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Se puede ver que p es una proyección en el álgebra C(G/K,L(H̃)). Mas aún, esta
álgebra actúa como endomorfismo sobre el A-módulo libre C(G/K, H̃), evidente-
mente de manera puntual, y se puede demostrar que p es la proyección sobre el
recorrido de Φ (ver una demostración en [3, p. 25]). Por lo tanto, el recorrido de
Φ, y así Ξπ, es proyectivo. ����

Hagamos hincapié en que el fibrado vectorial correspondiente a Ξπ puede ser visto
como la asignación de cada punto ẋ de G/K al recorrido del subespacio de p(x).
Nótese que para una representación (π,H) dada, puede haber muchas elecciones
para la representación (π̃, H̃), y como consecuencia, muchas elecciones para la
proyección p.

En el caso de que G sea un grupo de Lie, se sabe que las representaciones de
dimensión finita (como los homomorfismos entre grupos de Lie) son suaves; conse-
cuentemente, la proyección p de la demostración anterior es suave, y esto muestra
que el subespacio Ξ∞

π de funciones suaves de Ξπ es un módulo proyectivo sobre
C∞(G/K) [4, p. 4].

3. Conclusiones

1. Para G,K y (π,H), el módulo inducido Ξπ es un A-módulo proyectivo.

2. Si E es un K-módulo y V un G-módulo sobre F , existe un isomorfismo
canónico HomG(V, i

G
HE) ∼= HomK(resGKV,E), donde iGHE es el espacio de

funciones continuas f : G −→ E, tales que f(xs) = s−1f(x) para s ∈ K,x ∈
G y resGKV es el conjunto de las restricciones de V a K.

3. Para un grupo de Lie G, el subespacio Ξ∞
π es un módulo proyectivo sobre

C∞(G/K).
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Abstract. A study of timelike and null equatorial geodesics in the Bonnor-
Sackfield relativistic thin disk is presented. The motion of test particles in
the equatorial plane is analyzed, both for the newtonian thin disk model
as for the corresponding relativistic disk. The nature of the possible orbits
is studied by means of a qualitative analysis of the effective potential
and by numerically solving the motion equation for radial and non-radial
equatorial trajectories. The existence of stable, unstable and marginally
stable circular orbits is analyzed, both for the newtonian and relativistic
case. Examples of the numerical results, obtained with some simple values
of the parameters, are presented.
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Geodésicas tipo tiempo y nulas en el plano ecuatorial

del disco relativista de Bonnor-Sackfield

Resumen. En este trabajo se presenta un estudio de las geodésicas temporales
y nulas en el disco delgado relativista y newtoniano de Bonnor-Sackfield. Se
analiza el movimiento de las partículas de prueba en el plano ecuatorial,
tanto para el modelo newtoniano del disco delgado como para el disco rela-
tivista correspondiente. La naturaleza de las órbitas posibles se estudia por
medio de un análisis cualitativo del potencial efectivo, y numéricamente me-
diante la solución de la ecuación de movimiento de las trayectorias ecuatorial
radial y no radial: Se analiza la existencia de órbitas estables, circulares in-
estables y estables marginalmente, tanto para el caso newtoniano, como el
relativista. Se presentan ejemplos de los resultados numéricos obtenidos con
algunos valores de los parámetros simples.
Palabras claves: Relatividad general, soluciones exactas, ecuaciones de
movimiento.
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1. Introduction

Stationary or static axially symmetric exact solutions of Einstein equations corre-
sponding to relativistic thin disks are of great astrophysical relevance since they
can be used as models of certain stars, galaxies and accretion disks. These were
first studied by Bonnor and Sackfield [5], obtaining pressureless static disks, and
then by Morgan and Morgan, obtaining static disks with and without radial pres-
sure [18, 19]. Several classes of exact solutions of the Einstein field equations
corresponding to static thin disks with or without radial pressure have been ob-
tained by different authors [16, 17, 15, 11, 12, 3, 4, 13, 14, 9, 7]. Also stationary
thin disks have been obtained [2, 8], with or without radial pressure and heat
flow.

Closely related with the above study is the analysis of the motion of test particles
in the gravitational field generated by such disklike distributions of matter. In
particular, the study of orbits in the equatorial plane is of clear astrophysical
relevance, due to its relation with the dynamics of intergalactic stellar motion or
the flow of particles in accretion disks around black holes. However, in spite of
this, literature about this subject is rather scarce [23, 22, 21, 6]. Now, between the
known relativistic static thin disks, the family of Bonnor-Sackfield [5] and Morgan-
Morgan [18] solutions deserves special attention as they are of finite extension,
and so they can be considered as appropriated relativistic flat galaxy models. On
the other hand, the Morgan-Morgan disk with n = 0 corresponds to the Bonnor-
Sackfield solution, which describes a finite relativistic thin disk whose surface
mass density is singular at the rim [5, 7].

