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El problema del primer retorno asociado a un
operador seudodiferencial en dimensién 3

Resumen. En este articulo estudiamos el problema del primer retorno asocia-
do a un operador seudodiferencial eliptico con simbolo no radial de dimensién
3 sobre el cuerpo de los ntmeros p-adicos.

Palabras clave: Caminatas aleatorias, ultradifusién, ntimeros p-adicos, anéali-
sis no arquimediano.

1. Introduction

Avetisov et al. have constructed a wide variety of models of ultrametric diffusion cons-
trained by hierarchical energy landscapes (see [2[,[3]). From a mathematical point of
view, in these models the time-evolution of a complex system is described by a p-adic
master equation (a parabolic-type pseudodifferential equation) which controls the time-
evolution of a transition function of a random walk on an ultrametric space, and the
random walk describes the dynamics of the system in the space of configurational states
which is approximated by an ultrametric space (Qp).
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The problem of the first return in dimension 1 was studied in [4], and in arbitrary
dimension in [7]. In both articles, pseudodifferential operators with radial symbols were
considered. More recently, Chacén-Cortés [6] considers pseudodifferential operators over
(@f} with non-radial symbol; he studies the problem of first return for a random walk
X (t,w) whose density distribution satisfies certain diffusion equation.

In [5], the authors study elliptic pseudodifferential operators in dimension 3 and find a
function, Z(z,t), x € Qg, t € R, that satisfies the following equation

QD) [ Kool - .t)  ule. )iy, "
Q}

where K_,(z) is the Riesz kernel associated to the elliptic quadratic form
fo(8) =&t + 65 — €3

Using the same techniques as in [6] we prove that the random walk X (¢, w) whose density
distribution satisfies the equation (1) is recurrent if & > 2 and transient when o < 3.
This result is analog to the one showed in [7], in the sense that 2« represent the degree of
the symbol, and in this case the process is recurrent if 2« is greater that the dimension,

3.

The article is organized as follows. In Section 2 we write some facts about p-adics.
In Section 3 we define the symbol for the pseudodifferential operator and its Fourier
transform. In Section 4 we study the Cauchy problem and give some properties of its
fundamental solution, and define a Markov process over @13). In Section 5 we determine
the probability density function for a path of X (¢,w) goes back to Zf,, and we show that
the process is recurrent when o > %, and otherwise is transient (see Theorem 5.7).

2. Preliminars

For the sake of completeness we include some preliminars. For more details the reader
may consult [1],[9],[10].

2.1. The field of p-adic numbers

Along this article p will denote a prime number different from 2. The field of p-adic
numbers Q, is defined as the completion of the field of rational numbers Q with respect
to the p-adic norm | - |,, which is defined as

0 ifx=0,
|zl =

p 7 it =p7%,

where a and b are integers coprime with p. The integer vy := ord(x), with ord(0) := 400,
is called the p-adic order of x. We extend the p-adic norm to Q) by taking

|||y := 11;1%Xn|517i|p5 for z = (x1,...,2,) € Q).

We define ord(z) = min; <;<,{ord(z;)}; then ||z||, = p~°*4®). Any p-adic number = # 0
has a unique expansion z = p°*4(*) Z;io z;p’, where x; € {0,1,2,...,p—1} and z¢ # 0.

[Revista Integracion



The problem of the first return attached to a pseudodifferential operator in dimension 3 109

By using this expansion, we define the fractional part of x € Qp, denoted by {z},, as
the rational number

() 0 if z =0 or ord(z) > 0,
Tjp = ;
P @ O ey if ord(z) < 0.

For v € Z, denote by Bl(a) = {z € Qp : ||z — a|l, < p7} the ball of radius p” with
center at a = (ay,...,a,) € Qp, and take BJ(0) := BY}. Note that B!(a) = B,(a1) x
.-+ x By(an), where B,(a;) = {x € Qp : |z; — a;|, < p?} is the one-dimensional ball of
radius p” with center at a; € Q,. The ball Bj(0) is equal to the product of n copies of
By(0) := Zy, the ring of p-adic integers.

