Revista Integración Escuela de Matemáticas Universidad Industrial de Santander Vol. 32, No. 1, 2014, pág. 19-26

Separation axioms on enlargements of generalized topologies

CARLOS CARPINTERO^{*a*,*}, NAMEGALESH RAJESH^{*b*}, ENNIS ROSAS^{*a*}

^a Universidad de Oriente, Núcleo de Sucre, Cumaná, Venezuela.

Universidad del Atlántico, Facultad de Ciencias Básicas, Barranquilla, Colombia.

^b Rajah Serfoji Govt. College, Department of Mathematics, Thanjavur-613005, Tamilnadu, India.

Abstract. The aim of this paper is to characterize the κ_{μ} closure of any subset A of X and study under what conditions a subset A of X is $g.\kappa_{\mu}$ -closed. We also introduce the notions of κ - T_i (i = 0, 1/2, 1, 2) and study some properties of them.

Keywords: Generalized Topology, enlargements. MSC2010: 54A05, 54A10, 54D10.

Axiomas de separación en ampliaciones de topologías generalizadas

El objetivo de este trabajo es caracterizar la κ_{μ} .clausura de Resumen. cualquier subconjunto A de X y estudiar en qué condiciones un subconjunto A de X es g. κ_{μ} -cerrado. También introducimos las nociones de κ - T_i (i = 0, 1/2, 1, 2) y el estudio de algunas propiedades de ellas. Palabras claves: Topología generalizada, ampliaciones.

1. Introduction

In 2002, Császár [1] introduced the notions of generalized topology and generalized continuity. In 2008, Császár [3] defined an enlargement and construct the generalized topology induced by an enlargement; introduced the concept of (κ, λ) -continuity and $(\kappa_{\mu}, \lambda_{\mu})$ continuity on enlargements. In 2008, Császár [4] defined and studied the notions of product of generalized topologies. In 2010, S. Maragathavalli et al. in [5] studied the $g.\kappa_{\mu}$ -closed sets in generalized topological spaces and gave some characterization and properties. Also V. Renukadevi in [6] gave a characterization of $g.\kappa_{\mu}$ -closed using enlargements. In this paper we characterize the κ_{μ} -closure of any subset A of X, compare the sets c_{κ} defined in [3] and $c_{\kappa_{\mu}}$, study under what conditions a subset A of X is $g.\kappa_{\mu}$ closed) and introduce the notions of κ -T_i (i = 0, 1/2, 1, 2) and study some properties of them, finally we study some notions related with the product of generalized topologies.

^{*} Corresponding author: E-mail: carpintero.carlos@gmail.com

Received: 02 September 2013, Accepted: 01 March 2014. To cite this article: C. Carpintero, N. Rajesh, E. Rosas, Separation axioms on enlargements of generalized topologies, Rev. Integr. Temas Mat. 32 (2014), no. 1, 19-26.

2. Preliminaries

Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a generalized topology on X if and only if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $\bigcup_{i \in I} G_i \in \mu$. We call the pair (X, μ) a generalized topological space on X. The elements of μ are called μ -open sets [1] and the complements are called μ -closed sets. The generalizedclosure of a subset A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A; and the generalized-interior of A, denoted by $i_{\mu}(A)$, is the union of μ -open sets included in A. Let μ be a generalized topology on X. A mapping $\kappa : \mu \to P(X)$ is called an enlargement [3] on X if $M \subseteq \kappa M$ ($= \kappa(M)$) whenever $M \in \mu$. Let μ be a generalized topology on X and $\kappa : \mu \to P(X)$ an enlargement of μ . Let us say that a subset $A \subseteq X$ is κ_{μ} -open [3] if and only if $x \in A$ implies the existence of a μ -open set M such that $x \in M$ and $\kappa M \subseteq A$. The collection of all κ_{μ} -open sets is a generalized topology on X [3]. A subset $A \subseteq X$ is said to be κ_{μ} -closed if and only if $X \setminus A$ is κ_{μ} -open [3]. The set c_{κ} (briefly $c_{\kappa}A$) is defined in [3] as the following:

