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Resumen. El objetivo de este trabajo es caracterizar la r,.clausura de
cualquier subconjunto A de X y estudiar en qué condiciones un subcon-
junto A de X es g.ry-cerrado. También introducimos las nociones de x-T;
(1=0,1/2,1,2) y el estudio de algunas propiedades de ellas.
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1. Introduction

In 2002, Csaszar [1] introduced the notions of generalized topology and generalized conti-
nuity. In 2008, Cséaszar [3| defined an enlargement and construct the generalized topology
induced by an enlargement; introduced the concept of (x, A)-continuity and (k,, \,)-
continuity on enlargements. In 2008, Cséaszar [4] defined and studied the notions of
product of generalized topologies. In 2010, S. Maragathavalli et al. in [5] studied the
g.k,-closed sets in generalized topological spaces and gave some characterization and
properties. Also V. Renukadevi in [6] gave a characterization of g.x,-closed using en-
largements. In this paper we characterize the ,-closure of any subset A of X, compare
the sets ¢, defined in [3] and ¢, , study under what conditions a subset A of X is g.,-
closed) and introduce the notions of -T; (i = 0, 1/2, 1, 2) and study some properties of
them, finally we study some notions related with the product of generalized topologies.
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2. Preliminaries

Let X be a nonempty set and p be a collection of subsets of X. Then pu is called a
generalized topology on X if and only if ) € 4 and G; € p for i € I # () implies |J,; G; €
i We call the pair (X, u) a generalized topological space on X. The elements of u are
called p-open sets [1] and the complements are called p-closed sets. The generalized-
closure of a subset A of X, denoted by c¢,(A), is the intersection of all p-closed sets
containing A; and the generalized-interior of A, denoted by i,,(A), is the union of p-open
sets included in A. Let u be a generalized topology on X. A mapping k : pp — P(X)
is called an enlargement [3] on X if M C kM ( = x(M)) whenever M € pu. Let p be a
generalized topology on X and k : p — P(X) an enlargement of . Let us say that a
subset A C X is k,-open [3] if and only if # € A implies the existence of a p-open set
M such that @ € M and kM C A. The collection of all x,-open sets is a generalized
topology on X [3]. A subset A C X is said to be x,-closed if and only if X\ A is x,-open
[3]. The set ¢, (briefly ¢, A) is defined in [3] as the following:

cw(A)={z e X :s(M)NA#0 for every p-open set M containing x}.

Definition 2.1 ([3]). Let (X, x) and (Y,v) be generalized topological spaces. A function
f:(X,p) — (Y,v) is said to be (s, A)-continuous if z € X and N € v, f(z) € N imply
the existence of M € p such that = € M and f(kM) C AN.

Theorem 2.2 ([3]). Let (X,u) and (Y,v) be generalized topological spaces and f :
(X, 1) = (Y v) a (k,\)-continuous function. Then the following hold:

1. f(ce(A)) Cea(f(A)) holds for every subset A of (X, p).

2. for every \,-open set B of (Y,v), f~1(B) is r,-open in (X, ).

3. Enlargement-separation axioms

Definition 3.1. Let s : 1 — P(X) be an enlargement and A a subset of X. Then the
ty-closure of A is denoted by ¢, (A), and it is defined as the intersection of all ,,-closed
sets containing A.

Remark 3.2. Since the collection of all x,-open sets is a generalized topology on X, then
for any A C X, ¢, (A) is a ry-closed set.

Proposition 3.3. Let x : pp — P(X) be an enlargement and A a subset of X. Then
e, (A)={y e X :VNA#D for every V € r,, such that y € V'}.

Proof. Denote E = {y € X : VN A # 0 for every V € £, such that y € V}. We
shall prove that ¢, (A) = E. Let 2 ¢ . Then there exists a s -open set V' containing
x such that VN A = (). This implies that X\V is s,-closed and A C X\V. Hence
cx, (A) € X\V. It follows that = ¢ c,,(A). Thus we have that ¢, (A) C E. Conversely,
let z ¢ cx,(A). Then there exists a r,-closed set F' such that A C F and 2 ¢ F. Then
we have that € X\F', X\F € k, and (X\F)N A = (). This implies that = ¢ E. Hence
E C ¢k, (A). Therefore ¢, (A) = E. v
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Example 3.4. Let X = {a,b,c,d} and p = P(X)\{all proper subsets of X which con-
tains d}. The enlargement r adds the element d to each nonempty p-open set. Then
Ky = {0, X}. Now put A = {a}. Obviously ¢, (A) = X and c.(A) = {a,d}. This
ezample shows that ¢, C Crap -

Example 3.5. Let X = R be the real line and p = {0, R} U{R\{x}, z # 0}. The enlarge-
ment k is defined as K(A) = ¢, (A). Then k, = {0, X}.