2.2. The Bruhat-Schwartz space

A complex-valued function ¢ defined on Q} is called locally constant if for any z € Q)
there exists an integer I(x) € Z such that

p(x +12') = () for 2’ € By, (2)

A function ¢ : Q) — C is called a Bruhat-Schwartz function (or a test function) if it is
locally constant with compact support. The C-vector space of Bruhat-Schwartz functions
is denoted by S(Q}). For ¢ € S(Q)), the largest of such numbers | = [(y) satisfying (2)
is called the exponent of local constancy of .

Let S'(Q}) denote the set of all functionals (distributions) on S(Qj). All functionals on
S(Qp) are continuous.

Set x(y) = exp(2mi{y},) for y € Q,. The map x(-) is an additive character on Q,, i.e.
a continuos map from Q, into S (the unit circle) satisfying x(yo + v1) = x(yo)x(y1),

Yo, Y1 € @p'

2.3. Fourier transform

Given & = (&1,...,&n) and v = (z1,...,2,) € Qp, weset { -z := E?Zl &x;j. The Fourier
transform of ¢ € S(Q}) is defined as

Fo©) = [ x(e-ap@ds for s,

where d"z is the Haar measure on Q) normalized by the condition vol(Bg) = 1. The
Fourier transform is a linear isomorphism from S(Qj) onto itself satisfying (F(F))(§) =
©(—=¢). We will also use the notation ¢ and ¢ for the Fourier transform of ¢.

The Fourier transform F [f] of a distribution f € S’ ((@;}) is defined by

(Ff],9) = (f, Flg]) forall p € S(Qy).

The Fourier transform f — F[f] is a linear isomorphism from S’ (Q}) onto S (Qp).
Furthermore, f = F [F[f] (=€)].
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2.4. The space ),

We denote by My, A > 0, the C-vector space of locally constant functions () on Qj
such that |p(z)| < C(1+|[z[[}), where C'is a positive constant. If the function ¢ depends
also on a parameter ¢, we shall say that © € 9 uniformly with respect to t, if its constant
C and its exponent of local constancy do not depend on ¢.

3. Pseudodifferential operators

We take f(&) = €€ + pe€3 — p&3 and f°(€) = p€? + €3 — e£2, with € € Z a quadratic non-
residue module p. Given a > 0, we define the pseudodifferential operator with symbol

£ ()l by
$(@) — C(@)nL*(Qy)

e — F0.00) @ =F, (IF O Faner).

In [5] the authors show that the Fourier transform of the symbol is given by

—Q

F @] = s [0+ 2" Dl o)+ 202 + DI 0] 17 @),
(3)

where

1 fzecA
Ta(z) = !
Al@) {o ited A,

and for 6 = 1,¢,p,pe put Vs := {x € Q} | f°(z) € §[QF]*}. Observe that Ve = 0,
otherwise the elliptic form pz? + 23 — ex3 — pex? = 0 would have non-trivial solution in
Q.

If we consider

Ka(o) 1= T (149 Dhaone (@) + 571677 + D, &) | (@) 2,

then equation (3) can be written as

Fale) = 11@I ar s+ It ()

and as a distribution on U(Qg), K, (x) possesses a meromorphic continuation to all
a# S+ /-1y (see [5, Lemma 5]).

Inp

Since F~! (|f|g) = K_, we have |f (&) Foew € L' (Q)) NL? (Q}) , and the operator
is well-defined. Therefore it is possible to write the operator as a convolution

FO,0)p=K oxp= . K_o)(p(z —y) — o(x))d’y, (5)
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for ¢p € S (Qg). Actually, the domain of the operator can be extended to the locally
constant functions u(z) such that

/ L Kalu@)de < oo (6)

There exists an important inequality for elliptic polynomials, which is essential to do all
the calculations (see [11]). In our case, for f and f°, the inequalities are given in the
next lemma.