 $c_{\kappa}(A) = \{ x \in X : \kappa(M) \cap A \neq \emptyset \text{ for every } \mu \text{-open set } M \text{ containing } x \}.$

Definition 2.1 ([3]). Let (X, μ) and (Y, ν) be generalized topological spaces. A function $f : (X, \mu) \to (Y, \nu)$ is said to be (κ, λ) -continuous if $x \in X$ and $N \in \nu$, $f(x) \in N$ imply the existence of $M \in \mu$ such that $x \in M$ and $f(\kappa M) \subset \lambda N$.

Theorem 2.2 ([3]). Let (X, μ) and (Y, ν) be generalized topological spaces and $f : (X, \mu) \to (Y, \nu)$ a (κ, λ) -continuous function. Then the following hold:

- 1. $f(c_{\kappa}(A)) \subset c_{\lambda}(f(A))$ holds for every subset A of (X, μ) .
- 2. for every λ_{ν} -open set B of (Y, ν) , $f^{-1}(B)$ is κ_{μ} -open in (X, μ) .

3. Enlargement-separation axioms

Definition 3.1. Let $\kappa : \mu \to P(X)$ be an enlargement and A a subset of X. Then the κ_{μ} -closure of A is denoted by $c_{\kappa_{\mu}}(A)$, and it is defined as the intersection of all κ_{μ} -closed sets containing A.

Remark 3.2. Since the collection of all κ_{μ} -open sets is a generalized topology on X, then for any $A \subset X$, $c_{\kappa_{\mu}}(A)$ is a κ_{μ} -closed set.

Proposition 3.3. Let $\kappa : \mu \to P(X)$ be an enlargement and A a subset of X. Then $c_{\kappa_{\mu}}(A) = \{y \in X : V \cap A \neq \emptyset \text{ for every } V \in \kappa_{\mu} \text{ such that } y \in V\}.$

Proof. Denote $E = \{y \in X : V \cap A \neq \emptyset$ for every $V \in \kappa_{\mu}$ such that $y \in V\}$. We shall prove that $c_{\kappa_{\mu}}(A) = E$. Let $x \notin E$. Then there exists a κ_{μ} -open set V containing x such that $V \cap A = \emptyset$. This implies that $X \setminus V$ is κ_{μ} -closed and $A \subset X \setminus V$. Hence $c_{\kappa_{\mu}}(A) \subset X \setminus V$. It follows that $x \notin c_{\kappa_{\mu}}(A)$. Thus we have that $c_{\kappa_{\mu}}(A) \subset E$. Conversely, let $x \notin c_{\kappa_{\mu}}(A)$. Then there exists a κ_{μ} -closed set F such that $A \subset F$ and $x \notin F$. Then we have that $x \in X \setminus F$, $X \setminus F \in \kappa_{\mu}$ and $(X \setminus F) \cap A = \emptyset$. This implies that $x \notin E$. Hence $E \subset c_{\kappa_{\mu}}(A)$. Therefore $c_{\kappa_{\mu}}(A) = E$.

[Revista Integración

Example 3.4. Let $X = \{a, b, c, d\}$ and $\mu = P(X) \setminus \{all \text{ proper subsets of } X \text{ which contains } d\}$. The enlargement κ adds the element d to each nonempty μ -open set. Then $\kappa_{\mu} = \{\emptyset, X\}$. Now put $A = \{a\}$. Obviously $c_{\kappa_{\mu}}(A) = X$ and $c_{\kappa}(A) = \{a, d\}$. This example shows that $c_{\kappa} \subseteq c_{\kappa_{\mu}}$.

Example 3.5. Let $X = \mathbb{R}$ be the real line and $\mu = \{\emptyset, \mathbb{R}\} \cup \{\mathbb{R} \setminus \{x\}, x \neq 0\}$. The enlargement κ is defined as $\kappa(A) = c_{\mu}(A)$. Then $\kappa_{\mu} = \{\emptyset, X\}$.

