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Abstract. A set of positive integers A is called a g-Golomb ruler if the dif-
ference between two distinct elements of A is repeated at most g times. This
definition is a generalization of the Golomb ruler (¢ = 1). In this paper
we construct g-Golomb ruler from Golomb ruler and we prove two theorems
about extremal functions associated with this sets.
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Reglas g-Golomb

Resumen. Se dice que un conjunto de enteros positivos A satisface la regla
g-Golomb si la diferencia entre dos elementos distintos de A se repite a lo
més g veces. Esta definicion es una generalizacion de las reglas de Golomb
(9 = 1). En este articulo construimos reglas g-Golomb a partir de reglas
Golomb y demostramos dos teoremas sobre las funciones extremas asociadas
con estos conjuntos.
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1. Introduction

A Golomb ruler is a set of non-negative integers with the property that all the non-zero
differences of two elements in the set are distinct. The elements of the ruler are called
marks.

The Golomb rulers were first discovered by W.C. Babcock in 1950 when he was investi-
gating the intermodulation distortion, while he analyzed the positioning of radio channels
in the frequency spectrum seeking to eliminate the third and fifth order interferences.
However, the Golomb rulers derive their name from Professor Solomon W. Golomb, one
of their greatest pioneers, who studied their construction at relation to combinatorics,
coding theory and communications, by using finite field theory.
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Definition 1.1. A Golomb ruler is a set of integers A = {a1,a2, - ,am}, with the
property that for each positive integer d there exists at most one solution of the equation
d=a; —aj;, for i>j.

Given a Golomb ruler A, its number of elements is called order and the largest distance
between two elements of the ruler is called length, denoted £(A); this is:

l(A) = max A — min A,

where max A := max{ay,...,an,} and min A := min{aq,...,am}.
An example of a Golomb ruler A with order m = 15 and length ¢(A) = 151 is the set
A ={0,4,20,30,57,59,62,76,100, 111,123, 136, 144, 145, 151} . (1)

As the concept of Golomb ruler is invariant under translations, it is possible to consider
the first element or minimum value of the ruler equal to zero. The following result,
which proof is based on the former definition, shows that the concept of Golomb ruler is
invariant under linear applications.

Proposition 1.2 (Linearity). Let A = {a1,a2,---an} be a Golomb ruler; then, the set
x-A+y={ra1 +y,xas +y, - xa, +y} is also a Golomb ruler, for all x,y € Z, with

x # 0.

1.1. Optimal Golomb rulers

We say that a Golomb ruler is optimal of order m if it has the shortest possible length
for a given number of marks m (optimally short). For example, the ruler given in (1) for
m = 15 is a optimal Golomb ruler with length 151.

Currently, we know optimal rulers up to 27 marks (February 2014) and there is an ongoing
search for an optimal 28-marks ruler.

The fundamental problem in the study of the Golomb rulers is to find the shortest rulers
for a certain number of marks; that is, to investigate the following function:

G(m) :=min{f(A) : A is a Golomb ruler, |A| = m}.
As mentioned above, so far we know the exact values of G(m) for 1 < m < 27 marks,
and we also have some prospects for optimal rulers to values from m up to 150.

A. Dimitromanolakis [4] proved computationally in 2002 that G(m) < m?2, for all
m < 65000, and he conjectured that that this is true for every integer m.

We can find a trivial lower bound by counting the number of distinct differences of a
Golomb ruler with m elements; so, G(m) > +m(m — 1).

Some researchers succeeded in improving the trivial lower bound, having the following
results.

e G(m) > m? — 2my/m (M.D. Atkinson, N. Santoro y J. Urrutia [1]).
e G(m) >m? —2my/m + v/m — 2 (A. Dimitromanolakis [4]).

In [1] it is conjectured that for all m it is possible that G(m) > m? — my/m.
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1.2. g-Golomb Rulers

It is important to consider a generalization of the Golomb ruler concept, on account
of a comment made in the article [1] by M.D. Atkinson and others, in which distances
between each pair of marks of the ruler can be repeated up to g times.

