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Abstract. We present the essential theoretical basis and prove concrete prac-
tical formulas to compute the image of a point on the terrestrial sphere under
Peirce quincuncial projection. We also develop a numerical method to im-
plement such formulas in a digital computer and illustrate this method with
examples. Then, we briefly discuss the criticism of Pierpont on the correct-
ness of Peirce’s formula for the projection. Finally, we draw some conclusions
regarding the generalization of Peirce’s original idea by means of Schwarz-
Christoffel transformations.
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Proyección quincuncial de Peirce

Resumen. Presentamos los fundamentos teóricos esenciales y demostramos
fórmulas concretas para calcular de manera práctica la imagen de un punto
en la esfera terrestre bajo la proyección quincuncial de Peirce. Desarrolla-
mos también un método numérico para implementar dicha proyección en un
computador digital, el cual ilustramos con ejemplos. Luego discutimos breve-
mente las objeciones de Pierpont sobre la validez de la fórmula de Peirce. Por
último, esbozamos algunas conclusiones sobre la generalización de la idea de
Peirce por medio de transformaciones de Schwarz-Christoffel.
Palabras clave: Proyección quincuncial de Peirce, funciones elípticas, cartas
geográficas, métodos numéricos, aplicaciones conformes, teselados.

1. Introduction

The word “map” derives from the medieval Latin mappa mundi, meaning napkin or cloth
of the world. Here, a map projection is a smooth transformation of a sphere into a plane.
There are many types of map projections and they are usually constructed to preserve
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some metric properties of parts of the sphere. These properties comprise area, shape, dis-
tance, among others. In 1879, the American scientist, geodesist and philosopher Charles
Sanders Peirce suggested an angle-preserving map projection useful “for meteorological,
magnetological and other purposes”. The map also shows the connection of all parts on
the Earth’s surface. Peirce quincuncial projection presents the sphere as a square and has
been given the name of “quincuncial”. Certainly, the Latin noun quincunx denotes the
pattern of five points on the corresponding face of a die, or on the volume of a Byzantine
Church.

Peirce’s original paper [10] is extremely laconic. Perhaps because of this, some mathe-
maticians tried, years later, to understand and explain his elegant idea. In particular,
Pierpont [11] detected an error in Peirce’s formula and found a correct expression for the
projection. Other remarks were given shortly after by Frischauf [5].

The essential ingredient in Peirce’s construction is a Jacobi elliptic function, i.e., a mero-
morphic complex function of one complex variable with two linearly independent periods.
The theory of elliptic functions can be addressed in several ways. The contemporary app-
roach to the study of these functions is due to Weierstrass and its modern notation shows
indeed advantages in regard to elegance and symmetry. However, the present paper is
concerned with numerical computing and so, for our purposes, it is more convenient to
use the older Jacobian notation. Because of this, our primary reference on elliptic func-
tions are Jacobi’s original work [7] and the modern account by Solanilla [13]. In addition,
we are interested in some specific results due to Richelot [12] and Durège [4].

By the way, the application of elliptic functions to conformal map projections constitutes
an active research field, both in pure an applied mathematics. We refer the reader to
Lee [8] for a more comprehensive (and very agreeable) treatment of these matters.

In Section 2 we define Peirce quincuncial projection and derive formally practical for-
mulas to compute it. In Section 3 we discuss some symmetries arising from the double
periodicity of the elliptic function involved and use them to clarify some mathematical
considerations left over in the previous sections. Section 4 is devoted to the numerical
calculation of the formulas. We briefly describe a way to program a computer in order to
implement the mathematical expressions found before. Initially, we graph circles of lati-
tude and lines of longitude. Then, we present a version of a map of the World. We also
exchange views on the only, and rather enigmatic, formula given by Peirce [10]. Lastly,
we draw some concluding remarks and announce generalized Peirce-like map projections.

2. Representation of the sphere

The quincuncial projection results from the composition of the famous stereographic
projection with the “inverse” of a Jacobi elliptic function.

