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Abstract. Using standard techniques from geometric quantization, we re-
derive the product of functions on R2 which was first introduced by von
Neumann and later reintroduced by Groenewold and which is the integral
version of the Moyal product. More specifically, by pairing the diagonal real

polarization on the pair groupoid R
2 × R

2
with its standard holomorphic

polarization, we obtain the well-known Segal-Bargmann transform in a ro-
tated and scaled (and half-conjugated) form. Together with a convolution
of functions in the Segal-Bargmann space, which is a natural deformation
of the usual convolution of functions on the pair groupoid, this defines the
Groenewold-von Neumann product on L2(R2).
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Producto de Groenewold-von Neumann mediante

una transformada de Segal-Bargmann

Resumen. Usando técnicas de cuantización geométrica, obtenemos el pro-
ducto de funciones en R

2, primeramente introducido por von Neumann y
posteriormente reintroducido por Groenewold, el cual es la versión integral
del producto de Moyal-Weyl. De forma más específica, por el empareamiento

de polarizaciones reales en el par grupoide R2 × R
2

con sus polarizaciones
holomorfas estándares, obtenemos una transformada de Segal-Bargamann
deformada (por rotación y traslación). Junto con una convolución de fun-
ciones en el espacio de Segal-Bargmann, la cual es una deformación natural
de la convolución de funciones en el par grupoide, se obtiene el producto de
Groenewold-von Neumann en L2(R2).
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Segal-Bargmann, espacios Fock.

0∗E-mail: johnmoreno@mail.uniatlantico.edu.co

Received: 25 July 2015, Accepted: 02 September 2015.
To cite this article: J.B. Moreno, Groenewold-von Neumann product via Segal-Bargmann transform, Rev.

Integr. Temas Mat. 33 (2015), No. 2, 135–144.

135
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1. Introduction

Let M be a symplectic symmetric space, TM its tangent bundle, and let M ×M be the
symplectic pair groupoid. Since M is a symplectic symmetric space, the pushforward of
the vertical fibration of TM under the map

Φ : TM → M ×M, (m, v) 7→ (expm(−v), expm(v)) (1)

determines a foliation FV on M ×M which, if regular, defines a real polarization on the
symplectic pair groupoid (cf. [4],[13], for instance). The regularity condition fails if M
is compact, but it is satisfied if M is noncompact with no compact factors. This short
paper considers only the simplest possible case: M = R

2n (actually we here fix n = 1 to
make matters simpler without any significant loss of generality).

Now, the integral version of the Weyl-Moyal product of functions on R2n, also known
as the Groenewold-von Neumann product, has been obtained and re-obtained in vari-
ous ways since the original work of von Neumann [11]. But in [5], Gracia-Bondia and
Varilly re-derived this product via geometric quantization, using the pairing of two non-
transversal real polarizations on the pair groupoid R2n×R2n, one being the polarization
FV described above (more recently, the polarization FV has been used together with an
“averaging procedure” to re-derive this product via geometric quantization [13]). Here
we will once again re-derive this product, again via geometric quantization and again
using pairing of polarizations, but now pairing the real polarization FV to a transversal
holomorphic polarization on R

2n × R2n.

Although our derivation presented below could be considered as a simple exercise in
geometric quantization, we have not yet found it explicitly done in detail in the litera-
ture. In fact, the main idea for this derivation is already found in the aforementioned
paper by Gracia-Bondía and Várilly ([5], Section VI), but their treatment there is some-
what sketchy and incomplete and uses references to previous papers by Daubechies and
Grossmann ([2],[3]). On the other hand, appropriate generalizations of this technique to
other noncompact hermitian symmetric spaces can in principle be helpful. For instance,
if M = H

2 is the hyperbolic plane, it is not possible to find another real polarization
on the symplectic pair groupoid whose degree of transversality to FV is everywhere con-

stant, but in contrast, the standard holomorphic polarizations on H2×H
2

are everywhere
transversal to FV . This fact shall be thoroughly explored in subsequent papers and con-
stitutes the main motivation for us to working out this technique in detail for the case
of R2 in this note.