In agreement with the above considerations, we began with this paper a study of
the equatorial geodesics in the Morgan-Morgan disks. We consider in this paper
the n = 0 case, the Bonnor-Sackfield disk, as this is the simplest member of the
family and also because this member of the family have a behavior qualitatively
different from the others. The paper is organized as follows. First, in section 2,
we present the Bonnor-Sackfield solution and the surface densities of mass and
energy of the corresponding newtonian and relativistic disk models. Then, in
section 3, we analyze the motion of test particles in the equatorial plane of the
newtonian thin disk model and, in section 4, the motion of test particles in the
corresponding relativistic thin disk model. Finally, in section 5, we summary our
main results.
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2. The Bonnor-Sackfield solution

The metric for a static axially symmetric spacetime can be written as the Weyl
line element [25, 26, 10]

ds2 = −e2ψdt2 + e−2ψ[ρ2dϕ2 + e2γ(dρ2 + dz2)], (1)

where γ and ψ are functions of ρ and z only. The Einstein vacuum equations for
this metric are

ψ, ρρ +
1

ρ
ψ, ρ + ψ, zz = 0, (2)

γ, ρ = ρ
(
ψ2
, ρ − ψ2

, z

)
, (3)

γ, z = 2ρψ, ρψ, z, (4)

the well known Weyl equations. Note that (2) is the Laplace equation in flat
three-dimensional space, and so ψ can be taken as a solution of Laplace equation
for an appropriated newtonian source with axial symmetry. Once a solution ψ is
known, γ is easily computed from (3) and (4).

We introduce now the oblate spheroidal coordinates, whose symmetry adapts in
a natural way to a finite thin disk. This coordinates are related to the usual
cylindrical coordinates by the relation [20]

ρ2 = (1 + u2)(1− v2), (5)

z = uv, (6)

where 0 ≤ u < ∞ and −1 ≤ v ≤ 1. The disk is located at z = 0, 0 ≤ ρ ≤ 1, so
that u = 0 and 0 ≤ v2 < 1. As we can see, on crossing the disk v changes sign
but does not change in absolute value. This singular behavior of the coordinate
v implies that an even function of v is a continuous function everywhere but has
a discontinuous normal derivative at the disk. Then, the Einstein equations yield
an energy-momentum tensor Tαβ = Sαβ δ(z) that leads to the interpretation of
this solution as a thin disk (see, for instance, [9, 7]). Although the radius of
the disk has been taken as one, a suitable re-scaling of ρ can be made in order
to obtain expressions for disks with arbitrary radius: we only need to make the
transformation ρ → aρ, where a is the radius of the disk.

A simple solution of the Weyl equations (2)-(4), obtained independently by Zipoy
[27] and Vorhees [24] and interpreted by Bonnor and Sackfield [5] as the gravita-

Vol. 29, No. 1, 2011]



60 G.A. González & F. López-Suspes

1. Introduction

Stationary or static axially symmetric exact solutions of Einstein equations corre-
sponding to relativistic thin disks are of great astrophysical relevance since they
can be used as models of certain stars, galaxies and accretion disks. These were
first studied by Bonnor and Sackfield [5], obtaining pressureless static disks, and
then by Morgan and Morgan, obtaining static disks with and without radial pres-
sure [18, 19]. Several classes of exact solutions of the Einstein field equations
corresponding to static thin disks with or without radial pressure have been ob-
tained by different authors [16, 17, 15, 11, 12, 3, 4, 13, 14, 9, 7]. Also stationary
thin disks have been obtained [2, 8], with or without radial pressure and heat
flow.

Closely related with the above study is the analysis of the motion of test particles
in the gravitational field generated by such disklike distributions of matter. In
particular, the study of orbits in the equatorial plane is of clear astrophysical
relevance, due to its relation with the dynamics of intergalactic stellar motion or
the flow of particles in accretion disks around black holes. However, in spite of
this, literature about this subject is rather scarce [23, 22, 21, 6]. Now, between the
known relativistic static thin disks, the family of Bonnor-Sackfield [5] and Morgan-
Morgan [18] solutions deserves special attention as they are of finite extension,
and so they can be considered as appropriated relativistic flat galaxy models. On
the other hand, the Morgan-Morgan disk with n = 0 corresponds to the Bonnor-
Sackfield solution, which describes a finite relativistic thin disk whose surface
mass density is singular at the rim [5, 7].

In agreement with the above considerations, we began with this paper a study of
the equatorial geodesics in the Morgan-Morgan disks. We consider in this paper
the n = 0 case, the Bonnor-Sackfield disk, as this is the simplest member of the
family and also because this member of the family have a behavior qualitatively
different from the others. The paper is organized as follows. First, in section 2,
we present the Bonnor-Sackfield solution and the surface densities of mass and
energy of the corresponding newtonian and relativistic disk models. Then, in
section 3, we analyze the motion of test particles in the equatorial plane of the
newtonian thin disk model and, in section 4, the motion of test particles in the
corresponding relativistic thin disk model. Finally, in section 5, we summary our
main results.