In order to define these new rulers, we will mention some concepts before.

Definition 1.3. Let G be an additive abelian group, A, B subsets of G. The functions
of representation with domain the group G and co-domain the non-negative integers, are
defined by

Ra_p(z) :=|{(a,;b) e AX B: a—b=uzx}|, (2)

Ratp(z) :=|{(a,b) e AX B: a+b=uz}|, (3)
for all x € G.

Let us note that the function representation counts the number of times in which x can
be represented as a difference of an element of A with an element of B. When B = A,
we have the concept of a g-Golomb ruler as follows.

Definition 1.4. A g-Golomb ruler or By [g] set is a set A of integers such that

Ry_a(x)<g, forallz € Z, x #0.

Thus, if g = 1 a 1-Golomb ruler or By [1] set is a Golomb ruler, also called Sidon set.
The following examples show 2-Golomb and 3-Golomb rulers, respectively:

A ={0,1,3,8,10, 14, 20, 25, 28,29},

Ay =40,1,2,5,8,11,13,15,19,20}.

The corresponding extension of the function G(m) related to a g-Golomb ruler is the
following;:

G(g,m) :=min{l(A) : |A] = m and A is a g-Golomb ruler}.

The descriptions below are two problems related to the behavior of this function.

Problem 1. Optimally short g-Golomb rulers: The main problem of the optimally
short g-Golomb rulers is to estimate the function G(g,m) and study the lim %.
m— o0

Problem 2. Optimally dense g- Golomb rulers: The main problem of the optimally
dense g-Golomb rulers is to estimate the function

F; (g,n) :=max{|A] : AC [1,n], A is a g-Golomb ruler},

o . F; (g,n)
where [1,n] :={1,2,...,n} and study the W}E)noo (;n)1/2 .

When we consider the case ¢ = 1, G(1,m) = G(m), and for this function we know
exact values up to m = 27; we also know G(m) < m? up to m = 65000 and
G(m) > m? +2myvm —1 - —2— + /m — 1 (Corollary 2.9). Also, we know that

m—1

Fy (1,n) = Fy(n), and we know that Fy(n) < nz +ni + 2. 13].
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2. Additive energy

In this section we present the concept of additive energy between two sets and some
properties which allow us to estimate the functions G(g,m) and F; (g,n). We obtain
a lower bound for the function G(g,m), so when g = 1 this bound is better than the
lower bound given by A. Dimitromanolakis [4] to the function G(m). In the case of
the function F; (g,n), we prove through a different method the upper bound given in
[11], which generalizes the bound of Lindstrom [6], who uses other arguments in order to
demonstrate that Fy (g,n) < (gn)"/? + (gn)"/* + 1.

Definition 2.1. Let G be a finite Abelian group, A, B subsets of G. The additive energy
between A and B, denoted E(A, B), is defined as

E(A,B) = |{(a,d',b,t)) e Ax AXxBx B: a+b=ad +b}|
When A = B, we write E(A) instead of E(A, A).
From the definition of additive energy, it is easy to see that
E(A,B) =|{(a,d’,b,b)) e Ax Ax BxB: a—V =d — b},
E(A,B) =|{(a,ad’,b,b') e Ax Ax Bx B: a—ad =V —b}|

The following lemma show the relationship between additive energy and the representa-
tive functions [10].

Lemma 2.2. Let G be an additive Abelian group, A, B subsets of G. We have the
following identities

E(AvB): Z R124+B(x)7 (4)
rx€EA+B

E(AB) = Y RA ) (5)
yeEA—B

E(A,B) = > Ra_a(z) Re_5(2). (6)

z€(A—A)N(B—B)
On the other hand, as a consequence of Lemma 2.2, we have the followings inequalities
[10].
Corollary 2.3. Let A and B be subsets of an additive Abelian group G; then, there are
x €A+ B, ye€ A— B such that
A|B| _ E(A.B)
|A+B| — |A[|B]

< [Rays (@), [Ra-B(y)|- (7)

The next lemma is due to J. Cilleruelo [3], which allows us to delimit the cardinality of
a g-Golomb ruler.