As we shall see below in detail, the geometric quantization pairing of FV and a standard
holomorphic polarization on R

2×R2 defines a Segal-Bargmann transform from functions
on R2 to holomorphic functions on C × C, which is isometric to the standard Segal-
Bargmann transform. This latter, originally introduced by V. Bargmann [1], has many
applications in quantum optics as well as in signal processing and harmonic analysis on
phase space [6], and is usually defined by

B[f ](z) =
e−

1
2
z2

πn/4

∫

Rn

f(x)e−
1
2
x2+

√
2xzdx, z ∈ C

n, (2)

where z2 = z21 + z22 + · · · z2n, similarly for x2, with xz = x1z1 + x2z2 + · · ·xnzn.
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Groenewold-von Neumann product via Segal-Bargmann transform 137

Then, B maps isometrically the space L2(Rn, dx) of square integrable functions on Rn

onto the Segal-Bargmann space HL2(Cn) of holomorphic functions on Cn which are

e−|z|2dµ(z)-square integrable, dµ(z) being the Lebesgue measure on Cn.

It is well known that geometric quantization can be used to construct the Segal-Bargmann
space for Cn and its associated Segal-Bargmann transform (cf. e.g. [7],[12],[14]), and
the generalized Segal-Bargmann transform for Lie Groups of compact type can also be
developed using geometric quantization (cf. [8],[9]).

In this short note, again via geometric quantization, we shall obtain the 2-d Segal-
Bargmann transform in a “rotated and scaled” form:

B̃~[f ](w1, w2) = C~ e−
1
2~

w1w2

∫

R2

f(y1, y2)e
− 1

~
(y2

1+y2
2)e

1
~
[y1(w1+w2)−iy2(w1−w2)]dy1dy2,

(3)
where w = (w1, w2) ∈ C2, y = (y1, y2) ∈ R2, and Planck’s constant ~ ∈ R+ can also be
considered as a free positive parameter whenever this is convenient.

Now, (3) takes the form (2) under the linear changes of variables:

η~ : C2 → C
2, w 7→ z =

(

z1 =
1

2
√
~
(w1 + w2), z2 =

i

2
√
~
(w2 − w1)

)

, (4)

ζ~ : R2 → R
2, y 7→ x = y

√
2/~ , (5)

so that
B̃~[f ] = B[f ◦ ζ−1

~
] ◦ η~ (6)

for an appropriate choice of constant C~, and therefore both forms of the Segal-Bargmann
transform, albeit appearing different, are fully equivalent.

That is, observing that under the linear change η~ given by (4) we have that

e−|z|2dµ(z) =
1

4~
e−|w|2/2~dµ(w), (7)

then the map B 7→ B̃~ defined by (6) is, modulo an overall constant factor, an isometry
from HL2(C2) to HL2

2~(C
2), where HL2

t (C
2), t > 0, is the space of holomorphic functions

on C2 which are e−|z|2/tdµ(z)-square integrable. It follows that B̃~ given by (3) is an
isometry from L2(R2, dy) to HL2

2~(C
2), and conjugating the second variable it produces

the transform from L2(R2, dy) to HL2
2~(C× C) (cf. Theorem 2.3, which is also referred

to as the Daubechies-Grossmann transform [2],[3]).

Thus, in Section 2 of this short paper we present our detailed derivation of this transform
(cf. (19)-(24)), which immediately generalizes to all even dimensional cases. Then, in
Section 3, combining this transform with a natural deformation of the usual convolution
of functions on the pair groupoid, we obtain the integral formulation of the Moyal-Weyl
product, i.e., the Groenewold-von Neumann product of (complex) functions on the real
plane, which is given by (cf. e.g. [13]):

[g1 ∗~ g2](x, y) =
∫

R2×R2

g1(x1, y1)g2(x2, y2)e
i
~
(x1y2−x2y1+xy1−x1y+x2y−xy2)dx1dy1dx2dy2.