Example 3.6. Let X =R and p = {0,R} U{A, = (a,+00) for all a € R}. The enlarge-
ment map kK is defined as follows:

A i A= (0,+00),
kK(A)=< R if A#(0,+0c0),
0 if A=0.

The generalized k,, topology on X is {0, R, (0,+00)}.

Definition 3.7. An enlargement x on p is said to be open, if for every p-neighborhood
U of x € X, there exists a x,-open set B such that 2 € B and x(U) D B.

Example 3.8. Let X = {a,b,c} and p = {0, X, {a},{b},{a,b},{a,c}}. Define k : p —
P(X) as follows:

_ A if be A,
K(4) *{ c(A) if b Al

The enlargement Kk on [ is open.

Proposition 3.9. If x : u — P(X) is an open enlargement and A a subset of X, then
cu(A) = cx, (A) and c.(cx(A)) = cx(A) hold, and c,.(A) is k,-closed in (X, ).

Proof. Suppose that = ¢ ¢, (A). Then there exists a u-open set U containing = such that
k(U)NA=10. Since £ is an open enlargement, by Definition 3.7, there exists a x,-open
set V such that z € V C k(U) and so VN A = (. By Proposition 3.3, ¢ c,,(A);
it follows that c.,(A) C cx(A). By Corollary 1.7 of [3], we have c.(A) C ¢k, (A). In
consequence, we obtain that c¢.(c.(A)) = ¢x(A). By Proposition 1.3 of [3]|, we obtain
that ¢, (A) is a k,-closed in (X, p). v

Definition 3.10 ([6]). Let u be a generalized topology on X and x :  — P(X) an
enlargement of . Then a subset A of a generalized topological space (X, i) is said to be
a generalized r,-closed (abbreviated by g.x,-closed) set in (X, p), if ¢,.(A) C U whenever
AcCUandU € k.

Proposition 3.11. Every r,-closed set is g.k,-closed.

Proof. Straightforward. v

Remark 3.12. A subset A is g.id,-closed if and only if A is g,-closed in the sense of
Maragathavalli et. al. [5].

Theorem 3.13 ([6]). Let k be an enlargement of a generalized topological space (X, ).
If A is g.k,-closed in (X, ), then c.({z}) NA# O for every x € c.(A).
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Proof. Let A be a g.k,-closed set of (X, 11). Suppose that there exists a point z € ¢, (A)
such that ¢.({z}) N A = 0. By Proposition 1.3 of [3], ¢.({z}) is p-closed. Put U =
X\cx({x}). Then, we have that A C U, x ¢ U and U is a p-open set of (X, u). Since A
is a g.k,-closed set, ¢.(A) C U. Thus, we have z ¢ ¢,(A). This is a contradiction. ¥

The converse of the above theorem is not necessarily true, as we can see.

Example 3.14. Let N be the set of all natural numbers and p the discrete topology on
N. Let ig be a fized odd number. Define k : n — P(N) as follows:

{2i:1€ N} if n is an even number,
k({n})=4¢ {2i+1:1€ N} if n=ri,
{n} if n is an odd number # ig,

and k(A) = N for the rest.

Clearly, r is an enlargement on p. Take A = {2,4}. It is easy to see that c¢,,(A) = {2i :
i€ N} and ¢, ({z}) NA# 0 for every x € ¢,.,(A), but A is not a g.k,-closed set.

Theorem 3.15. Let 11 be a generalized topology on X and  : u — P(X) an enlargement
on .

