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Abstract. The aim of this paper is to characterize the κµ.closure of any subset
A of X and study under what conditions a subset A of X is g.κµ-closed. We
also introduce the notions of κ-Ti (i = 0, 1/2, 1, 2) and study some properties
of them.
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Axiomas de separación en ampliaciones

de topologías generalizadas

Resumen. El objetivo de este trabajo es caracterizar la κµ.clausura de
cualquier subconjunto A de X y estudiar en qué condiciones un subcon-
junto A de X es g.κµ-cerrado. También introducimos las nociones de κ-Ti

(i = 0, 1/2, 1, 2) y el estudio de algunas propiedades de ellas.
Palabras claves: Topología generalizada, ampliaciones.

1. Introduction

In 2002, Császár [1] introduced the notions of generalized topology and generalized conti-
nuity. In 2008, Császár [3] defined an enlargement and construct the generalized topology
induced by an enlargement; introduced the concept of (κ, λ)-continuity and (κµ, λµ)-
continuity on enlargements. In 2008, Császár [4] defined and studied the notions of
product of generalized topologies. In 2010, S. Maragathavalli et al. in [5] studied the
g.κµ-closed sets in generalized topological spaces and gave some characterization and
properties. Also V. Renukadevi in [6] gave a characterization of g.κµ-closed using en-
largements. In this paper we characterize the κµ-closure of any subset A of X , compare
the sets cκ defined in [3] and cκµ

, study under what conditions a subset A of X is g.κµ-
closed) and introduce the notions of κ-Ti (i = 0, 1/2, 1, 2) and study some properties of
them, finally we study some notions related with the product of generalized topologies.
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2. Preliminaries

Let X be a nonempty set and µ be a collection of subsets of X . Then µ is called a
generalized topology on X if and only if ∅ ∈ µ and Gi ∈ µ for i ∈ I �= ∅ implies

⋃
i∈I Gi ∈

µ. We call the pair (X,µ) a generalized topological space on X . The elements of µ are
called µ-open sets [1] and the complements are called µ-closed sets. The generalized-
closure of a subset A of X , denoted by cµ(A), is the intersection of all µ-closed sets
containing A; and the generalized-interior of A, denoted by iµ(A), is the union of µ-open
sets included in A. Let µ be a generalized topology on X . A mapping κ : µ → P (X)
is called an enlargement [3] on X if M ⊆ κM ( = κ(M)) whenever M ∈ µ. Let µ be a
generalized topology on X and κ : µ → P (X) an enlargement of µ. Let us say that a
subset A ⊆ X is κµ-open [3] if and only if x ∈ A implies the existence of a µ-open set
M such that x ∈ M and κM ⊆ A. The collection of all κµ-open sets is a generalized
topology on X [3]. A subset A ⊆ X is said to be κµ-closed if and only if X\A is κµ-open
[3]. The set cκ (briefly cκA) is defined in [3] as the following:

cκ(A) = {x ∈ X : κ(M) ∩ A �= ∅ for every µ-open set M containing x}.

Definition 2.1 ([3]). Let (X,µ) and (Y, ν) be generalized topological spaces. A function
f : (X,µ) → (Y, ν) is said to be (κ, λ)-continuous if x ∈ X and N ∈ ν, f(x) ∈ N imply
the existence of M ∈ µ such that x ∈ M and f(κM) ⊂ λN .

Theorem 2.2 ([3]). Let (X,µ) and (Y, ν) be generalized topological spaces and f :
(X,µ) → (Y, ν) a (κ, λ)-continuous function. Then the following hold:

1. f(cκ(A)) ⊂ cλ(f(A)) holds for every subset A of (X,µ).

2. for every λν-open set B of (Y, ν), f−1(B) is κµ-open in (X,µ).

3. Enlargement-separation axioms

Definition 3.1. Let κ : µ → P (X) be an enlargement and A a subset of X . Then the
κµ-closure of A is denoted by cκµ

(A), and it is defined as the intersection of all κµ-closed
sets containing A.

Remark 3.2. Since the collection of all κµ-open sets is a generalized topology on X , then
for any A ⊂ X, cκµ

(A) is a κµ-closed set.