[Revista Integración

Timelike and null equatorial geodesics in the Bonnor-Sackfield relativistic disk 61

2. The Bonnor-Sackfield solution

The metric for a static axially symmetric spacetime can be written as the Weyl
line element [25, 26, 10]

ds2 = −e2ψdt2 + e−2ψ[ρ2dϕ2 + e2γ(dρ2 + dz2)], (1)

where γ and ψ are functions of ρ and z only. The Einstein vacuum equations for
this metric are

ψ, ρρ +
1

ρ
ψ, ρ + ψ, zz = 0, (2)

γ, ρ = ρ
(
ψ2
, ρ − ψ2

, z

)
, (3)

γ, z = 2ρψ, ρψ, z, (4)

the well known Weyl equations. Note that (2) is the Laplace equation in flat
three-dimensional space, and so ψ can be taken as a solution of Laplace equation
for an appropriated newtonian source with axial symmetry. Once a solution ψ is
known, γ is easily computed from (3) and (4).

We introduce now the oblate spheroidal coordinates, whose symmetry adapts in
a natural way to a finite thin disk. This coordinates are related to the usual
cylindrical coordinates by the relation [20]

ρ2 = (1 + u2)(1− v2), (5)

z = uv, (6)

where 0 ≤ u < ∞ and −1 ≤ v ≤ 1. The disk is located at z = 0, 0 ≤ ρ ≤ 1, so
that u = 0 and 0 ≤ v2 < 1. As we can see, on crossing the disk v changes sign
but does not change in absolute value. This singular behavior of the coordinate
v implies that an even function of v is a continuous function everywhere but has
a discontinuous normal derivative at the disk. Then, the Einstein equations yield
an energy-momentum tensor Tαβ = Sαβ δ(z) that leads to the interpretation of
this solution as a thin disk (see, for instance, [9, 7]). Although the radius of
the disk has been taken as one, a suitable re-scaling of ρ can be made in order
to obtain expressions for disks with arbitrary radius: we only need to make the
transformation ρ → aρ, where a is the radius of the disk.

A simple solution of the Weyl equations (2)-(4), obtained independently by Zipoy
[27] and Vorhees [24] and interpreted by Bonnor and Sackfield [5] as the gravita-

Vol. 29, No. 1, 2011]



62 G.A. González & F. López-Suspes

tional field of a pressureless static thin disk, is given by

ψ = −m cot−1 u, (7)

γ = −m2

2
ln

[
u2 + 1

u2 + v2

]
, (8)

where ψ is the newtonian gravitational potential of a thin disk with surface mass
density given by [1]

σN =
m

2π
√
1− r2

, (9)

whereas that ψ and γ leads to a relativistic dust disk with surface energy density
given by [5, 7]

σ =
4me−mπ/2

(1− r2)(m2+1)/2
. (10)

Here m is the mass of the disk and we are taking units where G = 1. From (9)
and (10) we can see that the mass and energy densities are singular at the rim
of the disk. However, as the energy density is positive everywhere, the energy-
momentum tensor of the disk agrees with all the energy conditions.

Now, from the four-acceleration of a test particle, we can see that

U̇µ =
1

2
gαβ,µU

αUβ, (11)

where Uµ is the four-velocity of the particle and U̇µ = dUµ/dτ . Accordingly, for
any static axially symmetric spacetime the only nonzero components of U̇µ are U̇ρ

and U̇z. Furthermore, the reflectional symmetry of the thin disk solutions with
respect to the equatorial plane, the z = 0 plane, implies that gµν,z|0 = 0 and thus
a particle that initially moves at the equatorial plane, it will remains in this plane.
In agreement with this, we will consider only motion restricted to the equatorial
plane.

3. The Newtonian motion

We now analyze the motion of test particles in the equatorial plane of the newto-
nian thin disk with gravitational potential given by (7). In order to do this, we
began with the motion equation

d2x

d2t
= −∇ψ, (12)

where x = (ρ, z). New, as is well known, there are two motion integrals, the
specific angular momentum about the z-axis, ℓ, and the specific energy of the
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particle, E. This conserved quantities are related, in the plane z = 0, by the
expression

E =
1

2
ρ̇2 +

ℓ2

2ρ2
+ ψ, (13)

where ψ is gravitational potential given by (7).