1. If a subset A is g.k,-closed in (X, p1), then c,.(A)\A does not contain any nonempty
Ky -closed set.

2. If k : u — P(X) is an open enlargement on (X, p), then the converse of (1) is true.

Proof. (1). Suppose that there exists a ,-closed set F' such that F' C ¢, (A)\A. Then, we
have that A C X\ F and X\ F is k,-open. It follows from assumption that ¢, (A4) C X\F
and so F' C (¢, (A)\A) N (X\cx(A)). Therefore, we have that F' = 0. (2). Let U be a
ku-open set such that A C U. Since & is an open enlargement, it follows from Proposition
3.9 that ¢, (A) is ky-closed in (X, ). Thus using Proposition 1.1 of [3], we have that
Cr, (A) N X\U, say F, is a ry-closed set in (X, ). Since X\U C X\A, I C ¢, (A)\A.
Using the assumption of the converse of (1) above, F' = () and hence ¢, (4) C U. e

Remark 3.16. The Theorem 4.1 of [6] is not true, because the condition that  is an
open enlargement can not be omitted, as we show in the following example.

Example 3.17. In the Example 8.14, p is not an open enlargement. If we take A = {2,4},
it is easy to see that ¢, (A)\A does not contain any nonempty k,-closed set and A is not
a g.ky-closed set.

Lemma 3.18 ([6]). Let A be a subset of a generalized topological space (X, p) and K : 1 —
P(X) an enlargement on (X, ). Then, for each x € X, {x} is k,-closed or (X\{z}) is
a g.kyu-closed set of (X, p).

Proof. Suppose that {«} is not x,-closed. Then X\{z} is not x,-open. Let U be any
ky-open set such that X\{z} C U. Then, since U = X, ¢,(X\{z}) C U. Therefore,
X\{z} is g.k,-closed. v
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Definition 3.19. A generalized topological space (X, i) is said to be a x-Ty /5 space, if
every g.k,-closed set of (X, p1) is k,-closed.

Theorem 3.20. A generalized topological space (X, p) is k-T1 /o if and only if, for each
x € X, {z} is ky-closed or k,-open in (X, 11).

Proof. Necessity: It is obtained by Lemma 3.18 and Definition 3.19. Sufficiency: Let F'
be g.k,-closed in (X, u). We shall prove that c, (F) = F. It is sufficient to show that
¢x, (F) C F. Assume that there exists a point z such that = € ¢, (F)\F. Then, by
assumption, {x} is r,-closed or k,-open.

Case(i): {z} is ky-closed set. For this case, we have a r,-closed set {z} such that
{z} C ¢y, (F)\F. This is a contradiction to Theorem 3.15 (1).

Case(ii): {z} is x,-open set. Using Corollary 1.7 of [3], we have = € ¢, (F). Since {x}
is ky-open, it implies that {z} N ' % @. This is a contradiction. Thus, we have that
¢x(F) = F, and so, by Proposition 1.4 of [3|, F is k,-closed. v

Definition 3.21. Let x : p — P(X) be an enlargement. A generalized topological space
(X, p) is said to be:

1. k-Tp if for any two distinct points x,y € X there exists a p-open set U such that
either x € U and y ¢ k(U) or y € U and = ¢ k(U).

2. k-Ty if for any two distinct points z,y € X there exist two u-open sets U and V
containing = and y, respectively such that y ¢ x(U) and x ¢ x(V).

3. r-T if for any two distinct points x,y € X there exist two p-open sets U and V'
containing = and y, respectively such that x(U) N x(V) = 0.

Theorem 3.22. Let A be a subset of a generalized topological space (X, ) and K : pn —
P(X) an open enlargement on (X, p). Then (X, u) is a k-To space if and only if for each
pair ,y € X with © # vy, c¢.({z}) = cx({y}) holds.

Proof. Let x and y be any two distinct points of a k-Tj space. Then, by Definition 3.21,
there exists a p-open set U such that € U and y ¢ x(U). It follows that there exists a
p-open set S such that x € S and S C x(U). Hence, y € X\x(U) C X\S. Because X\S
is a p-closed set, we obtain that ¢, ({y}) C X\S, and so ¢, ({z}) # c.({y}). Conversely,
suppose that @ # y for any z,y € X. Then, we have that ¢,({z}) # c.({y}). Thus,
we assume that there exists z € ¢,({z}) but z ¢ ¢.({y}). If x € cx({y}), then we
obtain ¢, ({z}) C ¢.({y}). This implies that z € ¢,({y}). This is a contradiction; in
consequence, = € ¢, ({y}). Therefore, there exists a y-open set W such that z € W and
k(W) N {y} = 0. Thus, we have that x € W and y ¢ «(W). Hence, (X,u) is a x-Tp
space. v

Example 3.23. In the Ezample 3.14, take A = {2,4}; then c,(A) — A = {2i : i €
N —{1,2}} does not contain any nonempty rk,-open set, and A is not a g.k,-closed set.

