sampled for the 
rate constants cannot produce SMSB, and the bifurcation diagrams show 

Table 2. The Iwamoto model. The perfect, imperfect, and equivalent mechanisms. The equivalent mechanisms have the constant species absent according to the requirements  
of Listanalchem.

no SMSB in the neighbourhood of those values. The detected instability 
is due to the unlimited growth of the concentrations of EL and ED, Figure 2 
D. Nevertheless, it is possible to obtain a model capable of SMSB by using 
the same trick used in the analysis of the three Calvin models: we allow 
different values for the rate constants of R1a, R2a with respect to values of 
the rate constants of R1, R2, and we do the same for the pairs R3a, R4a, and 
R3, R4. However, it is unclear why those rate constants could be different, 
given that the reagents are the same.

APED model (APED.py, 2004)

The model proposed in reference [18], and called APED model, is 
shown below: 

	 		 (54)
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  (55)

  (56)

	 (57)

According to the model’s authors, the rate constants of reactions 
(55) must be different p ≠ αp, as well the rate constants of reactions (56)  
h ≠ βh, and reactions (57) e ≠ γe. Under these circumstances the APED model 
produces SMSB (in Listanalchem, second algorithm – SNA, “instability-
heuristic” : “characteristic-polynomial” must be used instead of “instability-
heuristic” : “mineurs”). However, it is hard to justify those differences, as 
mentioned before in the analysis of Calvin and Iwamoto’s models, but as it 
was also mentioned, those differences are adequate to obtain SMSB as the 
APED model confirms. Moreover, the authors of the APED model seem to 
be conscious of this fact since they give those rate constants the same name 
times a factor.

The differences between those rate constants are so efficient in 
producing SMSB that even when the reactions (55), (56) turn reversible, 
the model still presents SMSB. However, it is not found using SNA alone, 
the algorithm presented here. That requires additional work that will not 
be discussed because it is not within the scope of this study, but it can be 
revised using the Listanalchem sixth algorithm [33] and Chemkinlator (see 
file APED-Reversible.py).

In conclusion, the APED model does not generate SMSB when the 
rate constants of the equivalent (dual)  reactions (55) dimerisation and (56) 
depolymerisation are equal (between them), α = β = 1.

Replicator model of Hochberg and Ribo 
(Replicator-HR.py, 2019)

Hochberg and Ribo [48] proposed the following network

  (58)

  (59)

	 (60)

	 (61)

	 (62)

		                	    		  (62)

		                	    		  (63)

A relevant characteristic of this model is its ability to produce SMSB 
when all the equivalent (dual) reactions have the same rate constants: k0  = 
k2  = k4  = k6, and k1  = k3  = k5  = k7. This important feature is not observed in 
previous models. Nevertheless, the trimolecular character of reactions (58) 
and (59) is problematic from the point of view of kinetics. On the other hand, 
we would like to observe that this model fulfils the previously mentioned 
requirements for producing SMSB: positive feedback (autocatalysis), 
negative feedback (the autocatalytic species in reactions (58) are not in 
reactions (59), and vice versa), and the open character represented by the 
irreversible pseudo-reactions (60) to (63).

Chaotic replicator model of Hochberg, Sánchez 
and Morán (Chaotic-Replicator-Hochberg-et-
al-2020.py, 2020)

The chaotic replicator [49] includes four enantiomeric pairs (i = 1, 2, 3, 4), 
autocatalysis, the same kind of negative feedback present in the previous 
model, irreversible reactions, and a CSTR (see below).

	            		  (64)

      	 (65)

			      			   (66)

		  (67)

This model is particular because, additional to SMSB, it exhibits chaotic 
behaviour. This chaotic behaviour occurs when one sets the values of the 
rate constants to pertain to a very particular range, which usually includes a 
small interval (0 to ≈ 0.06) for a couple of the rate constants (65); e.g. S + L2 + 
L3 →k32  2L2 + L3, S + D2 + D3 →k32   2D2 + D3. However, the probability of finding 
this small region using our heuristic based on random sampling is low, 
which is not a drawback because this algorithm was not designed to detect 
chaos but SMSB. This small region of the rate space was found using the 
bifurcation diagram option of the Chemkinlator software [16] and the rate 
constants proposed in reference [49].