Proposition 3.3. Let κ : µ → P (X) be an enlargement and A a subset of X. Then
cκµ

(A) = {y ∈ X : V ∩A �= ∅ for every V ∈ κµ such that y ∈ V }.

Proof. Denote E = {y ∈ X : V ∩ A �= ∅ for every V ∈ κµ such that y ∈ V }. We
shall prove that cκµ

(A) = E. Let x /∈ E. Then there exists a κµ-open set V containing
x such that V ∩ A = ∅. This implies that X\V is κµ-closed and A ⊂ X\V . Hence
cκµ

(A) ⊂ X\V . It follows that x /∈ cκµ
(A). Thus we have that cκµ

(A) ⊂ E. Conversely,
let x /∈ cκµ

(A). Then there exists a κµ-closed set F such that A ⊂ F and x /∈ F . Then
we have that x ∈ X\F , X\F ∈ κµ and (X\F )∩A = ∅. This implies that x /∈ E. Hence
E ⊂ cκµ

(A). Therefore cκµ
(A) = E. ����
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Separation axioms on enlargements of generalized topologies 21

Example 3.4. Let X = {a, b, c, d} and µ = P (X)\{all proper subsets of X which con-
tains d}. The enlargement κ adds the element d to each nonempty µ-open set. Then
κµ = {∅, X}. Now put A = {a}. Obviously cκµ

(A) = X and cκ(A) = {a, d}. This
example shows that cκ � cκµ

.

Example 3.5. Let X = R be the real line and µ = {∅,R}∪{R\{x}, x �= 0}. The enlarge-
ment κ is defined as κ(A) = cµ(A). Then κµ = {∅, X}.

Example 3.6. Let X = R and µ = {∅,R} ∪ {Aa = (a,+∞) for all a ∈ R}. The enlarge-
ment map κ is defined as follows:

κ(A) =






A if A = (0,+∞),
R if A �= (0,+∞),
∅ if A = ∅.

The generalized κµ topology on X is {∅,R, (0,+∞)}.

Definition 3.7. An enlargement κ on µ is said to be open, if for every µ-neighborhood
U of x ∈ X , there exists a κµ-open set B such that x ∈ B and κ(U) ⊃ B.

Example 3.8. Let X = {a, b, c} and µ = {∅, X, {a}, {b}, {a, b}, {a, c}}. Define κ : µ →
P (X) as follows:

κ(A) =

�
A if b ∈ A,

cµ(A) if b /∈ A.

The enlargement κ on µ is open.

Proposition 3.9. If κ : µ → P (X) is an open enlargement and A a subset of X, then
cκ(A) = cκµ

(A) and cκ(cκ(A)) = cκ(A) hold, and cκ(A) is κµ-closed in (X,µ).

Proof. Suppose that x /∈ cκ(A). Then there exists a µ-open set U containing x such that
κ(U) ∩A = ∅. Since κ is an open enlargement, by Definition 3.7, there exists a κµ-open
set V such that x ∈ V ⊂ κ(U) and so V ∩ A = ∅. By Proposition 3.3, x /∈ cκµ

(A);
it follows that cκµ

(A) ⊂ cκ(A). By Corollary 1.7 of [3], we have cκ(A) ⊂ cκµ
(A). In

consequence, we obtain that cκ(cκ(A)) = cκ(A). By Proposition 1.3 of [3], we obtain
that cκ(A) is a κµ-closed in (X,µ). ����

Definition 3.10 ([6]). Let µ be a generalized topology on X and κ : µ → P (X) an
enlargement of µ. Then a subset A of a generalized topological space (X,µ) is said to be
a generalized κµ-closed (abbreviated by g.κµ-closed) set in (X,µ), if cκ(A) ⊂ U whenever
A ⊂ U and U ∈ κµ.

Proposition 3.11. Every κµ-closed set is g.κµ-closed.

Proof. Straightforward. ����

Remark 3.12. A subset A is g.idµ-closed if and only if A is gµ-closed in the sense of
Maragathavalli et. al. [5].