Theorem 3.24. A generalized topological space (X, p) is £-T1 if and only if every singleton
set of X is ky-closed.
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Proof. The proof follows from the respective definitions. v
From Theorems 3.20, 3.24 and Definition 3.21, we obtain the following:

k-To = £-Ty — k-T2 — K-Tp.

Definition 3.25. Let (X, 1) be a generalized topological space. Then the sequence {xj}
is said to be k-converge to a point zg € X, denoted T Ko, if for every p-open set U

containing x( there exists a positive integer n such that z; € x(U) for all k > n.

Theorem 3.26. Let (X, pu) be a k-Ty space. If {xi} is a k-converge sequence, then it
K-converges to at most one point.

Proof. Let {x} be a sequence in X r-converging to = and y. Then by definition of
k-Ty space, there exist U,V € p such that € U,y € V and x(U) N k(V) = 0. Since
Ty K, there exists a positive integer ny such that z;, € k(U) for all & > n;. Also Tk KY,
therefore there exists a positive integer ng such that z;, € x(V), for all k& > no. Let
ng = max(ny,n2). Then x € k(U) and zy, € x(V), for all k > ng or z3 € (U) N K(V),
for all k > ng. This contradiction proves that {x)} r-converges to at most one point. ¥

Remark 3.27. Note that the above results generalize the well known separation axioms
in general topology in an structure more weaker than a topology.

4. Additional Properties

Proposition 4.1. Let f : (X,pu) — (Y,v) be a (k,\)-continuous injection. If (Y,v) is
ATy (resp. \-Ts), then (X, p) is k-Th (resp. k-Ts).

Proof. Suppose that (Y,v) is A-T». Let 2 and % be distinct points of X. Then there
exist two open sets V and W of Y such that f(z) € V, f(z') € W and A\(V) N A(W) = 0.
Since f is (K, A)-continuous, for V' and W there exist two open sets U, S such that
zeUx €8, f(k(U)) c AV)and f(r(S)) C A(W). Therefore, we have x(U)Nk(S) = 0,
and hence (X, p) is k-Ts. The proof of the case of A\-T} is similar. v

In [4] the notion of product of generalized topologies is defined. Let p and v be two
generalized topologies, and [ the collection of all sets U x V, where U € p and V' € v.
Clearly § € S, so we can define a generalized topology u X v = pu X v() having 3 for
base. We call p x v the product of the generalized topologies p and v.

Definition 4.2. An enlargement « : X v — P(X x Y) is said to be associated with x;
and ko, if K(U x V) = k1(U) x ko(V') holds for each (# 0)U € p, (# 0)V € v.

Definition 4.3. An enlargement « : X v — P(X x Y) is said to be regular with respect
to k1 and ke, if for each point (z,y) € X x Y and each pu x v-open set W containing
(z,y), there exists U € pand V € vsuch that x € U, y € V and 1 (U) X ko (V) C k(W).

Proposition 4.4. Let k: p X . — P(X x X) be an enlargement associated with r1 and
Koo If [ (X, pu) — (Y,v) is (K1, ka2)-continuous and (Y,v) is a ko-To space, then the set
A={(z,y) e X x X : f(z) = f(y)} is a k-closed set of (X x X, X ).
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Proof. We show that ¢,(A) C A. Let (z,y) € X x X\A. Then, there exist U,V € v
such that f(z) € U, f(y) € V and k2(U) Nka(V) = 0. Moreover, for U and V there exist
W,S € psuchthat z € W,y € S, f(k1(W)) C ko(U) and f(x1(S)) C k2(V). Therefore,
we have k(W x S) N A = (). This shows that (z,y) ¢ c,(A). v

Corollary 4.5. If k: px u — P(X x X) is an enlargement associated with k1 and ko and
it is regular with respect to k1 and ko. A generalized topological space (X, u) is r1-To if
and only if the diagonal set A = {(z,z) : x € X} is k-closed in (X x X, X p).