Lemma 2.4. Let G be an additive group and A, B subsets of G. If Ra_a(x) < g, for all
x #0 in G, then

Al-yg
AP <14+ 58] (5+ 520, )
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Proof. Since Ra_a(x) < g for all x # 0 in G, using (6) we have

E(A,B) = > Ra_a(z)Rp_p(x)
z€(A—A)N(B—B)
= RA_A(O)RB_B(O)+ Z RA_A(x)RB_B(w)

z€(A—A)N(B—B)
x#0

= |AllB| + > Ra-a(x)Rp-p(z)
ze(A—A)N(B—-B)
z#£0

< |A||B] + > gRp_p(z)

ze(A—A)N(B—-B)
z#£0

<|A|IBl+g ) Rp-px)

z€(B—B)
x#0

= |A[|B] +g(IBI* - | B]);

then using (7) and the above inequality we obtain

A2 < 'ﬁ;f'E(A,B)
< o AU+ g5 - 18]
e (s )
S ) ‘

Using the Lemma 2.4 we obtain the following result.

Theorem 2.5. For all g,n € N we have

Fy (g,n) < (gn)"/? + (gn)"/* + 1. 9)

Proof. Let A C [1,n] be a g-Golomb ruler and B the set of integers B = [0, u], for which

|B| = u+1. Since Rq_a(x) < g forall x # 0, A+ B C [1,u + n], from Lemma 2.4 we
have

Al-yg
AP <|A+B <g+| )
|A]" < | B

<(u+mn) (g—i—'ilT_lg)
_ (utn)(gu+ 4]
u+1 '
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If we make u = | {/22|, where |z| denotes the integer part of the real number z, we
g
obtain
1/4 1/4
) o] o ()]
2
47 < T
(%)
= [(gn)"/* + 1A + gn + (gn)*/*;

then,

AP = [(gn)/* +1]|A] < gn + (gn)*'*;
now, if we complete squares in the left side we have

1/4 2 1/4 2
(|A|—7(g”)2 “) Sgn+(9n)3/4+<7(gn)2 +1> ,

and by completing the squares in the right side we obtain

n)t/ 2 n)t/ 2
(|A| Ckbh )124 ha 1) < ((gn)1/2 + gn) 7+ 1 )124 + 1) + (gn)** — (gn) 2 ((gn)* + 1)

_ ((gn)l/z n (9")1;4 + 1>2 ~ (gn)?
(gn)1/4+1>27

< (tgmy 2+ 0

implying that
(gn)/* +1
2

(gn)'/* +1

4] - < ()2 +

and so,
Al < (gn)"/* + (gn)"/* + 1.

As the g- Golomb ruler A was chosen arbitrarily, we have
Fy (g,m) < (9n)"/2 + (gn)"/* + 1,

for all g and n positive integers. ]

As a consequence of the Theorem 2.5, we have the following results for the case of
optimally dense Golomb rulers.

Corollary 2.6. For all natural number n we have
Fy(n) <n'/24nt/* 41,
Corollary 2.7.

lim sup =——=—= < /3. (10)

FQ_ (ga n)
n—o00 \/ﬁ
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Now, by using the Lemma 2.4, we present a lower bound to the function G(g, m).

Theorem 2.8. If A = {a;:1<i<m} is a g-Golomb ruler with m marks such that
0=a1 < ag <+ < ay=1~LA), then

2
2 _
Glgm)> ™ _2mVm=g m__m
g g m-—4g

Proof. Let us consider the set B = [0, u], for which |B| = u + 1; since A is a g-Golomb
ruler with |A| = m and £(4) = a,, then Ry_4(x) < g for all non-zero integer z.
Furthermore, since A + B C [0, a,, + u], then |A + B| < ay, +u + 1, and from Lemma
2.4 we obtain

|Al —g
A <|A+ B <g+ .
1B

Then,
2 < (a, 1 m=9g
m* < (am +u+1) 9t

B (am—l—u—i-l)(gu—l—m)'
- u+1

it follows that

mym—g _ m
g9 g9

IA
e
+
=
o+
=
@
=
3
3
L]