Theorem 3.13 ([6]). Let κ be an enlargement of a generalized topological space (X,µ).
If A is g.κµ-closed in (X,µ), then cκ({x}) ∩A �= ∅ for every x ∈ cκ(A).
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Proof. Let A be a g.κµ-closed set of (X,µ). Suppose that there exists a point x ∈ cκ(A)
such that cκ({x}) ∩ A = ∅. By Proposition 1.3 of [3], cκ({x}) is µ-closed. Put U =
X\cκ({x}). Then, we have that A ⊂ U , x /∈ U and U is a µ-open set of (X,µ). Since A
is a g.κµ-closed set, cκ(A) ⊂ U . Thus, we have x /∈ cκ(A). This is a contradiction. ����

The converse of the above theorem is not necessarily true, as we can see.

Example 3.14. Let N be the set of all natural numbers and µ the discrete topology on
N . Let i0 be a fixed odd number. Define κ : µ → P (N) as follows:

κ({n}) =






{2i : i ∈ N} if n is an even number,
{2i+ 1 : i ∈ N} if n = i0,

{n} if n is an odd number �= i0,

and κ(A) = N for the rest.

Clearly, κ is an enlargement on µ. Take A = {2, 4}. It is easy to see that cκ(A) = {2i :
i ∈ N} and cκ({x}) ∩A �= ∅ for every x ∈ cκ(A), but A is not a g.κµ-closed set.

Theorem 3.15. Let µ be a generalized topology on X and κ : µ → P (X) an enlargement
on µ.

1. If a subset A is g.κµ-closed in (X,µ), then cκ(A)\A does not contain any nonempty
κµ-closed set.

2. If κ : µ → P (X) is an open enlargement on (X,µ), then the converse of (1) is true.

Proof. (1). Suppose that there exists a κµ-closed set F such that F ⊂ cκ(A)\A. Then, we
have that A ⊂ X\F and X\F is κµ-open. It follows from assumption that cκ(A) ⊂ X\F
and so F ⊂ (cκ(A)\A) ∩ (X\cκ(A)). Therefore, we have that F = ∅. (2). Let U be a
κµ-open set such that A ⊂ U . Since κ is an open enlargement, it follows from Proposition
3.9 that cκ(A) is κµ-closed in (X,µ). Thus using Proposition 1.1 of [3], we have that
cκµ

(A) ∩X\U , say F , is a κµ-closed set in (X,µ). Since X\U ⊂ X\A, F ⊂ cκµ
(A)\A.

Using the assumption of the converse of (1) above, F = ∅ and hence cκµ
(A) ⊂ U . ����

Remark 3.16. The Theorem 4.1 of [6] is not true, because the condition that κ is an
open enlargement can not be omitted, as we show in the following example.

Example 3.17. In the Example 3.14, µ is not an open enlargement. If we take A = {2, 4},
it is easy to see that cκ(A)\A does not contain any nonempty κµ-closed set and A is not
a g.κµ-closed set.

Lemma 3.18 ([6]). Let A be a subset of a generalized topological space (X,µ) and κ : µ →
P (X) an enlargement on (X,µ). Then, for each x ∈ X, {x} is κµ-closed or (X\{x}) is
a g.κµ-closed set of (X,µ).

Proof. Suppose that {x} is not κµ-closed. Then X\{x} is not κµ-open. Let U be any
κµ-open set such that X\{x} ⊂ U . Then, since U = X , cκ(X\{x}) ⊂ U . Therefore,
X\{x} is g.κµ-closed. ����
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Separation axioms on enlargements of generalized topologies 23

Definition 3.19. A generalized topological space (X,µ) is said to be a κ-T1/2 space, if
every g.κµ-closed set of (X,µ) is κµ-closed.

Theorem 3.20. A generalized topological space (X,µ) is κ-T1/2 if and only if, for each
x ∈ X, {x} is κµ-closed or κµ-open in (X,µ).

Proof. Necessity: It is obtained by Lemma 3.18 and Definition 3.19. Sufficiency: Let F
be g.κµ-closed in (X,µ). We shall prove that cκµ

(F ) = F . It is sufficient to show that
cκµ

(F ) ⊂ F . Assume that there exists a point x such that x ∈ cκµ
(F )\F . Then, by

assumption, {x} is κµ-closed or κµ-open.