2.1. Stereographic projection

We model the globe as a sphere S2 of unit radius. To each point P in this sphere,
we associate its geographical coordinates θ ∈ (0, 2π) and l ∈ (−π/2, π/2), longitude
and latitude, respectively. Instead of l, it is sometimes convenient to use the parameter
p = π/2+ l ∈ (0, π). Thus, we consider the function that projects the sphere without the
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by composing the amplitude with some well-known functions. In this paper we will only
make use of

sin amz = snz, cos amz = cnz and dnz =

√

1− 1

2
sn2z.

The main properties of these functions arise out of their addition formulas. In particular,

cn(z + w) =
cnz cnw − snz snw dnz dnw

1− 1

2
sn2z sn2w

.

We refer the reader to Jacobi [7], or Solanilla [13], for details concerning the proof of the
identities we might need. In order to properly understand Peirce projection, we need
first the following relation.

Proposition 2.1. Let z = x+ iy, cnz = ρ exp(iθ), snz = σ exp(iλ) and dnz = τ exp(iµ).
Then,

cn2x =
ρ2 − σ2τ2

1− 1

2
σ4

and cn2y =
1− 1

2
σ4

ρ2 + σ2τ2
.

Proof. From the complex conjugate z̄ = x − iy, we get 2x = z + z̄ and 2yi = z − z̄.
Therefore, the addition formula for cn implies

cn2x =
cnz cnz̄ − snz snz̄ dnz dnz̄

1− 1

2
sn2z sn2z̄

.

Similarly, since sn is odd and cn, dn are even,

cn2yi =
cnz cnz̄ + snz snz̄ dnz dnz̄

1− 1

2
sn2z sn2z̄

.

Now we use cnz̄ = cnz = ρ exp(−iθ), snz̄ = snz = σ exp(−iλ) and dnz̄ = dnz =
τ exp(−iµ). The second statement follows from the identity cniv = 1/cnv, v ∈ R. ����

2.4. Turning back to the sphere

Now we should relate the coordinates or parameters θ, p with z = x+ iy. The following
result brings us closer to the desired relation.

Proposition 2.2. With the notations in Proposition 2.1, if ρ = tan(p/2), then

σ4 = 1− 2 tan2
p

2
cos 2θ + tan4

p

2
,

τ4 =
1

4
×
(

1 + 2 tan2
p

2
cos 2θ + tan4

p

2

)

.

Proof. We depart from the Pythagorean identity cn2z + sn2z = 1, i.e.,

ρ2 exp(2θi) + σ2 exp(2λi) = 1.
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After equating the imaginary parts1,

ρ2 sin 2θ = −σ2
�

1− cos2 2λ iff cos2 2λ = 1− ρ4

σ4
sin2 2θ.

After equating the real parts,

σ2 cos 2λ = σ2

�

1− ρ4

σ4
sin2 2θ = 1− ρ2 cos 2θ.

Therefore σ4 − ρ4 sin2 2θ = 1− 2ρ2 cos 2θ + ρ4 cos2 2θ, that is to say,

σ4 = 1− 2ρ2 cos 2θ + ρ4 = 1− 2 tan2
p

2
cos 2θ + tan4

p

2
.

Correspondingly, the elliptic identity 1

2
(cn2z + 1) = dnz or

1

2
ρ2 exp(2θi) +

1

2
= τ2 exp(2µi)

yields, by taking the imaginary part,

ρ2 sin 2θ = 2τ2
�

1− cos2 2µ iff cos2 2µ = 1− ρ4

4τ4
sin2 2θ.

So, the real part furnishes

2τ2 cos 2µ = 2τ2
�

1− ρ4

4τ4
sin2 2θ = 1 + ρ2 cos 2θ.

In consequence, we have 4τ4 − ρ4 sin2 2θ = 1+ 2ρ2 cos 2θ + ρ4 cos2 2θ. In other words,

4τ4 = 1 + 2 tan2
p

2
cos 2θ + tan4

p

2
.

����

Corollary 2.3. With the previous notations,

σ2τ2 =
1

2
×
�

�

1 + tan4
p

2

�2

− 4 tan4
p

2
cos2 2θ.

We hereby achieve our primary objective.