Lemma 3.1 ([6, Lemma 3]). Let f, f° be as above. Then
(i) p7 |zl < If(@)lp < |z, for every z € Q)

.. — 2 2
(it) p~t |zl < [f°@)lp < ll2ll,,  for every x € Q.

4. The Cauchy problem

The Cauchy problem

ou(z,t)
— = SO u(xt), weQ; 0<t<T,

(7)
u(z,0) = p(z),

where @« > 0, T > 0, ¢ € May, 0 < A < « has a solution w : @13) x [0,T] — C satisfying
u(z,t) € Moy and

u(z, 1) = Z(z,t) % p(z) = / Z(x — . p(n)dn, (®)

3
P

where the heat kernel Z(x,t) attached to f(x) is

Z(x,t) = Z(z,t; f,a) = / X(—€ - z)e Ol g3¢,

P
for x€@Q},t>0and o> 0 (see [5]).

Theorem 4.1. The function Z(x,t) has the following properties:
(i) Z(x,t) >0 for any t > 0.
(ii) / Z(z,t)d*x =1 for any t > 0.
Q

—3—2a
(iii) Z(x,t) < Ct (||gc||p + tﬁ) , where C is a positive constant, for anyt > 0 and
any x € Q3.

(v) Z(x,t)* Z(x,t') = Z(z,t +t') for any t, t' > 0.
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(v) lim Z(x,t) = 6(x) in S"(Q3).
t—0+
(vi) Z(x,t) € C(Q,R)NLYQ3) N L*(Q3) for any t > 0.
Proof. See Theorems 1, 2, Proposition 2 and Corollary 1 of [11]. ]

4.1. Markov processes over Qg

The space (Qf’), Il p) is a complete non-Archimedean metric space. Let B be the Borel

o-algebra of @13); thus ( g,B, d3x) is a measure space. By using the terminology and
results of [8, Chapters 2, 3], we set

p(t,2,y) == Z(x —y,t) for t >0, 2,y € Q3,

and
[pp(t,y,x)d®y fort>0, zeQ), Beb,
15(2) for t = 0.

P(t,z,B) = {
Lemma 4.2. With the above notation the following assertions hold:

(i) p(t,z,y) is a normal transition density.

(i1) P(t,z,B) is a normal transition function.

Proof. The result follows from Theorem 4.1 (see [8, Section 2.1] for further details). ©

Lemma 4.3. The transition function P(t,x, B) satisfies the following two conditions:

L(B) For each v > 0 and compact B,

lim sup P(t,z, B) = 0.

T—>00 <y,

M(B) For each € > 0 and compact B,

lim sup P(t, z, (@13) \ B3(x)) = 0.

t—=0t zcB

Proof. (i) By Theorem 4.1 (iii) and the fact that |||, is an ultranorm, we have

—3—2«
Pt B <Ct[ (o=l + 1) %
B

1 —3—2«a 3
=t(||x||p+t2o<) vol (B) for z € Q, \ B.

Therefore, lim sup P(¢,x, B) = 0.

:E‘)OOtSu
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(ii) By using Theorem 4.1 (iii), & > 0, and the fact that [|-||, is an ultranorm, we have

1\ —3—2«
PlaQ\ B <t [ (ol +ek) "

o=yl >e
1\ — 32«
— / (Il +23) " P
llz1l,>e€
<ce [ el
llz1l,>e€
=C" (a,€)t.
Therefore,
lim sup P(t,z, Qg \ B3(x)) < lim sup C’ (o, €)t = 0. 4
t—0t zcB t—0t 2cB

Theorem 4.4. Z(x,t) is the transition density of a time and space homogeneous Markov
process which is bounded, right-continuous and has no discontinuities other than jumps.