Case(i): {x} is κµ-closed set. For this case, we have a κµ-closed set {x} such that
{x} ⊂ cκµ

(F )\F . This is a contradiction to Theorem 3.15 (1).

Case(ii): {x} is κµ-open set. Using Corollary 1.7 of [3], we have x ∈ cκµ
(F ). Since {x}

is κµ-open, it implies that {x} ∩ F �= ∅. This is a contradiction. Thus, we have that
cκ(F ) = F , and so, by Proposition 1.4 of [3], F is κµ-closed. ����

Definition 3.21. Let κ : µ → P (X) be an enlargement. A generalized topological space
(X,µ) is said to be:

1. κ-T0 if for any two distinct points x, y ∈ X there exists a µ-open set U such that
either x ∈ U and y /∈ κ(U) or y ∈ U and x /∈ κ(U).

2. κ-T1 if for any two distinct points x, y ∈ X there exist two µ-open sets U and V
containing x and y, respectively such that y /∈ κ(U) and x /∈ κ(V ).

3. κ-T2 if for any two distinct points x, y ∈ X there exist two µ-open sets U and V
containing x and y, respectively such that κ(U) ∩ κ(V ) = ∅.

Theorem 3.22. Let A be a subset of a generalized topological space (X,µ) and κ : µ →
P (X) an open enlargement on (X,µ). Then (X,µ) is a κ-T0 space if and only if for each
pair x, y ∈ X with x �= y, cκ({x}) = cκ({y}) holds.

Proof. Let x and y be any two distinct points of a κ-T0 space. Then, by Definition 3.21,
there exists a µ-open set U such that x ∈ U and y /∈ κ(U). It follows that there exists a
µ-open set S such that x ∈ S and S ⊂ κ(U). Hence, y ∈ X\κ(U) ⊂ X\S. Because X\S
is a µ-closed set, we obtain that cκ({y}) ⊂ X\S, and so cκ({x}) �= cκ({y}). Conversely,
suppose that x �= y for any x, y ∈ X . Then, we have that cκ({x}) �= cκ({y}). Thus,
we assume that there exists z ∈ cκ({x}) but z /∈ cκ({y}). If x ∈ cκ({y}), then we
obtain cκ({x}) ⊂ cκ({y}). This implies that z ∈ cκ({y}). This is a contradiction; in
consequence, x ∈ cκ({y}). Therefore, there exists a µ-open set W such that x ∈ W and
κ(W ) ∩ {y} = ∅. Thus, we have that x ∈ W and y /∈ κ(W ). Hence, (X,µ) is a κ-T0

space. ����

Example 3.23. In the Example 3.14, take A = {2, 4}; then cκ(A) − A = {2i : i ∈
N − {1, 2}} does not contain any nonempty κµ-open set, and A is not a g.κµ-closed set.

Theorem 3.24. A generalized topological space (X,µ) is κ-T1 if and only if every singleton
set of X is κµ-closed.
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Proof. The proof follows from the respective definitions. ����

From Theorems 3.20, 3.24 and Definition 3.21, we obtain the following:

κ-T2 → κ-T1 → κ-T1/2 → κ-T0.

Definition 3.25. Let (X,µ) be a generalized topological space. Then the sequence {xk}
is said to be κ-converge to a point x0 ∈ X , denoted xk κ−→x0, if for every µ-open set U

containing x0 there exists a positive integer n such that xk ∈ κ(U) for all k ≥ n.

Theorem 3.26. Let (X,µ) be a κ-T2 space. If {xk} is a κ-converge sequence, then it
κ-converges to at most one point.

Proof. Let {xk} be a sequence in X κ-converging to x and y. Then by definition of
κ-T2 space, there exist U, V ∈ µ such that x ∈ U, y ∈ V and κ(U) ∩ κ(V ) = ∅. Since
xk κ−→x, there exists a positive integer n1 such that xk ∈ κ(U) for all k ≥ n1. Also xk κ−→y,

therefore there exists a positive integer n2 such that xk ∈ κ(V ), for all k ≥ n2. Let
n0 = max(n1, n2). Then xk ∈ κ(U) and xk ∈ κ(V ), for all k ≥ n0 or xk ∈ κ(U) ∩ κ(V ),
for all k ≥ n0. This contradiction proves that {xk} κ-converges to at most one point. ����

Remark 3.27. Note that the above results generalize the well known separation axioms
in general topology in an structure more weaker than a topology.