Proposition 4.6. Let k: uyx v — P(X xXY) be an enlargement associated with k1 and
koo If f (X, p) = (Y,v) is (K1, ka)-continuous and (Y,v) is a ko-To space, then the
graph of f, G(f) = {(z, f(z)) € X XY} is a k-closed set of (X XY, xv).

Proof. The proof is similar to that of Proposition 4.4. ]

Definition 4.7. An enlargement s on p is said to be regular, if for any p-open neigh-
borhoods U,V of z € X, there exists a p-open neighborhood W of z such that
sU)NEV) D r(W).

Theorem 4.8. Suppose that k1 is a regular enlargement and k : p x v — P(X xY) is
reqular with respect to k1 and ko. Let [ : (X,u) — (Y,v) be a function whose graph
G(f) is k-closed in (X x Y, x v). If a subset B is ka-compact in (Y,v), then f~*(B)
is k1-closed in (X, ).

Proof. Suppose that f~!(B) is not ki-closed. Then, there exists a point  such that
T € ¢y (f7Y(B)) and = ¢ f~Y(B). Since (z,b) ¢ G(f) for each b € B and G(f) D
¢ (G(f)), there exists a p x v-open set W such that (z,b) € W and (W) NG(f) = 0.
By the regularity of %, for each b € B we can take two sets U(b) € p and V(b) € v such
that 2 € U(b),b € V(b) and k1(U(b)) X k2(V (b)) C K(W). Then we have f(x1(U(b))) N
ko(V (b)) = 0. Since {V(b) : b € B} is a v-open cover of B, there exists a finite number
of points by,....b, € B such that B C |JI_, k2(V(b;)), by the ro-compactness of B.
By the regularity of 1, there exists U € p such that x € U, x1(U) C (i, k1(U(b;)).
Therefore, we have x1(U) N f~1(B) C U, s1(U(b:)) N f~ (k2 (V (b;))) = 0. This shows
that @ ¢ ¢, (f~1(B)), thus we have a contradiction. v

Theorem 4.9. Let f : (X,u) — (Y,v) be a function whose graph G(f) is r-closed in
(X x Y, puxv), and suppose that the following conditions hold:

1. k1 :pp— P(X) is open,
2. ky:v— P(Y) is regular, and

3. k:puxv— P(XXY) is an enlargement associated with k1 and ko, and K is reqular
with respect to k1 and k.

If every cover of A by k1-open sets of (X, ) has a finite subcover, then f(A) is ko-closed
in (Y,v).

Proof. The proof is similar to that of Theorem 4.8 v
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Proposition 4.10. Let s : pux v — P(X X Y) be an enlargement associated with k1 and
ko. If f:(X,u) = (Y,v) is (K1, ka)-continuous and (Y,v) is a ko-Ta, then the graph of
[ G(f) =A{(z, f(®)) € X XY} is a kxp-closed set of (X XY, x v).

Proof. The proof is similar to that of Proposition 4.4. ]

Definition 4.11. A function f : (X,u) — (Y,v) is said to be (x, \)-closed, if for any
kpu-closed set A of (X, ), f(A) is A,-closed in (Y,v).

Theorem 4.12. Suppose that f is (k, \)-continuous and (id, \)-closed. If for every g.r,-
closed set A of (X, ), then the image f(A) is g.\,-closed.

Proof. Let V be any A, -open set of (Y,v) such that f(A) C V. By the Theorem 2.2 (2),
J7Y(V) is k,-open. Since A is g.r,-closed and A C f~1(V), we have ¢, (4) C f~1(V),
and hence f(c.(A)) C V. It follows from Proposition 1.3 of [3] and our assumption that
f(ew(A)) is Ay-closed. Therefore we have cx(f(A)) C ex(f(ck(A))) = f(ew(A)) C V.
This implies f(A) is g.\,-closed. ]

Theorem 4.13. If f : (X,pu) — (Y,v) is (K, A)-continuous and (id,\)-closed, if [ is
injective and (Y,v) is A\-Ty 9, then (X, p) is £-T 5.

Proof. Let A be a g.ry-closed set of (X,u). We show that A is r,-closed. By
Theorem 4.12 and our assumptions it is obtained that f(A) is g.\,-closed, and hence
J(A) is Ay-closed. Since f is (k,\)-continuous, f~1(f(A)) is k,-closed by using
Theorem 2.2 (2). v
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