The orbit of the particle is found by solving the equations

ρ̈− ρϕ̇2 = −∂ψ

∂ρ
, (14)

ϕ̇ =
ℓ

ρ2
, (15)

ρ̇2 = 2(E − V ), (16)

where E ≥ V and

V =
ℓ2

2ρ2
+ ψ, (17)

is the effective potential, which can be written as

V =
ℓ2

2ρ2
−m

π

2
, (18)

for 0 ≤ ρ ≤ 1, and as

V =
ℓ2

2ρ2
−m cot−1

√
ρ2 − 1, (19)

for ρ ≥ 1.

We begin by considering the above potential for radial orbits, when ℓ = 0. So, as
we can see form (18) and (19), the effective potential has a negative constant
value at the interior of the disk and then monotonically increases to zero as
ρ → ∞. Accordingly, for −mπ/2 < E < 0, the particle moves through the
disk by oscillating into the circle of radius ρ = csc(−E/m). On the other hand,
for E ≥ 0, the particle moves along unbounded trajectories that go through the
disk.

We now consider the behavior of the effective potential for non-radial orbits,
when ℓ �= 0. As we can see from (18) and (19), at the interior of the disk the
potential decreases as 1/ρ2, whereas at the exterior of the disk the behavior of
the potential depends on the value of the specific angular momentum ℓ. So, in
order to determine the nature of the possible non-radial orbits, we did a graphical
analysis of the above potential for many values of the parameters. As an example,
in Figure 1 we show the effective potential for m = 1 and three different values of ℓ
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that show the three different behaviors of the effective potential V . For ℓ <
√
2m,

after the edge of the disk the potential increases monotonically to zero as ρ → ∞.
For ℓ >

√
2m, after the edge of the disk the potential has two critical points, a

maximum and a minimum, and after that the potential goes to zero as ρ → ∞.
Finally, when ℓ =

√
2m, the two critical points collapse to only one and then the

potential goes to zero as ρ → ∞.

As we can see from the above analysis, exists a stable circular orbit at the edge
of the disk, whereas at the exterior of the disk may exist two, one or no circular
orbit by depending of the value of ℓ. We can find the radius of the external
circular orbits by equalling to zero the first derivative of the effective potential
with respect to ρ. So, as the effective potential at the exterior of the source can
be written as (19), the external circular orbits has radius given by

ρ2± =
ℓ4

2m2
± ℓ2

2m2

√
ℓ4 − 4m2. (20)

Accordingly, when ℓ >
√
2m we have two radius, one corresponding to the stable

circular orbit, ρ+, and the other to the unstable circular orbit, ρ−. On the other
hand, when ℓ =

√
2m we have only one radius, corresponding to the marginally

stable orbit, and when ℓ <
√
2m we have not any circular orbit.

1 1.5 2 2.5 3 3.5 4
Ρ

-0.3

-0.25

-0.2

-0.15

-0.1

V

� �
��������2 m

E��0.18

Figure 1. Newtonian effective potential V as a function of ρ for m = 1 and ℓ = 1.6, ℓ = 1.4142
and ℓ = 1, from top to bottom.

We can also find the specific angular momentum of the particle in the external
circular orbits by resolving for ℓ in the equation V ′(ρ) = 0. Thus we obtain

ℓ2 =
ρ2m√
ρ2 − 1

, (21)

where we see that the specific angular momentum is always positive. Finally, we
can use the above expression in order to find the radius of the marginally stable
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orbit and obtain ρ =
√
2, by using the value ℓ =

√
2m in the equation (21). In

Figure 1, the marginally stable orbit appears at the dotted curve.

Also, from the above considerations we can see that, when ℓ >
√
2m and for some

values of the specific energy E, will exist two potential wells in such a way that
bounded non-circular orbits are possible. In Figure 1 this situation is depicted
for a specific energy E = −0.18, so we have two potential wells at the regions
0.959 ≤ ρ ≤ 1.031 and 1.3 ≤ ρ ≤ 6.79. Now, in order to have some example of
the possible orbits, we must to solve the orbit equation. At the interior of the
disk the orbit equation in polar coordinates is given by

dρ

dϕ
= ± ρ

√
α2ρ2 − 1, (22)

where α2 = 2(E − ψ)/ℓ2. The above equation can be explicitely integrated and
its solution can be written, in cartesian coordinates (x, y), as

±α(cosϕ0x− sinϕ0y) = 1, (23)

where ϕ0 corresponds to the initial condition of the differential equation (22). On
the other hand, at the exterior of the disk the motion equations must be solved
numerically. In Figures 2 and 3 we show the bounded orbits corresponding to

x
r

y

R

Figure 2. Example of bounded orbits for arbitrary initial conditions compatible with the
first potential well in Figure 1. The motion of the particle is restricted to the region between
ρ = r = α−1 and ρ = R. The dotted curve represents ρ = 1, the edge of the disk.