“(‘D

Choosing u = | |, we have u <

my/m—g m
g

m2(vTd _ m —
4, > ( g g)_<m m—g @) 1
mym —g g g
m? m? mym—g m
=— - - + =1
g gvm-—4g g g
m? (2m2—gm> LM
g gym-—4g g
:’””_2_m<2(m—g)Jr gm )Jr@_l
g gvym—g gym—g/ g
_m2 2my/m —g m +m 1
g g m—=yg g
That is,
amzm_2_2m\/m—g_ m +@_1
g g m—=g g
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As the previous inequality is valid for any g-Golomb ruler of length a,, (in particular it
holds for the shorter g-Golomb ruler), then

2 2mym —g m m IZ

g ) m-=g9 g

In the case where g = 1 we obtain a better lower bound than the one previously known
in the literature, at the function G(m) defined for Golomb rulers; that is,

Corollary 2.9. For all positive integer m

G(m)2m2—2m\/m—1+m—L—l.

m—1
Corollary 2.10. For all integer g > 1,
G(g,m)
m2

lim inf
n— o0

>

1
. (11)

3. Constructions of g-Golomb rulers

Now we will prove a lower bound for the function Fj (g,n) and a upper bound for the
function G(g,m). For this, we use a result that allows us to transform a Golomb ruler
or B set into a B; [g] set through a groups’ homomorphism [5].

Theorem 3.1. Let g € N and let ¢ : G — G’ be a groups’ homomorphism with |ker(p)| =
g. If A is a Golomb ruler in G, then ©(A) is a g-Golomb ruler in ¢(G).

Proof. Let b;,b; € p(A), i =1,2,...,g9+ 1, there are a;,a} € A such that b; = ¢(a;) and
b, = p(a}), for i =1,2,...,g + 1, and suppose that

by — by =by—by=-+-=by —by =bgp1 —bgy1. (12)
Then
plar) — p(ay) = @laz) — p(ay) = -+ = plag) — p(ag) = p(ag+1) — plags1),  (13)
and, as ¢ is a homomorphism of groups, we have
plar — ay) = plaz — ay) = -+ = p(ag — ag) = P(agt1 — agt1). (14)
Hence it follows that
¢((a1 —ay) — (a; —aj) =0, forall j=2...,g+1,

implying that 8; = (a1 — a}) — (a; — @) € ker(¢), j=2...,9+ 1.

As by hypothesis |ker(p)| = g, by the pigeonhole principle two cases can happen:
CASE I

There exist a j € {2...,¢ + 1} such that §; = 0.
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This implies that a1 — a} = a; — a’;, and since a1, a7, a;, a; € A, being A a Golomb ruler,
then {a1,a}} = {a;,a}}; therefore, {b1,]} = {b;,b’}.

CASE II.
There are 4,j € {2...,9+ 1} such that 8; = 5, =t, ¢t #0.

This means that (a1 — a}) — (a; — ai) = (a1 — @}) — (a; — @}); then a; — a} = a; — af,
and since a;,a},a;j,a; € A, being A a Golomb ruler, then {a;,aj} = {a;,a}}; thus,

{bi, b} = {b;, b}

Furthermore, we know that there are three constructions of Golomb rulers or By sets
very well-know; these are:

= Singer’s construction [9] that provides a Golomb ruler with ¢+ 1 elements, modulo
2
- +q+ 1

» Bose’s construction [2] that provides a Golomb ruler with ¢ elements, modulo ¢*—1.

= Ruzsa’s construction [8] that provides a Golomb ruler with p — 1 elements, modulo
2
p”—Dp.

Here, ¢ is a prime power and p is a prime. Therefore, since there are infinitely many
Golomb rulers or infinitely many By sets, then by the homomorphism of Theorem 3.1 it
is possible to obtain infinitely many g-Golomb rulers or infinitely many By [g] sets, for all
g € N. Although the definition of By [g] set is at first given for subsets of positive integers,
this can be extended for subsets of any additive group. In particular, the construction
of Bose type Bs sets is given for the case of a subset from the additive group Z,2_,, and
since all By sets in Z,, are integer Bs sets contained in [1,n], by Bose’s construction we
obtain integer By sets in [1,¢? — 1], for all prime powers q.