(8)
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138 J.B. Moreno

2. A Segal-Bargmann transform via geometric quantization

Let R2 be the plane with coordinates (x, y) and canonical symplectic form ω = dx ∧ dy.
In this case, the map

Φ : TR2 −→ R
2 × R

2, (m, v) 7→ (expm(−v), expm(v))

of (1), is given explicitly by

Φ(x, y; vx, vy) = (x− vx, y − vy; x+ vx, y + vy) = (x−, y−; x+, y+). (9)

Denote by R2 × R
2

the symplectic manifold with symplectic form given by Ω = ω − ω.

If R2 ×R
2

has coordinates (x−, y−;x+, y+) as above, then Ω = dx− ∧ dy− − dx+ ∧ dy+,
and since Φ is a diffeomorphism with inverse Φ−1 given by

x =
x− + x+

2
, y =

y− + y+
2

; vx =
x+ − x−

2
, vy =

y+ − y−
2

, (10)

the pull-back symplectic form Φ∗(Ω) = Π on TR2 is given by

Π = 2(dvy ∧ dx− dvx ∧ dy). (11)

On the other hand, taking

z− = x− + iy−, z+ = x+ + iy+ (12)

as holomorphic coordinates in R
2 × R

2 ≃ C× C, then

Ω =
i

2
dz− ∧ dz̄− − i

2
dz+ ∧ dz̄+. (13)

Consider the following respective polarizations on TR2 and R
2 × R

2
:

P̃ = 〈∂vx, ∂vy〉 and F = 〈∂z̄−, ∂z+〉 .

From (11), the symplectic potential adapted to the polarization P̃ is given by

ΘP̃ = 2(vydx− vxdy),

while from (13) the symplectic potential adapted to the polarization F is given by

ΘF = − i

2
z̄−dz− − i

2
z+dz̄+.

For F̃ = (Φ−1)∗F , we have from (9)-(10) that

ΘF̃ = −[(vxdy+xdvy − ydvx− vydx)+
i

4
d((x− vx)

2+(y− vy)
2+(x+ vx)

2 +(y+ vy)
2)].

Therefore,
ΘP̃ −ΘF̃ = dΨ̃, (14)
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Groenewold-von Neumann product via Segal-Bargmann transform 139

where

Ψ̃(x, y, vx, vy) = (xvy − yvx) +
i

4
[(x − vx)

2 + (y − vy)
2 + (x+ vx)

2 + (y + vy)
2], (15)

which in terms of the holomorphic coordinates on R2 × R2 can be written as

Ψ̃ ◦ Φ−1 = Ψ(z−, z̄−, z+, z̄+) =
i

4
(z̄+z− − z̄−z+ + z−z̄− + z+z̄+) , (16)

with explicit expressions in holomorphic coordinates for the map

Φ−1(z−, z̄−; z+, z̄+) = (x, y; vx, vy)

obtained by combining (10) and (12).

Now, recall that a connection on a hermitian line bundle L associated to the pre-quantum
principal S1-bundle over a symplectic manifold M is given locally by

∇X = X − (i/~)Θ(X), X ∈ X(M),

where Θ is a symplectic potential. Then, consider the polarized section s0 of L over

R2 ×R
2

adapted to the symplectic potential ΘF and its pull-back s̃0 adapted to ΘF̃ , as

well as the polarized section t̃0 of L̃ over TR2 adapted to the symplectic potential ΘP̃

and its push-forward t0 adapted to ΘP , where P = Φ∗P̃ , satisfying

∇X̃ t̃0 = −(i/~)ΘP̃ t̃0; (t̃0, t̃0) = 1,

∇X̃ s̃0 = −(i/~)ΘF̃ s̃0; (s̃0, s̃0) = 1,

where (·, ·) is the hermitian product of the line bundle L̃ and X̃ ∈ X(TR2), with similar

expressions for t0 and s0 in terms of P , F , (·, ·) on L, and X ∈ X(R2 × R
2
).