the two potential wells. In Figure 2 we show a portion of the orbit for the first
potential well with an arbitrary initial condition. Then, in Figure 3 we present
a portion of the orbit for the potential well at the region 1.64 ≤ ρ ≤ 3.7, with
ℓ = 1.6 and E = −0.18.
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values of the specific energy E, will exist two potential wells in such a way that
bounded non-circular orbits are possible. In Figure 1 this situation is depicted
for a specific energy E = −0.18, so we have two potential wells at the regions
0.959 ≤ ρ ≤ 1.031 and 1.3 ≤ ρ ≤ 6.79. Now, in order to have some example of
the possible orbits, we must to solve the orbit equation. At the interior of the
disk the orbit equation in polar coordinates is given by

dρ

dϕ
= ± ρ

√
α2ρ2 − 1, (22)

where α2 = 2(E − ψ)/ℓ2. The above equation can be explicitely integrated and
its solution can be written, in cartesian coordinates (x, y), as

±α(cosϕ0x− sinϕ0y) = 1, (23)

where ϕ0 corresponds to the initial condition of the differential equation (22). On
the other hand, at the exterior of the disk the motion equations must be solved
numerically. In Figures 2 and 3 we show the bounded orbits corresponding to

x
r

y

R

Figure 2. Example of bounded orbits for arbitrary initial conditions compatible with the
first potential well in Figure 1. The motion of the particle is restricted to the region between
ρ = r = α−1 and ρ = R. The dotted curve represents ρ = 1, the edge of the disk.

the two potential wells. In Figure 2 we show a portion of the orbit for the first
potential well with an arbitrary initial condition. Then, in Figure 3 we present
a portion of the orbit for the potential well at the region 1.64 ≤ ρ ≤ 3.7, with
ℓ = 1.6 and E = −0.18.
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Figure 3. Example of bounded orbits for the second potential well in Figure 1 with m = 1,
ℓ = 1.6 and E = −0.18. The orbit is confined to the region between ρ ≈ 1.64 and ρ ≈ 3.7.

4. The Relativistic motion

We now analyze the motion of test particles in the equatorial plane of the relativis-
tic thin disk defined by (7) and (8). In order to do this, we define the Lagrangian
L through the relation

2L = −e2ψ ṫ2 + e−2ψ[ρ2ϕ̇2 + e2γ(ρ̇2 + ż2)], (24)

where ẋα are the derivatives with respect to the affine parameter τ , so that we
have two conserved quantities,

E = e2ψ ṫ, (25)

ℓ = e−2ψρ2ϕ̇, (26)

corresponding, respectively, to the specific energy and specific azimuthal angular
momentum of the particle with respect to a rest frame at infinity. Now, by
considering motion at the equatorial plane, the differential equation for the radial
coordinate ρ can be written as

ρ̇2 = e−2γ

[
E2 + ǫ e2ψ − ℓ2e4ψ

ρ2

]
, (27)

where ǫ = 2L, and thus ǫ = −1 for timelike geodesics and ǫ = 0 for null geodesics.

In order to do a qualitative analysis of the behavior of the geodesics, the

differential equation for the radial coordinate can be cast as
ρ̇2

2
+ V (ρ) = E ,

where the total effective energy E has only the value E = 0 and the effective
potential V (ρ) is given by

V (ρ) =
e−2γ

2

[
ℓ2e4ψ

ρ2
− E2 − ǫe2ψ

]
, (28)
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so that the motion is only possible when V (ρ) < 0.

We consider, in first instance, the motion of radial geodesics, when ℓ = 0. The
effective potential can be written as

V (ρ) = −
[

1

1− ρ2

]m2 [
ǫe−mπ + E2

2

]
, (29)

for 0 ≤ ρ < 1, and

V (ρ) = −
[

ρ2

ρ2 − 1

]m2
[
ǫe−2m cot−1

√
ρ2−1 + E2

2

]
, (30)

for ρ > 1. As we can see from the above expressions, for radial null geodesics
the potential decreases monotonically from a finite negative value at the center
of the disk, has a negative singularity at the rim of the disk, and then increases
monotonically from the singularity and goes asymptotically to a finite negative
value at infinity. Accordingly, as the total effective energy is zero, we can conclude
that the only possible kind of radial null geodesics are unbounded trajectories that
go through the disk.

On the other hand, for radial timelike geodesics, the potential will be always
negative only if E2 ≥ 1 and, in this case, the behavior of the potential is like for
the null geodesics. However, if e−mπ < E2 < 1, after the negative singularity at
the rim of the disk the potential increases monotonically and goes asymptotically
to a finite positive value at infinity. Accordingly, the particle moves through the
disk by oscillating into the circle of radius ρ2 = 1 − cot(2m lnE2). Finally, if
E2 ≤ e−mπ, the potential will be everywhere positive and thus the motion is not
possible.