Kondepudy-Mundy radiation activated model 
(Kondepudy-Mundy-2020.py, 2020)

Kondepudy and Mundy have presented a model, which can be considered 
an update of the old Kondepudi-Nelson model [50]. This new model solves 
the previously mentioned issues of the old model. Kondepudi and Mundy 
make the system reversible and open by way of the introduction of radiation, 
which is also supposed to trigger the chemical reactions (as presented below 
on the left side).

The proponents of this model also introduced some restrictions to 
obtain SMSB, namely: k4 = k6 × k8, k5 = k7 × k9, k10 = k12 × k14, and k11 = k13 × k15. 
Those equations make the model become equivalent to the network 
presented on the right side of the previous mechanism. We had to make 
explicit this equivalence because Listanalchem cannot handle those 
restrictions. Nevertheless, the remarkable fact is that our algorithm was 
able to detect SMSB in the updated KN model, which is a likely result, 
taking into account the external input of the radiation Π, as well as the 
presence of the autocatalytic and inhibition reactions of the well studied 
Kondepudy-Nelson model (on which this new model is based). Finally, we 
want to mention that there is an error in the description of the first reaction 
reported in reference [50], Table 1, because it says , and it must be 
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. It is important to mention that we detected this error thanks to our 
computer programme Listanalchem second algorithm-SNA, which allowed 
us to test the stability of these two options efficiently.

Blackmond chemical review (Blackmond-
Rev-2020.py, 2020)

Blackmond discusses, in her 2020 review, the modelling of the Soai 
reaction [40]. The following mechanism readily resumes her proposal.

	  	   		  (68)

	    	 (69)

	 (70)

This network exhibits some of the features that allow the emergence 
of homochirality: external input of the precursors (irreversible pseudo-
reactions) although not an explicit output, autocatalysis (RR ⇌ R + RR, 
SS ⇌ S + SS), and negative feedback R+S ⇌ SR, which produces the 
heterochiral inactive catalytic species SR. The specific scheme presented 
above was elaborated with the help of our SNA algorithm because the 
original scheme 8, presented by Blackmond in her review, was shown 
(using our algorithm) incapable of producing SMSB. We want to remark 
that this is one of the capabilities of our algorithm: it can lead us in the 
design (and improvement) of network models of biological homochirality.

The Soai reaction mechanism proposed by Trapp 
and co-workers (Soai-Trapp-et-al.py, 2020)

Trapp and co-workers presented a reaction mechanism that is supposed to 
model the Soai reaction [19]. This mechanism was constructed from a large 
set of experimental data. This model includes 26 species and 34 reactions 
(counting forward and reverse), too large to be shown here, but available 
in the reference as well as in the file “Soai-Trapp-et-al.py” of Listanalchem 
folder “models”. We have to say that our SNA algorithm classified the 
network as incapable of SMSB. However, if one uses Chemkinlator on the 
set of parameter values provided in [19], it will observe SMSB. This fact can 
be seen as a fault of our algorithm, which should rely on the approximate 
nature of the algorithms used to solve the nonlinear inequalities in the 
analysis. However, we would like to stress the capability of our algorithm 
in handling such a huge mechanism. Also, as was shown when the Calvin 
models were discussed, additional analysis can be carried out using the 
Listanalchem fifth algorithm. That one allows founding SMSB in this 
enormous mechanism. However, as before with the Calvin model, no more 
discussion will be presented here because the scope of this work is only the 
SNA algorithm.

Conclusions 

The mathematical tools provided by Clarke’s Stoichiometric network 
analysis were implemented as a computer programme. This implementation 
allows us to focus the stability analysis on the matrixes of extreme currents, 
whose entries are linear polynomials and not the nonlinear polynomials that 
occur as entries of the Jacobian matrixes. This fact allows us to efficiently 

search the instability sources of the coupled systems of differential equations 
that govern the chemical mechanism proposed to explain the chemistry 
behind the emergence of homochirality.

The algorithm and the computer programme presented here were used 
to analyse ten different models of biological homochirality that appear in 
the related literature and 18 variations of those models for a total of 28 
models. This was possible thanks to the efficiency of our algorithm. 

This work allows us to detect some of the sources of SMSB, namely: 
autocatalysis (positive feedback), negative feedback (usually presented as 
inhibition reactions that involve two enantiomers), and openness (similar to 
CSTR, but also representable by irreversible reactions which are usually not 
well supported). Furthermore, we observed that these sources of instability 
are generally present in the models proposed in the literature, and we 
studied the consequences of adjusting some of them to the basic principles 
of thermodynamics and kinetics.
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