First of all, we will state the Bose Theorem and the a lemma that allows us to determine
the appropriate homomorphism.

Theorem 3.2 (Bose, 1942). For every prime power q, there exists a set A C [1,¢% — 1]
with q elements such that A € By in Zgp_y. Also, A© A = Zp_q1 \ Myy1, where My
indicates the set of multiples set of ¢+ 1 in Zgp_;.

Remark 3.3. Notation: Let A and B be subsets of any group (G, +); then, we define the
set
AoB={a+b:acAbe B, a#b}.

Lemma 3.4. For every integer g > 2 and every prime power q¢ = 1(mod g), there exists

a B € By [g] set such that |B| = q and B C [1, %}.

Proof. By Bose’s construction there is a Sidon set A with g elements in Zg2_,, for every
prime power ¢; in particular, for every prime power ¢ = 1(mod g).

By the Corollary 3.1, there exists a homomorphism

©: Zq2_1 — Zﬁ

g9
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defined as
-1

v(a) = a(mod ), foralla € Zp_q,

where |ker(p)| = g.
Then, B=¢(A) € By [g]inZ,_, and |B|=q.
g

Indeed, since A© A = Zg2_1 \ Myy1, this implies that for r,s € A such that r # s, we
have that r £ s(modgq + 1); then, as for all prime power ¢, ¢ = 1(modg),

(g+1)(q— 1))

b

r#s (mod
)

then |B| = |A| = gq.

And since every modular By [¢] set is an integer B, [g] set, we have that B C [1, %}

is an integer By [g] set. v

In particular, in the previous lemma the existence of By [g] sets for the case ¢ = p prime
is guaranteed.

The following result also guarantees the lower bound for the function F; (n,g), g > 2.
Theorem 3.5. Let ¢ > 2 be an integer. For infinitely many values n, there exists a

A C[1,n] set, A € By [g], with |A] > (gn)"/2.

Proof. For any g > 2 integer, according to the Dirichlet Theorem on primes in arithmetic
progressions, there are infinitely many primes p meeting p = 1(modg).

For each of these primes p , let n = p2q_1; by Lemma 3.4 there exists a B C [1,n] set,
that is, a B, [g] set with

Bl =p=Vp*—1=gn. %
For g = 1 the existence of Golomb rulers or Bj sets is guaranteed by Bose’s construction.
Theorem 3.6. For infinitely many positive integers n, there exists a Golomb ruler A C

[1,n] with |A] > /n.

Proof. Since there are infinitely many primes, we have infinitely many prime powers q.
Let n = ¢? — 1; by Bose’s construction, for every g there exists a Golomb ruler A C [1,7]

such that |A| = ¢ = /¢2 > /> — 1 = V/n. .

Accordingly, we have the next corollary.

Corollary 3.7. For all g € N, all prime power q and all prime p, we have

_ 21
F, (g,q J )Zq- (15)
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From Theorems 3.5 and 3.6, we can conclude that
Fy (g,n) > (gn)'/?,
for all g € N and infinites n.

Corollary 3.8.
lim inf W > /3. (16)

n—oo

Also, by using the Bose’s construction we can obtain an upper bound for the function
G(g,m). By Lemma 3.4 we know that for all g > 2 integers and all p = 1(mod g) primes,
there is a g-Golomb ruler contained in [1, %] with p marks. Therefore, G(g,p) < %.
If g = 1 we obtain the same conclusion as Bose’s Theorem 3.2. So, we have the following

result.

Corollary 3.9. For all integer g > 1, we have

G(g,m)
m2

lim sup <

m— 00

3.1. General theorems

Theorem 3.10. For every g > 1 integer, we have

: F2_(gvn)_
A = TV

Proof. Tt follows from (10) and (16). v

Theorem 3.11. For every g > 1 integer, we have

m—00 m2 g'
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