Now we consider the motion of non-radial geodesics in such a way that, as ℓ �= 0,
the effective potential is given by

V (ρ) =

[
1

1− ρ2

]m2 [
ℓ2e−2mπ

2ρ2
− ǫe−mπ + E2

2

]
, (31)

for 0 ≤ ρ < 1, and

V (ρ) =

[
ρ2

ρ2 − 1

]m2 [
ℓ2

2ρ2
e−4m cot−1

√
ρ2−1 − ǫ

2
e−2m cot−1

√
ρ2−1 − E2

2

]
, (32)

for ρ > 1. As we can see, as much for timelike and null geodesics, the potential
goes to infinity as ρ goes to zero and then decreases monotonically until a negative
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4. The Relativistic motion

We now analyze the motion of test particles in the equatorial plane of the relativis-
tic thin disk defined by (7) and (8). In order to do this, we define the Lagrangian
L through the relation

2L = −e2ψ ṫ2 + e−2ψ[ρ2ϕ̇2 + e2γ(ρ̇2 + ż2)], (24)

where ẋα are the derivatives with respect to the affine parameter τ , so that we
have two conserved quantities,

E = e2ψ ṫ, (25)

ℓ = e−2ψρ2ϕ̇, (26)

corresponding, respectively, to the specific energy and specific azimuthal angular
momentum of the particle with respect to a rest frame at infinity. Now, by
considering motion at the equatorial plane, the differential equation for the radial
coordinate ρ can be written as

ρ̇2 = e−2γ

[
E2 + ǫ e2ψ − ℓ2e4ψ

ρ2

]
, (27)

where ǫ = 2L, and thus ǫ = −1 for timelike geodesics and ǫ = 0 for null geodesics.

In order to do a qualitative analysis of the behavior of the geodesics, the

differential equation for the radial coordinate can be cast as
ρ̇2

2
+ V (ρ) = E ,

where the total effective energy E has only the value E = 0 and the effective
potential V (ρ) is given by
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so that the motion is only possible when V (ρ) < 0.

We consider, in first instance, the motion of radial geodesics, when ℓ = 0. The
effective potential can be written as

V (ρ) = −
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1

1− ρ2

]m2 [
ǫe−mπ + E2

2

]
, (29)

for 0 ≤ ρ < 1, and

V (ρ) = −
[

ρ2

ρ2 − 1

]m2
[
ǫe−2m cot−1

√
ρ2−1 + E2

2

]
, (30)

for ρ > 1. As we can see from the above expressions, for radial null geodesics
the potential decreases monotonically from a finite negative value at the center
of the disk, has a negative singularity at the rim of the disk, and then increases
monotonically from the singularity and goes asymptotically to a finite negative
value at infinity. Accordingly, as the total effective energy is zero, we can conclude
that the only possible kind of radial null geodesics are unbounded trajectories that
go through the disk.

On the other hand, for radial timelike geodesics, the potential will be always
negative only if E2 ≥ 1 and, in this case, the behavior of the potential is like for
the null geodesics. However, if e−mπ < E2 < 1, after the negative singularity at
the rim of the disk the potential increases monotonically and goes asymptotically
to a finite positive value at infinity. Accordingly, the particle moves through the
disk by oscillating into the circle of radius ρ2 = 1 − cot(2m lnE2). Finally, if
E2 ≤ e−mπ, the potential will be everywhere positive and thus the motion is not
possible.

Now we consider the motion of non-radial geodesics in such a way that, as ℓ �= 0,
the effective potential is given by

V (ρ) =

[
1

1− ρ2

]m2 [
ℓ2e−2mπ

2ρ2
− ǫe−mπ + E2

2

]
, (31)

for 0 ≤ ρ < 1, and

V (ρ) =

[
ρ2

ρ2 − 1

]m2 [
ℓ2

2ρ2
e−4m cot−1

√
ρ2−1 − ǫ

2
e−2m cot−1

√
ρ2−1 − E2

2

]
, (32)

for ρ > 1. As we can see, as much for timelike and null geodesics, the potential
goes to infinity as ρ goes to zero and then decreases monotonically until a negative
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singularity at the rim of the disk. Now, the condition that V (ρ) < 0 implies that
the motion is only possible for ρ > ρmin, where

ρ2min =
ℓ2e−2mπ

E2 + ǫe−mπ
, (33)

and then we can choose the values of the constants in such a way that
0 < ρmin < 1.
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Figure 4. The effective potential V as a function of ρ for non-radial null geodesics with m =
√
2,

E = 5 and ℓ2 = 1.87 × 10−3.

On the other hand, after the rim the behavior of the potential is different for
timelike or null geodesics. For null geodesics the potential after the rim increases
monotonically from the singularity and goes asymptotically to a finite negative
value at infinity. An example of the found behavior is depicted in Figure 4, where
we plot the effective potential as a function of ρ for non-radial null geodesics with
m =

√
2, E = 5 and ℓ2 = 1.87×10−3. In concordance with the above behavior, we

conclude that the non-radial null geodesics are unbounded orbits. The particles
come from infinity until they reach the turning point, at ρ = ρmin, and then
return to infinity.