Example 3.6. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, \mathbb{R}\} \cup \{A_a = (a, +\infty) \text{ for all } a \in \mathbb{R}\}$. The enlargement map κ is defined as follows:

$$\kappa(A) = \begin{cases} A & \text{if } A = (0, +\infty), \\ \mathbb{R} & \text{if } A \neq (0, +\infty), \\ \emptyset & \text{if } A = \emptyset. \end{cases}$$

The generalized κ_{μ} topology on X is $\{\emptyset, \mathbb{R}, (0, +\infty)\}$.

Definition 3.7. An enlargement κ on μ is said to be open, if for every μ -neighborhood U of $x \in X$, there exists a κ_{μ} -open set B such that $x \in B$ and $\kappa(U) \supset B$.

Example 3.8. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Define $\kappa : \mu \to P(X)$ as follows:

$$\kappa(A) = \begin{cases} A & \text{if } b \in A, \\ c_{\mu}(A) & \text{if } b \notin A. \end{cases}$$

The enlargement κ on μ is open.

Proposition 3.9. If $\kappa : \mu \to P(X)$ is an open enlargement and A a subset of X, then $c_{\kappa}(A) = c_{\kappa_{\mu}}(A)$ and $c_{\kappa}(c_{\kappa}(A)) = c_{\kappa}(A)$ hold, and $c_{\kappa}(A)$ is κ_{μ} -closed in (X, μ) .

Proof. Suppose that $x \notin c_{\kappa}(A)$. Then there exists a μ -open set U containing x such that $\kappa(U) \cap A = \emptyset$. Since κ is an open enlargement, by Definition 3.7, there exists a κ_{μ} -open set V such that $x \in V \subset \kappa(U)$ and so $V \cap A = \emptyset$. By Proposition 3.3, $x \notin c_{\kappa_{\mu}}(A)$; it follows that $c_{\kappa_{\mu}}(A) \subset c_{\kappa}(A)$. By Corollary 1.7 of [3], we have $c_{\kappa}(A) \subset c_{\kappa_{\mu}}(A)$. In consequence, we obtain that $c_{\kappa}(c_{\kappa}(A)) = c_{\kappa}(A)$. By Proposition 1.3 of [3], we obtain that $c_{\kappa}(A)$ is a κ_{μ} -closed in (X, μ) .

Definition 3.10 ([6]). Let μ be a generalized topology on X and $\kappa : \mu \to P(X)$ an enlargement of μ . Then a subset A of a generalized topological space (X, μ) is said to be a generalized κ_{μ} -closed (abbreviated by $g.\kappa_{\mu}$ -closed) set in (X, μ) , if $c_{\kappa}(A) \subset U$ whenever $A \subset U$ and $U \in \kappa_{\mu}$.

Proposition 3.11. Every κ_{μ} -closed set is $g.\kappa_{\mu}$ -closed.

Proof. Straightforward.

Remark 3.12. A subset A is g_{μ} -closed if and only if A is g_{μ} -closed in the sense of Maragathavalli et. al. [5].

Theorem 3.13 ([6]). Let κ be an enlargement of a generalized topological space (X, μ) . If A is $g.\kappa_{\mu}$ -closed in (X, μ) , then $c_{\kappa}(\{x\}) \cap A \neq \emptyset$ for every $x \in c_{\kappa}(A)$.

Vol. 32, No. 1, 2014]

 \checkmark

Proof. Let A be a $g.\kappa_{\mu}$ -closed set of (X, μ) . Suppose that there exists a point $x \in c_{\kappa}(A)$ such that $c_{\kappa}(\{x\}) \cap A = \emptyset$. By Proposition 1.3 of [3], $c_{\kappa}(\{x\})$ is μ -closed. Put $U = X \setminus c_{\kappa}(\{x\})$. Then, we have that $A \subset U$, $x \notin U$ and U is a μ -open set of (X, μ) . Since A is a $g.\kappa_{\mu}$ -closed set, $c_{\kappa}(A) \subset U$. Thus, we have $x \notin c_{\kappa}(A)$. This is a contradiction.