The polarized sections t̃ ∈ ΓP̃ L̃ are given by t̃ = ḡt̃0, with ḡ ∈ C∞

C
(TR2) satisfying

Xḡ = 0, for X ∈ X(TR2, P̃ ); thus, it follows that ḡ depends only on the variables
(x, y) ∈ R2 seen as the zero section of TR2. Similarly, the polarized sections s ∈ ΓFL
are of the form s = fs0, where ∂f

∂z−

= ∂f
∂z+

= 0, that is, f = f(z−, z+) is holomorphic.

Furthermore, as the pre-quantum line bundle is a linear bundle, we have that s̃0 = φ̃t̃0
for a nonvanishing function φ̃ ∈ C∞

C
(TR2). Therefore,

∇X̃ s̃0 = ∇X̃ φ̃t̃0 = (X̃φ̃)t̃0 + φ̃∇X̃ t̃0;

whence we get

dφ̃

φ̃
=

i

~
(ΘP̃ −ΘF̃ ) = d

(
i

~
Ψ̃

)

(cf. (14)-(15)); thus, φ̃ = CeiΨ̃/~. Similarly for s0 = φt0, φ = C′eiΨ/~ (cf. (16)). Hence
we have
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140 J.B. Moreno

Lemma 2.1. For t ∈ ΓPL, t̃ ∈ ΓP̃ L̃, s ∈ ΓFL, s̃ ∈ ΓF̃ L̃, the hermitian products of these
polarized sections are given modulo multiplicative constants by the formulas

(t̃, s̃) = g(x, y)f(z−(x, y; vx, vy), z+(x, y; vx, vy))e
iΨ̃(x,y;vx,vy)/~,

(t, s) = g(x(z−, z̄−; z+, z̄+), y(z−, z̄−; z+, z̄+))f(z−, z+)e
iΨ(z−,z̄−;z+,z̄+)/~,

with z−(x, y; vx, vy), z+(x, y; vx, vy) and x(z−, z̄−; z+, z̄+), y(z−, z̄−; z+, z̄+) obtained from

(9)-(10) and (12), with Ψ̃(x, y; vx, vy) and Ψ(z−, z̄−; z+, z̄+) given by (15) and (16).

Remark 2.2. It will be sometimes convenient to rewrite the product (t, s) above as

(t, s) = g

(
x− + x+

2
,
y− + y+

2

)

f(z−, z+)e
− i

2~
(x+y−−x−y+)e−

1
4~

(|z−|2+|z̄+|2).

Now, as P̃ is the natural polarization on the tangent bundle, given q ∈ R2 and
m ∈ π−1(q), with π the canonical projection, then TqR

2 = Tm(TR2)/P̃m; thus,

△− 1
2
(P̃m) = △− 1

2
(Tm(TR2))⊗△ 1

2
(TqR

2),

and so the volume form ε of R2 determines a (− 1
2 )− P̃ -density, given by ṽ = |εΣ|−

1
2 |ε| 12 ,

where εΣ is the volume form of T (TR2). Then,

ṽ{∂vx, ∂vy} = (|εΣ|{∂x, ∂y; ∂vx, ∂vy})−1/2 · (|ε|{∂x, ∂y})1/2.

On the other hand, if J is a complex structure compatible with Ω and the euclidean
metric, then (R4, J) is a Kähler manifold and the polarization F is a holomorphic polar-
ization; so, there is positive section v ∈ △−1/2(F ) uniquely determined by vv = |εΩ|−1/2,

where εΩ is the Liouville volume form in R2 × R
2
. Hence, we have

v{∂z−, ∂z+} = (|εΩ|{∂z−, ∂z+; ∂z−, ∂z+})−1/4.