For timelike geodesics, on the other hand, after the rim of the disk the behavior
of the potential depends on the value of the specific angular momentum. So, in
order to see the possible kinds of behavior, we did a graphical analysis of the
potential for many values of the parameters. As an example, we show in Figure 5
the effective potencial for non-radial timelike geodesics with m = 1 and E = 1. As
we can see, there are three kinds of behavior. For some values of ℓ the potential
behaves like for the null geodesics, as we can see at the curve labeled (b) in Figure
5, and so the possible orbits are similar to the non-radial null geodesics.

For some other values of ℓ the potential increases from the singularity at the rim
until a local positive maximum and then decreases to a finite negative value as ρ
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Figure 5. The effective potential V as a function of ρ for non-radial timelike geodesics with
m = 1 and E = 1. In (a) ℓ ≈ 6.52, in (b) ℓ = 2, and in (c) ℓ = 12 .

goes to infinity, as is shown at the curve labeled (c) in Figure 5. So, as the total
effective energy is zero, we have two allowed regions: a well of potential around
the rim of the disk, where we have bounded orbits, and an external region, where
we have unbounded trajectories similar to the non-radial null geodesics. Finally,
there are some value of ℓ for which the local maximum of the potential is equal
to zero, as happen at the curve labeled (a) in Figure 5, in which case we have
an unstable circular orbit. We can find the values of the specific energy, E, and
the specific angular momentum, ℓ, for the unstable circular orbit by solving the
system of equations V (ρ) = 0 and V ′(ρ) = 0, and thus we obtain

E2 =
[
√

ρ2 − 1−m]e−2m cot−1
√

ρ2−1

2m−
√

ρ2 − 1
, (34)

ℓ2 =
mρ2e2m cot−1

√
ρ2−1

2m−
√

ρ2 − 1
, (35)

where 1 +m2 ≤ ρ2 ≤ 4m2 + 1.

Now, in order to have some examples of the possible non-radial geodesics, we must
to solve the orbit equation. The differential equation of the orbit can be written
as

dϕ = ±ρmin

ρ

[
(1− ρ2)m

2

ρ2 − ρ2min

] 1

2

dρ, (36)

for 0 ≤ ρ < 1, and as

dϕ = ± ℓ

ρ2

[
(ρ2 − 1)m

2

(E2 + ǫe2ψ) e−4ψρ2 − ℓ2

] 1

2

dρ, (37)
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On the other hand, after the rim the behavior of the potential is different for
timelike or null geodesics. For null geodesics the potential after the rim increases
monotonically from the singularity and goes asymptotically to a finite negative
value at infinity. An example of the found behavior is depicted in Figure 4, where
we plot the effective potential as a function of ρ for non-radial null geodesics with
m =

√
2, E = 5 and ℓ2 = 1.87×10−3. In concordance with the above behavior, we

conclude that the non-radial null geodesics are unbounded orbits. The particles
come from infinity until they reach the turning point, at ρ = ρmin, and then
return to infinity.

For timelike geodesics, on the other hand, after the rim of the disk the behavior
of the potential depends on the value of the specific angular momentum. So, in
order to see the possible kinds of behavior, we did a graphical analysis of the
potential for many values of the parameters. As an example, we show in Figure 5
the effective potencial for non-radial timelike geodesics with m = 1 and E = 1. As
we can see, there are three kinds of behavior. For some values of ℓ the potential
behaves like for the null geodesics, as we can see at the curve labeled (b) in Figure
5, and so the possible orbits are similar to the non-radial null geodesics.

For some other values of ℓ the potential increases from the singularity at the rim
until a local positive maximum and then decreases to a finite negative value as ρ
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goes to infinity, as is shown at the curve labeled (c) in Figure 5. So, as the total
effective energy is zero, we have two allowed regions: a well of potential around
the rim of the disk, where we have bounded orbits, and an external region, where
we have unbounded trajectories similar to the non-radial null geodesics. Finally,
there are some value of ℓ for which the local maximum of the potential is equal
to zero, as happen at the curve labeled (a) in Figure 5, in which case we have
an unstable circular orbit. We can find the values of the specific energy, E, and
the specific angular momentum, ℓ, for the unstable circular orbit by solving the
system of equations V (ρ) = 0 and V ′(ρ) = 0, and thus we obtain

E2 =
[
√

ρ2 − 1−m]e−2m cot−1
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2m−
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ρ2 − 1
, (34)

ℓ2 =
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where 1 +m2 ≤ ρ2 ≤ 4m2 + 1.