4. Additional Properties

Proposition 4.1. Let f : (X,µ) → (Y, ν) be a (κ, λ)-continuous injection. If (Y, ν) is
λ-T1 (resp. λ-T2), then (X,µ) is κ-T1 (resp. κ-T2).

Proof. Suppose that (Y, ν) is λ-T2. Let x and x
′

be distinct points of X . Then there
exist two open sets V and W of Y such that f(x) ∈ V, f(x

′

) ∈ W and λ(V )∩ λ(W ) = ∅.
Since f is (κ, λ)-continuous, for V and W there exist two open sets U, S such that
x ∈ U, x

′

∈ S, f(κ(U)) ⊂ λ(V ) and f(κ(S)) ⊂ λ(W ). Therefore, we have κ(U)∩κ(S) = ∅,
and hence (X,µ) is κ-T2. The proof of the case of λ-T1 is similar. ����

In [4] the notion of product of generalized topologies is defined. Let µ and ν be two
generalized topologies, and β the collection of all sets U × V , where U ∈ µ and V ∈ ν.
Clearly ∅ ∈ β, so we can define a generalized topology µ × ν = µ × ν(β) having β for
base. We call µ× ν the product of the generalized topologies µ and ν.

Definition 4.2. An enlargement κ : µ× ν → P (X × Y ) is said to be associated with κ1

and κ2, if κ(U × V ) = κ1(U)× κ2(V ) holds for each (�= ∅)U ∈ µ, (�= ∅)V ∈ ν.

Definition 4.3. An enlargement κ : µ× ν → P (X × Y ) is said to be regular with respect
to κ1 and κ2, if for each point (x, y) ∈ X × Y and each µ × ν-open set W containing
(x, y), there exists U ∈ µ and V ∈ ν such that x ∈ U , y ∈ V and κ1(U)×κ2(V ) ⊂ κ(W ).

Proposition 4.4. Let κ : µ × µ → P (X ×X) be an enlargement associated with κ1 and
κ2. If f : (X,µ) → (Y, ν) is (κ1, κ2)-continuous and (Y, ν) is a κ2-T2 space, then the set
A = {(x, y) ∈ X ×X : f(x) = f(y)} is a κ-closed set of (X ×X,µ× µ).
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Proof. We show that cκ(A) ⊂ A. Let (x, y) ∈ X × X\A. Then, there exist U, V ∈ ν
such that f(x) ∈ U, f(y) ∈ V and κ2(U)∩κ2(V ) = ∅. Moreover, for U and V there exist
W,S ∈ µ such that x ∈ W , y ∈ S, f(κ1(W )) ⊂ κ2(U) and f(κ1(S)) ⊂ κ2(V ). Therefore,
we have κ(W × S) ∩A = ∅. This shows that (x, y) /∈ cκ(A). ����

Corollary 4.5. If κ : µ×µ → P (X×X) is an enlargement associated with κ1 and κ2 and
it is regular with respect to κ1 and κ2. A generalized topological space (X,µ) is κ1-T2 if
and only if the diagonal set ∆ = {(x, x) : x ∈ X} is κ-closed in (X ×X,µ× µ).

Proposition 4.6. Let κ : µ × ν → P (X × Y ) be an enlargement associated with κ1 and
κ2. If f : (X,µ) → (Y, ν) is (κ1, κ2)-continuous and (Y, ν) is a κ2-T2 space, then the
graph of f , G(f) = {(x, f(x)) ∈ X × Y } is a κ-closed set of (X × Y, µ× ν).

Proof. The proof is similar to that of Proposition 4.4. ����

Definition 4.7. An enlargement κ on µ is said to be regular, if for any µ-open neigh-
borhoods U, V of x ∈ X , there exists a µ-open neighborhood W of x such that
κ(U) ∩ κ(V ) ⊃ κ(W ).

Theorem 4.8. Suppose that κ1 is a regular enlargement and κ : µ × ν → P (X × Y ) is
regular with respect to κ1 and κ2. Let f : (X,µ) → (Y, ν) be a function whose graph
G(f) is κ-closed in (X × Y, µ× ν). If a subset B is κ2-compact in (Y, ν), then f−1(B)
is κ1-closed in (X,µ).