Theorem 2.4. Peirce quincuncial projection (θ, p) �→ x+ iy is given by

x =
1

2
F



arccos
2 tan2 p

2
−
�

�

1 + tan4 p

2

�2 − 4 tan4 p

2
cos2 2θ

1 + 2 tan2 p

2
cos 2θ − tan4 p

2



 ,

y =
1

2
F



arccos
1 + 2 tan2 p

2
cos 2θ − tan4 p

2

2 tan2 p

2
+

�

�

1 + tan4 p

2

�2 − 4 tan4 p

2
cos2 2θ



 .

1Without loss of generality –as it will be clear below–, snz (and so the angle λ) lies in the first
quadrant.
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The parameter is now p ∈ [0, π).

3.4. Conformality and magnification

Our version of Peirce projection is the composite function of the stereographic projection
S2 − {N} → R2, (θ, p) �→ ζ, and the restricted inverse elliptic function R2 → Ω, ζ �→ z.
Our choice of Ω is the right region in Figure 5. We notice the pole (marked by ×) in Ω
coincides with the image of the missing North Pole. Therefore, after taking care of minor
details concerning a few points in Ω and disregarding the equatorial line, this composite
projection is in general conformal, i.e., angle-preserving. This implies the images of the
circles of latitude and the lines of longitude cut each other, in general, at right angles.

The magnification, wherever it makes sense, can be computed by noticing with Pierpont
[11] that the symmetries involved imply that m(θ, p) = |dz/dp|. By virtue of the chain
rule,

m(θ, p) =

∣

∣

∣

∣

dz

dζ

∣

∣

∣

∣

∣

∣

∣

∣

dζ

dp

∣

∣

∣

∣

,

where
∣

∣

∣

∣

dζ

dp

∣

∣

∣

∣

=
1

2 cos2(p/2)
and

∣

∣

∣

∣

dz

dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

dcn/dz

∣

∣

∣

∣

=
1

|στ | .

In the last step we have used dcn(z)/dz = −sn(z)dn(z). This yields, by Corollary 2.3,

m(θ, p) =
1

√
2 cos2 p

2

4

√

(

1 + tan4 p
2

)2 − 4 tan4 p
2
cos2 2θ

.

Clearly, m blows up at the North Pole and at the Equator for θ ∈ {0, π/2, 3π/2, 2π}.
In general, along a parallel of latitude, m attains its minimum for θ =
{π/4, 3π/4, 5π/4, 7π/4} and a maximum for θ ∈ {0, π/2, 3π/2, 2π}. By the North and
South Pole, the forms are nearly circles. As p tends to zero, that is, when we approach the
Equator, this behavior results in more and more square-like forms with rounded corners.

4. Computer implementation

4.1. An algorithm

The actions we have used to compute the image of the projection are outlined in the
flowchart shown below.

Firstly, the program reads the geographical coordinates θ, l of a point on the sphere. The
longitude θ consists of

An angle position in degrees or meridian measured from 0◦ (Greenwich in England)
to 180◦ and

An indication of direction, namely E (East) or W (West).

The latitude l is given by
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An angle position in degrees from 0◦ (Equator) to 90◦ and

An indication of direction, namely N (North) or S (South).

With this information, the program determines

One of the octants marked I, II, · · · , V III in Figure 6 and

A possible shift of the angle of longitude (also denoted by θ) by 90◦.

Start

Read θ, l

Find octant, maybe θ ← θ − 90◦

Formula

Write x, y

Stop

The arrangement of the geographical coordinates and the octant is shown in Table 1.

Then, there is a decision step. The program chooses and computes the right formula
according to the octant. Let x, y be the formulas in Theorem 2.4. They might need
the shift described in Table 2. Besides field operations and trigonometric functions,
the computation of an elliptic integral of the first kind is required. A command like
InverseJacobiAM(φ, k) in Maple can easily accomplish this task.

Finally, the program writes the image x, y of the spherical point θ, l on a Cartesian plane.

4.2. A map of the world

As a first example of the application of the algorithm, we portrait in Figure 7 the images
of some circles of latitude and some meridians.

Figure 8 shows our first sketch of the whole world, obtained with the algorithm described
above. In just Europe, we have used more than 120 points.
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