Now, in order to have some examples of the possible non-radial geodesics, we must
to solve the orbit equation. The differential equation of the orbit can be written
as

dϕ = ±ρmin

ρ

[
(1− ρ2)m

2

ρ2 − ρ2min

] 1

2

dρ, (36)

for 0 ≤ ρ < 1, and as
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] 1

2

dρ, (37)

Vol. 29, No. 1, 2011]



70 G.A. González & F. López-Suspes

 3

 2

 1

 0

 1

 2

 3

 4  3  2  1  0  1  2  3  4

y

x

 3

 2

 1

 0

 1

 2

 3

 4  3  2  1  0  1  2  3  4

y

x

Figure 6. Example of orbits for non-radial null geodesics with m =
√
3 in cartesian coordinates,

(x, y). For the orbit with ρmin = 0.1 we take E = 10, whereas for the orbits with ρmin = 0.2,
0.4, 0.6 and 0.8 we take E = 5.

for ρ > 1, where ψ = −m cot−1
√

ρ2 − 1. So, when we numerically solve the
above equations for the non-radial timelike geodesics with values of E and ℓ

similar to the used in the curve labeled (c) in Figure 5, and with initial conditions
corresponding to the well of potential around the rim of the disk, we find orbits
that resemble to the presented in the Newtonian case and illustrated at Figure 2.

As we can see from the behavior of the potential, in any other case different from
the above, the non-radial geodesics are unbounded orbits with similar behavior
for the null case and for the timelike case. So, in order to have an example of
the unbounded orbits, we numerically solve the orbit equation for non-radial null
geodesics with the initial condition ϕ(ρmin) = 0. In Figure 6 we show some
example of orbits for non-radial null geodesics with m =

√
3. For the orbit with

ρmin = 0.1 we take E = 10, whereas for the orbits with ρmin = 0.2, 0.4, 0.6 and
0.8 we take E = 5. For many other values of m, E and ρmin, the plots of the
orbits present a similar behavior, as much for the case of null geodesics as for the
case of time-like geodesics.

5. Concluding remarks

We presented a study of timelike and null equatorial geodesics in the Bonnor-
Sackfield relativistic thin disk, the first member of the Morgan-Morgan family
of thin disks. We analyzed the motion of test particles in the gravitational field
generated for the relativistic thin disk and also in the corresponding newtonian
thin disk. The nature of the possible orbits was studied by means of a qualitative
analysis of the effective potential and by numerically solving the motion equation,
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both for radial and for non-radial equatorial trajectories.

For the case of radial motion we found a similar behavior of the relativistic timelike
geodesics with the newtonian motion, presenting bounded as unbounded radial
trajectories, whereas the possible radial null geodesics only are unbounded tra-
jectories. Now, for the case of non-radial motion, we find similar behavior for
the relativistic and for the newtonian case. However, some differences exist. Sta-
ble circular orbits only exist in the newtonian case whereas for the relativistic
case can only exist a unstable circular orbit for some values of the parameters.
We computed the specific energy, specific angular momentum and radius of the
circular orbits both for the relativistic and newtonian motion.

We presented some examples of the numerical results, obtained with some simple
values of the parameters; however, we compute the solutions for many other values
of these and found similar behavior in all the cases. Furthermore, although the
differential equations are different for timelike and null geodesics, as for the new-
tonian case, we found similar qualitative characteristics in many of the considered
cases.
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Resumen. Analizamos la actividad demostrativa de tres estudiantes de un
curso universitario de geometría, cuando trabajan colaborativamente en la
resolución de un problema. Subyacente a la resolución está la producción
de un teorema dentro de una teoría determinada. El análisis se concentra
en identificar y seguirles el rastro a las ideas matemáticas surgidas, y en
identificar, en las acciones de los estudiantes, los tres aspectos que según
Habermas caracterizan un comportamiento racional (teleológico, epistémico
y comunicativo), con miras a describir la participación de los estudiantes.
Los hallazgos nos permiten afirmar que es posible que estudiantes de pre-
grado produzcan un teorema.
Palabras claves: Producir un teorema, participación, comportamiento racio-
nal, actividad demostrativa, geometría euclidiana, educación universitaria.
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Proving activity: participating in the production

of a theorem

Abstract. We analyze the proving activity of three students of a univer-
sity geometry course, when they were working collaboratively to solve a
problem. Underlying the solution process is the production of a theorem
within a determined theory. With the purpose of describing the students’
participation, the analysis concentrates in identifying and keeping track of
the mathematical ideas that emerge and in identifying, in the students’ ac-
tions, the three aspects that, according to Habermas, characterize a rational
behavior (teleological, epistemic and communicative). The findings permit
us to affirm that undergraduate students can produce a theorem.
Keywords: Produce a theorem, participation, rational behavior, proving
activity, Euclidean geometry, university education.
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