Proof. The result follows from [8, Theorem 3.6] by using that (Q3, [z]l,) is a semi-
compact space, i.e., a locally compact Hausdorff space with a countable base, and
P(t,z, B) is a normal transition function satisfying conditions L(B) and M (B) (cf. Lem-
mas 4.2 and 4.3). v

5. The first passage time

The solution of the Cauchy problem

8u((93i, H__ K_o@)ulz —y) —u(z,t)]d%, zcQ3, 0<t<T,
Q3

9)
u(z,0) = Q(f[][p),

is given by

u(e.t) = [ x(-¢-00(lg], ) 1O (10)
Q3
Among other properties, the solution (10) is infinitely differentiable with respect to ¢ > 0,
and for m € N,

o"u m am —F(E)], g3

@t = ()™ [ IR x(-¢- o9l Obate )

P
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Lemma 5.1 ([5, Lemma 6]). For Re(a) > 0 we have

||lp>1

Definition 5.2. The random variable 773 (w) := 7(w) : Q) — R defined by
inf{t > 0; X (t,w) € ZJ | there exists ¢’ such that 0 < ¢’ < ¢ and X (t',w) ¢ Z}}

is called the first passage time of a path of the random process X (t,w) entering the
domain Z3.

Note that the initial condition in (9) implies that
Pr ({w € Qg;X(O,w) € Zz}) =1.
Definition 5.3. We say that X (¢,w) is recurrent with respect to Z3 if
Pr({we Q}7(w) <oo}) =1 (12)

Otherwise we say that X (t,w) is transient with respect to Z3.

The meaning of (12) is that every path of X (t,w) is sure to return to Z3. If (12) does
not hold, then there exist paths of X (¢,w) that abandon Zg and never go back.

By using the same arguments given by Chacon in [6] we define the survival probability
as

S(t) = S23(0) = [ o(a. ),

Zy

which is the probability that a path of X (¢,w) remains in Zg at the time t. Because there
are no external forces acting on the random walk, we have

S'(t) = Probability that a path of X (t,w) \ ( Probability that a path of X (t,w)
~ \_ goes back to Z at the time ¢ exits Z3 at the time ¢

(13)
=g(t)—C-S(t) with 0 < C < 1.

In order to determine the probability density function g(¢) we compute S’(t).
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() = /W 28 4 / /K w(x =y, ) — (e, )] dPydse
z3 73 Q3
——[ [ Keallute -0 - a0y’
23 Ilyfly>1
= —/ / K_o(u(z —y, t)d*yd®x —I—/ / K_o(y)u(z, t)d®yd*x
23 Ilyfly>1 23 Ilyfly>1
—— [ Kauwodss [ K@y [ uwods
loilo>1 lsfl>1 23
[ Kawuty gty - (DO 20 )
loil>1
Therefore,
o)== [ Koawulmody (14)
loilo>1
and the constant C' := 2= pl 1;(p2a+p 27°) gatisfies 0 < C <1

Proposition 5.4. The probability density function f(t) of the random variable 7(w) sa-
tisfies the non-homogeneous Volterra equation of second kind

o(t) = / gt — D)+ ). (15)

Proof. The result follows from (14) by using the argument given in the proof of Theorem
1in [4]. v

Lemma 5.5. For f(z) = ex? + pex3 — pr3 and Re(s) > 0 the following formulas hold:

1 adgy _ '

v /lellp—l s+p72 | f(y)l, s+p 20 sp e

(it) If ||€||lp, > p, then there exist constants C1 and Co such that
Cl Cg

/ X(yg) d3y — S—l—p*Q’YO‘ - S_i_pf?’yafa Zf Hg”P -
all—1 8+ —2va @ )
[|z]|p=1 p |f(y)|p 0 Zf Hgnp > p.

Proof. By using the same technique as in [6, Lemma 15] we write U := L;U®), where
U® =09 x U x U8 and

U(l) ifZ if i, =1,
Z, if i;j =0,
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for (i) = (i1,i2,43) € {0,1}*\{(1,1,1)}. Since |f(y)|, € {1,p'}, it is enough to compute
the volume p(U®). The result follows from the following table.