The converse of the above theorem is not necessarily true, as we can see.

Example 3.14. Let N be the set of all natural numbers and μ the discrete topology on N. Let i_0 be a fixed odd number. Define $\kappa : \mu \to P(N)$ as follows:

$$\kappa(\{n\}) = \begin{cases} \{2i : i \in N\} & \text{if } n \text{ is an even number,} \\ \{2i+1 : i \in N\} & \text{if } n = i_0, \\ \{n\} & \text{if } n \text{ is an odd number } \neq i_0, \end{cases}$$

and $\kappa(A) = N$ for the rest.

Clearly, κ is an enlargement on μ . Take $A = \{2, 4\}$. It is easy to see that $c_{\kappa}(A) = \{2i : i \in N\}$ and $c_{\kappa}(\{x\}) \cap A \neq \emptyset$ for every $x \in c_{\kappa}(A)$, but A is not a $g.\kappa_{\mu}$ -closed set.

Theorem 3.15. Let μ be a generalized topology on X and $\kappa : \mu \to P(X)$ an enlargement on μ .

- 1. If a subset A is $g.\kappa_{\mu}$ -closed in (X, μ) , then $c_{\kappa}(A) \setminus A$ does not contain any nonempty κ_{μ} -closed set.
- 2. If $\kappa : \mu \to P(X)$ is an open enlargement on (X, μ) , then the converse of (1) is true.

Proof. (1). Suppose that there exists a κ_{μ} -closed set F such that $F \subset c_{\kappa}(A) \setminus A$. Then, we have that $A \subset X \setminus F$ and $X \setminus F$ is κ_{μ} -open. It follows from assumption that $c_{\kappa}(A) \subset X \setminus F$ and so $F \subset (c_{\kappa}(A) \setminus A) \cap (X \setminus c_{\kappa}(A))$. Therefore, we have that $F = \emptyset$. (2). Let U be a κ_{μ} -open set such that $A \subset U$. Since κ is an open enlargement, it follows from Proposition 3.9 that $c_{\kappa}(A)$ is κ_{μ} -closed in (X, μ) . Thus using Proposition 1.1 of [3], we have that $c_{\kappa_{\mu}}(A) \cap X \setminus U$, say F, is a κ_{μ} -closed set in (X, μ) . Since $X \setminus U \subset X \setminus A$, $F \subset c_{\kappa_{\mu}}(A) \setminus A$. Using the assumption of the converse of (1) above, $F = \emptyset$ and hence $c_{\kappa_{\mu}}(A) \subset U$.

Remark 3.16. The Theorem 4.1 of [6] is not true, because the condition that κ is an open enlargement can not be omitted, as we show in the following example.

Example 3.17. In the Example 3.14, μ is not an open enlargement. If we take $A = \{2, 4\}$, it is easy to see that $c_{\kappa}(A) \setminus A$ does not contain any nonempty κ_{μ} -closed set and A is not a $g.\kappa_{\mu}$ -closed set.

Lemma 3.18 ([6]). Let A be a subset of a generalized topological space (X, μ) and $\kappa : \mu \to P(X)$ an enlargement on (X, μ) . Then, for each $x \in X$, $\{x\}$ is κ_{μ} -closed or $(X \setminus \{x\})$ is a $g.\kappa_{\mu}$ -closed set of (X, μ) .

Proof. Suppose that $\{x\}$ is not κ_{μ} -closed. Then $X \setminus \{x\}$ is not κ_{μ} -open. Let U be any κ_{μ} -open set such that $X \setminus \{x\} \subset U$. Then, since U = X, $c_{\kappa}(X \setminus \{x\}) \subset U$. Therefore, $X \setminus \{x\}$ is $g.\kappa_{\mu}$ -closed.

[Revista Integración

Definition 3.19. A generalized topological space (X, μ) is said to be a κ - $T_{1/2}$ space, if every g. κ_{μ} -closed set of (X, μ) is κ_{μ} -closed.