Since Φ∗ is an isomorphism, for P = Φ∗(P̃ ) and F̃ = (Φ−1)∗(F ), the natural half densites

in △−1/2(P ) and △−1/2(F̃ ) are given respectively by

v′ = |(Φ−1)∗ε∏|−1/2|(Φ−1)∗ε|1/2, ṽ′ = |εΦ∗Ω|−1/4.

But as εΦ∗Ω = 4[dx ∧ dy ∧ dvx ∧ dvy] (cf. (11)), then we have from (9)-(10) that

ṽ′{∂̃z−, ∂̃z+, ∂̃z−, ∂̃z+} = 1/2, v′{Φ∗(∂vx),Φ∗(∂vy)} = 1/2
√
2,

where ∂̃z− = 1
2 ((Φ

−1)∗(∂x−) + i(Φ−1)∗(∂y−)), ∂̃z+ = 1
2 ((Φ

−1)∗(∂x+)− i(Φ−1)∗(∂y+)).

Therefore, from the definition of the pairing and Lemma 2.1, we have that

〈t⊗ v, s⊗ v′〉pr =

C ·
∫

R4

g(x, y)f(z−, z̄+)e
− 1

2~
[i(x+y−−x−y+)]e−

1
4~

(|z−|2+|z̄+|2)dx−dy−dx+dy+, (17)
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Groenewold-von Neumann product via Segal-Bargmann transform 141

where x = (x+ + x−)/2, y = (y+ + y−)/2, z± = x± + iy± and C is a constant.

Now, consider the space

HL2
2~(C× C) =

{

f : C2 → C | ∂f

∂z1
=

∂f

∂z2
= 0,

∫

R4

|f(z1, z2)|2e−
1
2~

(|z1|2+|z2|2)dx1dy1dx2dy2 < ∞
}

,

where z1 = x1 + iy1, z2 = x2 + iy2.

Clearly, HL2
2~(C×C) ≃ HL2

2~(C
2), the space of holomorphic functions on C2 which are

e−|z|2/2~dµ(z)-square integrable. Therefore, this is a reproducing kernel Hilbert space
(cf. e.g. Theorem 1.4.3(2) in [10]) with reproducing expression given by

f(z−, z̄+) =
1

(2π~)2

∫

R4

f(w−, w̄+)e
1
2~

(z−w̄−+z̄+w+−w−w̄−−w+w̄+)dp−dq−dp+dq+, (18)

where w− = p− + iq− and w+ = p+ + iq+.

Then, with a bit of algebraic manipulation, from (17)-(18) we obtain

〈
t⊗ v, s̃⊗ ṽ′

〉

pr
= C′ ·

∫

R8

g(x, y)f(w−, w̄+)e
− i

~
(vxy−xvy)e−

1
2~

(x2+y2+v2
x+v2

y)·

e
1
2~

(x(w̄−+w+)+iy(w̄−−w+)+vx(w+−w̄−)−ivy(w̄−+w+))·
e

1
2~

(−w−w̄−−w+w̄+)dp−dq−dp+dq+dxdydvxdvy,

and calculating the integrals with respect to vx and vy, we get:

〈
t⊗ v, s̃⊗ ṽ′

〉

pr
= C′ ·

∫

R6

g(x, y)f(w−, w̄+)e
− 1

~
(x2+y2)e

1
~
[x(w̄−+w+)+iy(w̄−−w+)]·

e−
1
2~

(w̄−w−+w+w̄++w̄−w+)dp−dq−dp+dq+dxdy;

whence, 〈
t⊗ v, s̃⊗ ṽ′

〉

pr
= 〈f, T~[g]〉HL2

2~
(C×C) = 〈S~[f ], g〉L2(R2) ,

with
S~ : HL2

2~(C× C) → L2(R2) (19)

given by

S~[f ](x, y) = C′e−
1
~
(x2+y2)

∫

R4

f(w1, w̄2)e
− 1

2~
w̄1w2e

1
~
[x(w̄1+w2)+iy(w̄1−w2)]· (20)

e−
1
2~

(w̄1w1+w̄2w2)dp1dq1dp2dq2

and
T~ : L2(R2) → HL2

2~(C× C) (21)

given by

T~[g](w1, w̄2) = C′e−
1
2~

w1w̄2

∫

R2

g(x, y)e−
1
~
(x2+y2)e

1
~
[x(w1+w̄2)−iy(w1−w̄2)]dxdy, (22)
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142 J.B. Moreno

where we have identified w− = w1 = p1 + iq1, w+ = w2 = p2 + iq2.