Proof. Suppose that f−1(B) is not κ1-closed. Then, there exists a point x such that
x ∈ cκ1

(f−1(B)) and x /∈ f−1(B). Since (x, b) /∈ G(f) for each b ∈ B and G(f) ⊃
cκ(G(f)), there exists a µ × ν-open set W such that (x, b) ∈ W and κ(W ) ∩ G(f) = ∅.
By the regularity of κ, for each b ∈ B we can take two sets U(b) ∈ µ and V (b) ∈ ν such
that x ∈ U(b), b ∈ V (b) and κ1(U(b)) × κ2(V (b)) ⊂ κ(W ). Then we have f(κ1(U(b))) ∩
κ2(V (b)) = ∅. Since {V (b) : b ∈ B} is a ν-open cover of B, there exists a finite number
of points b1, ..., bn ∈ B such that B ⊂

⋃n
i=1

κ2(V (bi)), by the κ2-compactness of B.
By the regularity of κ1, there exists U ∈ µ such that x ∈ U , κ1(U) ⊂

⋂n
i=1

κ1(U(bi)).
Therefore, we have κ1(U) ∩ f−1(B) ⊂

⋃n
i=1

κ1(U(bi)) ∩ f−1(κ2(V (bi))) = ∅. This shows
that x /∈ cκ1

(f−1(B)), thus we have a contradiction. ����

Theorem 4.9. Let f : (X,µ) → (Y, ν) be a function whose graph G(f) is κ-closed in
(X × Y, µ× ν), and suppose that the following conditions hold:

1. κ1 : µ → P (X) is open,

2. κ2 : ν → P (Y ) is regular, and

3. κ : µ×ν → P (X×Y ) is an enlargement associated with κ1 and κ2, and κ is regular
with respect to κ1 and κ2.

If every cover of A by κ1-open sets of (X,µ) has a finite subcover, then f(A) is κ2-closed
in (Y, ν).

Proof. The proof is similar to that of Theorem 4.8 ����
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Proposition 4.10. Let κ : µ× ν → P (X × Y ) be an enlargement associated with κ1 and
κ2. If f : (X,µ) → (Y, ν) is (κ1, κ2)-continuous and (Y, ν) is a κ2-T2, then the graph of
f , G(f) = {(x, f(x)) ∈ X × Y } is a κµ×ν-closed set of (X × Y, µ× ν).

Proof. The proof is similar to that of Proposition 4.4. ����

Definition 4.11. A function f : (X,µ) → (Y, ν) is said to be (κ, λ)-closed, if for any
κµ-closed set A of (X,µ), f(A) is λν-closed in (Y, ν).

Theorem 4.12. Suppose that f is (κ, λ)-continuous and (id, λ)-closed. If for every g.κµ-
closed set A of (X,µ), then the image f(A) is g.λν-closed.

Proof. Let V be any λν -open set of (Y, ν) such that f(A) ⊂ V . By the Theorem 2.2 (2),
f−1(V ) is κµ-open. Since A is g.κµ-closed and A ⊂ f−1(V ), we have cκ(A) ⊂ f−1(V ),
and hence f(cκ(A)) ⊂ V . It follows from Proposition 1.3 of [3] and our assumption that
f(cκ(A)) is λν-closed. Therefore we have cλ(f(A)) ⊂ cλ(f(cκ(A))) = f(cκ(A)) ⊂ V .
This implies f(A) is g.λν-closed. ����

Theorem 4.13. If f : (X,µ) → (Y, ν) is (κ, λ)-continuous and (id, λ)-closed, if f is
injective and (Y, ν) is λ-T1/2, then (X,µ) is κ-T1/2.

Proof. Let A be a g.κµ-closed set of (X,µ). We show that A is κµ-closed. By
Theorem 4.12 and our assumptions it is obtained that f(A) is g.λν -closed, and hence
f(A) is λµ-closed. Since f is (κ, λ)-continuous, f−1(f(A)) is κµ-closed by using
Theorem 2.2 (2). ����
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