Theorem 3.20. A generalized topological space (X, μ) is κ - $T_{1/2}$ if and only if, for each $x \in X$, $\{x\}$ is κ_{μ} -closed or κ_{μ} -open in (X, μ) .

Proof. Necessity: It is obtained by Lemma 3.18 and Definition 3.19. Sufficiency: Let F be $g.\kappa_{\mu}$ -closed in (X,μ) . We shall prove that $c_{\kappa_{\mu}}(F) = F$. It is sufficient to show that $c_{\kappa_{\mu}}(F) \subset F$. Assume that there exists a point x such that $x \in c_{\kappa_{\mu}}(F) \setminus F$. Then, by assumption, $\{x\}$ is κ_{μ} -closed or κ_{μ} -open.

Case(i): $\{x\}$ is κ_{μ} -closed set. For this case, we have a κ_{μ} -closed set $\{x\}$ such that $\{x\} \subset c_{\kappa_{\mu}}(F) \setminus F$. This is a contradiction to Theorem 3.15 (1).

Case(ii): $\{x\}$ is κ_{μ} -open set. Using Corollary 1.7 of [3], we have $x \in c_{\kappa_{\mu}}(F)$. Since $\{x\}$ is κ_{μ} -open, it implies that $\{x\} \cap F \neq \emptyset$. This is a contradiction. Thus, we have that $c_{\kappa}(F) = F$, and so, by Proposition 1.4 of [3], F is κ_{μ} -closed.

Definition 3.21. Let $\kappa : \mu \to P(X)$ be an enlargement. A generalized topological space (X, μ) is said to be:

- 1. κ - T_0 if for any two distinct points $x, y \in X$ there exists a μ -open set U such that either $x \in U$ and $y \notin \kappa(U)$ or $y \in U$ and $x \notin \kappa(U)$.
- 2. κ - T_1 if for any two distinct points $x, y \in X$ there exist two μ -open sets U and V containing x and y, respectively such that $y \notin \kappa(U)$ and $x \notin \kappa(V)$.
- 3. κ -T₂ if for any two distinct points $x, y \in X$ there exist two μ -open sets U and V containing x and y, respectively such that $\kappa(U) \cap \kappa(V) = \emptyset$.

Theorem 3.22. Let A be a subset of a generalized topological space (X, μ) and $\kappa : \mu \to P(X)$ an open enlargement on (X, μ) . Then (X, μ) is a κ -T₀ space if and only if for each pair $x, y \in X$ with $x \neq y$, $c_{\kappa}(\{x\}) = c_{\kappa}(\{y\})$ holds.

Proof. Let x and y be any two distinct points of a κ - T_0 space. Then, by Definition 3.21, there exists a μ -open set U such that $x \in U$ and $y \notin \kappa(U)$. It follows that there exists a μ -open set S such that $x \in S$ and $S \subset \kappa(U)$. Hence, $y \notin X \setminus K(U) \subset X \setminus S$. Because $X \setminus S$ is a μ -closed set, we obtain that $c_{\kappa}(\{y\}) \subset X \setminus S$, and so $c_{\kappa}(\{x\}) \neq c_{\kappa}(\{y\})$. Conversely, suppose that $x \neq y$ for any $x, y \in X$. Then, we have that $c_{\kappa}(\{x\}) \neq c_{\kappa}(\{y\})$. Thus, we assume that there exists $z \in c_{\kappa}(\{x\})$ but $z \notin c_{\kappa}(\{y\})$. If $x \in c_{\kappa}(\{y\})$, then we obtain $c_{\kappa}(\{x\}) \subset c_{\kappa}(\{y\})$. This implies that $z \in c_{\kappa}(\{y\})$. This is a contradiction; in consequence, $x \in c_{\kappa}(\{y\})$. Therefore, there exists a μ -open set W such that $x \in W$ and $\kappa(W) \cap \{y\} = \emptyset$. Thus, we have that $x \in W$ and $y \notin \kappa(W)$. Hence, (X, μ) is a κ - T_0 space.