(1) LfW)lp p(UD)
(07 07 0) 1 (1 — p_1)3
(0,0,1) 1 (1—p )?p "
(0,1,0) 1 (1 p 1)2p—1
(0,1,1) 1 (L—p Hp~?
(1,0,0) p71 (1 p 1)2p—1
Lo | pt [ A-p p?
(1,10 | p' [ (A-—p Hp~? &

Proposition 5.6. The Laplace transform G(s) of g(t) is given by G(s) = G1(s) + Ga(s),

where
—a(] — 20 1— —1 —1 -2 (e
Gis) = -7 (1-p )(1_1;_21(5)3 +p7%+p%)
— sy ((1=pt  (—p !
2va 3y
x Zp ;/ (S_Fp—?va + S+p—2'yo¢—oz ’
and
Gols) = p (=) A =p N +p 7 +pY)
2 S) - 1_p72a73

—2va, —3(v—1) 1 _ 2
X E p p (S +p2Da g +p—2(u—1)a—a) ’

Proof. We first note that, if Re (s) > 0, then
K_a(z)este M O5Q (Héllp) € L' ((0,00) x Q2 x Q3 \ Z3, dtd*¢d®x) . (16)

Therefore, by using (16) and Fubini’s Theorem we have

_ . x(=¢§-2) 3¢ 73
- /zp>1Ka( )/zg s+|f(€ )I“d s
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After the change of variables * = p~“y and & = p"y/, and due to the fact that
K_o(p7"y) =p 2> K_,(y), we obtain

- - X(=p7" YY) s,
G(S):—Epm/ Ep‘”/ d*y' d*y.
=1 IIyIIp:1 5=0 Ny ll,=1 8 + D727 f(y)[%

In order to calculate the interior integral we split the set ||y'||, = 1 into two parts, when
- . < and when - . > 1. e nrst case occurs when vy 2~ v, an
p "y -y||, <1, and wh p~ "y -y||, > 1. The first hen v > v, and
then x(—p~"™7y-y') = 1. The second case occurs when v = 0,...,v — 1. By Lemma 5.5
G(s) takes the form G(s) = G1(s) + Ga(s), where

o o 1
Gi(s) = — p’m/ K_o(y) p"”/ — &’y d*y
; llyllp=1 ; ly'llo=1 8 P72 ()3

A =p)A—p ) +p % +p%)

1 _p—2a—3
TR ey N € ) )
2va 3y
X Zp ’YZU (S +p72'ya + S+p72'ya7a¢ ’
and
_ - X"y y) s
Gas) =~ 2”“/ P 3”/ m —dy d%y
' Iullpzl ;) lyll,=1 S + D272 f(¥)]5
o p =)0 -p e T %)
- 1 _p72a73
—2va, —3(v—1) 1 _ 2
x Zp p <S+p2(vl)a S+p2(v1)aa) : ¥

Theorem 5.7. (i) If a > %, then X (t,w; W) is recurrent with respect to Zg.

(it) If o« < 2, then X (t,w; W) is transient with respect to Z3.

_G(s)

o) where

Proof. By Proposition 5.4, the Laplace transform F(s) of f(¢) equals
G(s) is the Laplace transform of g(t), and thus

/ Fdt = 1+G()

Hence, in order to prove that X (¢,w; W) is recurrent is sufficient to show that G(0) =
lims_,o G(s) = o0, and to prove that it is transient, that G(0) = lims_0 G(s) < o0.

(i) Take s € R, s > 0 and set s = p~2*® = p=27%; note that s - 07 & v = oo (v =7).
Now, taking only the first term of G1(s) we have
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p A =p)A-p N+ +p%)
1 _p72a73

) i_o:lp?w ( 1-p' (@ —p2)p1> + Gafs).

s _|_p72’ya s +p72'yafoc

G(s) >

We get Ga(p~2/“) < 0o, but the first sum diverges if o > % Then,

lim G(s) = oo.

s—0+

(ii) Now
p 1 -p**) (1 -p Hp ' +p*+p)
|G(S)| < - 1 _p_ga_3
0o - ) B 1 _p_l (1 _ p—2)p—1
2va 3
< o (e + i ) + 6a0)
v=1 y=v

One sees easily that G2(0) converges, and that the double series converges if a >
Therefore lim,_,o+ G(s) < oo.

e
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