Now, in order to pass from HL2
2~(C×C) to HL2

2~(C
2) and relate to the standard Segal-

Bargmann transform, we conjugate in the second variable, that is, denoting

C2 : C× C → C× C, (w1, w2) 7→ (w1, w̄2), (23)

we have that, for an appropriate choice of C′,

T~[g] ◦ C2 = B̃~[g] = B[g ◦ ζ−1
~

] ◦ η~ : L2(R2) → HL2(C2) (24)

(cf. (2)-(6) and (22)-(23), where B is the standard 2-d Segal-Bargmann transform).

Then, as is well known, the standard Segal-Bargamann transform is an invertible unitary
operator B : L2(R2) → HL2(C2) whose inverse can be written as

B
−1[f ](x) =

e−
1
2
x2

πn/4

∫

C2

f(z)e−
1
2
z̄2+

√
2xz̄e−|z|2dµ(z), x ∈ R

2. (25)

Therefore, from (24) and (25), using (2)-(6) and (20)-(23) and the discussion following
equation (7), we have the following

Theorem 2.3. For an appropriate choice of C′ = C~, the “rotated and scaled” form of the
Segal-Bargmann transform B̃~, given by (3) and (24), is an invertible unitary operator

L2(R2) → HL2
2~(C

2) whose inverse B̃
−1
~

can be written as B̃
−1
~

[f ] = S~[f ◦ C−1
2 ], S~

given by (20), from which it follows that S~ : HL2
2~(C × C) → L2(R2) is an invertible

unitary operator whose inverse S−1
~

= T~ is given by (22).

3. Re-deriving the Groenewold-von Neumann product

Starting from the usual convolution of functions on the symplectic pair groupoid

[f1 ⊗ f2](p1, q1; p3, q3) =

∫

R2

f1(p1, q1; p2, q2)f2(p2, q2; p3, q3)dp2dq2,

and motivated by the measure in the Segal-Bargmann space and the pairing given by
equation (19), we define a deformed convolution on HL2

2~(C× C) as follows

⊗~ : HL2
2~(C× C)×HL2

2~(C× C) → HL2
2~(C× C) (26)

(f1, f2) 7→ f1 ⊗~ f2,

where

[f1 ⊗~ f2](w1, w̄3) =

∫

R2

f1(w1, w̄2)f2(w2, w̄3)e
− 1

2~
w2w̄2dp2dq2, (27)

which can be straightforwardly checked to satisfy the following

Lemma 3.1. The deformed convolution defined by (26)-(27) above is associative.
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Groenewold-von Neumann product via Segal-Bargmann transform 143

From this, we define a new product on L2(R2) as follows

∗~ : L2(R2)× L2(R2) → L2(R2) (28)

(g1, g2) 7→ g1 ∗~ g2,

where
g1 ∗~ g2 = S~[ T~[g1]⊗~ T~[g2] ], (29)

which from Theorem 2.3 and Lemma 3.1 satisfies the following

Corollary 3.2. The product ∗~ defined by (28)-(29) above is associative.

Finally, by a straightforward computation, one can easily check the following

Proposition 3.3. The formula for the product ∗~ defined by (28)-(29) via (20)-(22) and
(26)-(27) coincides with formula (8) for the Groenewold-von Neumann product.

As a last remark, we emphasize that the whole treatment presented in this short paper
generalizes in an obvious way from R2 to R2n, for every n ∈ N.
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