Example 3.23. In the Example 3.14, take $A = \{2, 4\}$; then $c_{\kappa}(A) - A = \{2i : i \in N - \{1, 2\}\}$ does not contain any nonempty κ_{μ} -open set, and A is not a $g.\kappa_{\mu}$ -closed set.

Theorem 3.24. A generalized topological space (X, μ) is κ - T_1 if and only if every singleton set of X is κ_{μ} -closed.

Vol. 32, No. 1, 2014]

Proof. The proof follows from the respective definitions.

From Theorems 3.20, 3.24 and Definition 3.21, we obtain the following:

$$\kappa - T_2 \rightarrow \kappa - T_1 \rightarrow \kappa - T_{1/2} \rightarrow \kappa - T_0$$

Definition 3.25. Let (X, μ) be a generalized topological space. Then the sequence $\{x_k\}$ is said to be κ -converge to a point $x_0 \in X$, denoted $x_k \not \in x_0$, if for every μ -open set U containing x_0 there exists a positive integer n such that $x_k \in \kappa(U)$ for all $k \ge n$.

Theorem 3.26. Let (X, μ) be a κ - T_2 space. If $\{x_k\}$ is a κ -converge sequence, then it κ -converges to at most one point.

Proof. Let $\{x_k\}$ be a sequence in $X \\ \kappa$ -converging to x and y. Then by definition of κ - T_2 space, there exist $U, V \\\in \\mu$ such that $x \\\in U, y \\\in V$ and $\\ku(U) \\cap \\\kappa(V) \\\in \\mu(V) \\\in \\mu($

Remark 3.27. Note that the above results generalize the well known separation axioms in general topology in an structure more weaker than a topology.

4. Additional Properties

Proposition 4.1. Let $f : (X, \mu) \to (Y, \nu)$ be a (κ, λ) -continuous injection. If (Y, ν) is λ - T_1 (resp. λ - T_2), then (X, μ) is κ - T_1 (resp. κ - T_2).

Proof. Suppose that (Y, ν) is λ - T_2 . Let x and x' be distinct points of X. Then there exist two open sets V and W of Y such that $f(x) \in V, f(x') \in W$ and $\lambda(V) \cap \lambda(W) = \emptyset$. Since f is (κ, λ) -continuous, for V and W there exist two open sets U, S such that $x \in U, x' \in S, f(\kappa(U)) \subset \lambda(V)$ and $f(\kappa(S)) \subset \lambda(W)$. Therefore, we have $\kappa(U) \cap \kappa(S) = \emptyset$, and hence (X, μ) is κ - T_2 . The proof of the case of λ - T_1 is similar.

In [4] the notion of product of generalized topologies is defined. Let μ and ν be two generalized topologies, and β the collection of all sets $U \times V$, where $U \in \mu$ and $V \in \nu$. Clearly $\emptyset \in \beta$, so we can define a generalized topology $\mu \times \nu = \mu \times \nu(\beta)$ having β for base. We call $\mu \times \nu$ the product of the generalized topologies μ and ν .

Definition 4.2. An enlargement $\kappa : \mu \times \nu \to P(X \times Y)$ is said to be associated with κ_1 and κ_2 , if $\kappa(U \times V) = \kappa_1(U) \times \kappa_2(V)$ holds for each $(\neq \emptyset)U \in \mu$, $(\neq \emptyset)V \in \nu$.

Definition 4.3. An enlargement $\kappa : \mu \times \nu \to P(X \times Y)$ is said to be regular with respect to κ_1 and κ_2 , if for each point $(x, y) \in X \times Y$ and each $\mu \times \nu$ -open set W containing (x, y), there exists $U \in \mu$ and $V \in \nu$ such that $x \in U$, $y \in V$ and $\kappa_1(U) \times \kappa_2(V) \subset \kappa(W)$.

Proposition 4.4. Let $\kappa : \mu \times \mu \to P(X \times X)$ be an enlargement associated with κ_1 and κ_2 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 space, then the set $A = \{(x, y) \in X \times X : f(x) = f(y)\}$ is a κ -closed set of $(X \times X, \mu \times \mu)$.

[Revista Integración

Proof. We show that $c_{\kappa}(A) \subset A$. Let $(x, y) \in X \times X \setminus A$. Then, there exist $U, V \in \nu$ such that $f(x) \in U, f(y) \in V$ and $\kappa_2(U) \cap \kappa_2(V) = \emptyset$. Moreover, for U and V there exist $W, S \in \mu$ such that $x \in W, y \in S, f(\kappa_1(W)) \subset \kappa_2(U)$ and $f(\kappa_1(S)) \subset \kappa_2(V)$. Therefore, we have $\kappa(W \times S) \cap A = \emptyset$. This shows that $(x, y) \notin c_{\kappa}(A)$.

Corollary 4.5. If $\kappa : \mu \times \mu \to P(X \times X)$ is an enlargement associated with κ_1 and κ_2 and it is regular with respect to κ_1 and κ_2 . A generalized topological space (X, μ) is κ_1 - T_2 if and only if the diagonal set $\Delta = \{(x, x) : x \in X\}$ is κ -closed in $(X \times X, \mu \times \mu)$.

Proposition 4.6. Let $\kappa : \mu \times \nu \to P(X \times Y)$ be an enlargement associated with κ_1 and κ_2 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 space, then the graph of f, $G(f) = \{(x, f(x)) \in X \times Y\}$ is a κ -closed set of $(X \times Y, \mu \times \nu)$.

Proof. The proof is similar to that of Proposition 4.4.

Definition 4.7. An enlargement κ on μ is said to be regular, if for any μ -open neighborhoods U, V of $x \in X$, there exists a μ -open neighborhood W of x such that $\kappa(U) \cap \kappa(V) \supset \kappa(W)$.

Theorem 4.8. Suppose that κ_1 is a regular enlargement and $\kappa : \mu \times \nu \to P(X \times Y)$ is regular with respect to κ_1 and κ_2 . Let $f : (X, \mu) \to (Y, \nu)$ be a function whose graph G(f) is κ -closed in $(X \times Y, \mu \times \nu)$. If a subset B is κ_2 -compact in (Y, ν) , then $f^{-1}(B)$ is κ_1 -closed in (X, μ) .

Proof. Suppose that $f^{-1}(B)$ is not κ_1 -closed. Then, there exists a point x such that $x \in c_{\kappa_1}(f^{-1}(B))$ and $x \notin f^{-1}(B)$. Since $(x,b) \notin G(f)$ for each $b \in B$ and $G(f) \supset c_{\kappa}(G(f))$, there exists a $\mu \times \nu$ -open set W such that $(x,b) \in W$ and $\kappa(W) \cap G(f) = \emptyset$. By the regularity of κ , for each $b \in B$ we can take two sets $U(b) \in \mu$ and $V(b) \in \nu$ such that $x \in U(b), b \in V(b)$ and $\kappa_1(U(b)) \times \kappa_2(V(b)) \subset \kappa(W)$. Then we have $f(\kappa_1(U(b))) \cap \kappa_2(V(b)) = \emptyset$. Since $\{V(b) : b \in B\}$ is a ν -open cover of B, there exists a finite number of points $b_1, ..., b_n \in B$ such that $B \subset \bigcup_{i=1}^n \kappa_2(V(b_i))$, by the κ_2 -compactness of B. By the regularity of κ_1 , there exists $U \in \mu$ such that $x \in U, \kappa_1(U) \subset \bigcap_{i=1}^n \kappa_1(U(b_i))$. Therefore, we have $\kappa_1(U) \cap f^{-1}(B) \subset \bigcup_{i=1}^n \kappa_1(U(b_i)) \cap f^{-1}(\kappa_2(V(b_i))) = \emptyset$. This shows that $x \notin c_{\kappa_1}(f^{-1}(B))$, thus we have a contradiction.

Theorem 4.9. Let $f : (X, \mu) \to (Y, \nu)$ be a function whose graph G(f) is κ -closed in $(X \times Y, \mu \times \nu)$, and suppose that the following conditions hold:

- 1. $\kappa_1 : \mu \to P(X)$ is open,
- 2. $\kappa_2: \nu \to P(Y)$ is regular, and
- 3. $\kappa : \mu \times \nu \to P(X \times Y)$ is an enlargement associated with κ_1 and κ_2 , and κ is regular with respect to κ_1 and κ_2 .

If every cover of A by κ_1 -open sets of (X, μ) has a finite subcover, then f(A) is κ_2 -closed in (Y, ν) .

Proof. The proof is similar to that of Theorem 4.8

1

Vol. 32, No. 1, 2014]

Proposition 4.10. Let $\kappa : \mu \times \nu \to P(X \times Y)$ be an enlargement associated with κ_1 and κ_2 . If $f : (X, \mu) \to (Y, \nu)$ is (κ_1, κ_2) -continuous and (Y, ν) is a κ_2 - T_2 , then the graph of $f, G(f) = \{(x, f(x)) \in X \times Y\}$ is a $\kappa_{\mu \times \nu}$ -closed set of $(X \times Y, \mu \times \nu)$.

Proof. The proof is similar to that of Proposition 4.4.

$$\checkmark$$

Definition 4.11. A function $f : (X, \mu) \to (Y, \nu)$ is said to be (κ, λ) -closed, if for any κ_{μ} -closed set A of (X, μ) , f(A) is λ_{ν} -closed in (Y, ν) .

Theorem 4.12. Suppose that f is (κ, λ) -continuous and (id, λ) -closed. If for every $g.\kappa_{\mu}$ closed set A of (X, μ) , then the image f(A) is $g.\lambda_{\nu}$ -closed.

Proof. Let V be any λ_{ν} -open set of (Y, ν) such that $f(A) \subset V$. By the Theorem 2.2 (2), $f^{-1}(V)$ is κ_{μ} -open. Since A is $g.\kappa_{\mu}$ -closed and $A \subset f^{-1}(V)$, we have $c_{\kappa}(A) \subset f^{-1}(V)$, and hence $f(c_{\kappa}(A)) \subset V$. It follows from Proposition 1.3 of [3] and our assumption that $f(c_{\kappa}(A))$ is λ_{ν} -closed. Therefore we have $c_{\lambda}(f(A)) \subset c_{\lambda}(f(c_{\kappa}(A))) = f(c_{\kappa}(A)) \subset V$. This implies f(A) is $g.\lambda_{\nu}$ -closed.

Theorem 4.13. If $f : (X, \mu) \to (Y, \nu)$ is (κ, λ) -continuous and (id, λ) -closed, if f is injective and (Y, ν) is λ - $T_{1/2}$, then (X, μ) is κ - $T_{1/2}$.

Proof. Let A be a $g.\kappa_{\mu}$ -closed set of (X,μ) . We show that A is κ_{μ} -closed. By Theorem 4.12 and our assumptions it is obtained that f(A) is $g.\lambda_{\nu}$ -closed, and hence f(A) is λ_{μ} -closed. Since f is (κ, λ) -continuous, $f^{-1}(f(A))$ is κ_{μ} -closed by using Theorem 2.2 (2).

Acknowledgements. The authors thank the referees for their valuable comments and suggestions.

References

- Császár A., "Generalized topology, generalized continuity", Acta Math. Hungar. 96 (2002), 351–357.
- [2] Császár A., "Generalized open sets in generalized topology", Acta Math. Hungar. 106 (2005), 53–66.
- [3] Császár A., "Enlargements and generalized topologies", Acta Math. Hungar. 120 (2008), 351–354.
- [4] Császár A., "Product of generalized topology", Acta Math. Hungar. 123 (2009), 127– 132.
- [5] Maragathavalli S., Sheik John M. and Sivaraj D., "On g-closed sets in generalized topological spaces", J. Adv. Res. Pure Math. 2 (2010), no. 1, 57–64.
- [6] V. Renukadevi, "Generalized topology of an enlargement", J. Adv. Res. Pure Math. 2 (2010), no. 3, 38–46.