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Abstract. This article is concerned with the existence and uniqueness of
solutions of the Cauchy problem in the periodic setting for a regularized
Benjamin-Ono type system (rBO) by using semigroup theory, Fourier analy-
sis and Banach’s fixed point theorem. This system was recently derived by
Muñoz [12] as a weakly dispersive model for the propagation of small am-
plitude internal waves at the interface of two immiscible fluids with constant
densities. We also conduct some numerical experiments to analyze the error
and convergence in time and space of a fully discrete Fourier spectral scheme,
for approximating the solutions of the initial value problem associated to the
rBO system.
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El buen planteamiento y el cálculo de soluciones

de un sistema regularizado de Benjamin-Ono

Resumen. En este artículo se estudia la existencia y la unicidad de solucio-
nes del problema de Cauchy, en el caso periódico, para un sistema de tipo
Benjamin-Ono regularizado (rBO), usando teoría de semigrupos, análisis de
Fourier y el Teorema del punto fijo de Banach. Este sistema fue deducido
recientemente por Muñoz [12] como un modelo débilmente dispersivo para la
propagación de ondas internas con pequeña amplitud en la interface de dos
fluidos inmiscibles con densidades constantes. Además se realizan algunos ex-
perimentos numéricos para analizar el error y la convergencia en tiempo y
espacio de un esquema espectral de Fourier completamente discreto, a fin de
aproximar las soluciones del problema de valor inicial asociado con el sistema
rBO.
Palabras clave: Sistema BO regularizado, ondas internas, soluciones de onda
viajera periódicas, métodos espectrales.
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1. Introduction

In this paper we will consider the nonlinear integro-differential system written in dimen-
sionless variables

ζt − ((1 − αζ)u)x =
ǫ2

6
ζxxt,

ut + αuux − ρζx =
ρ2
ρ1

ǫH(uxt) +
ǫ2

6
uxxt,

(1)

under the initial conditions

ζ(x, 0) = ζ0(x) and u(x, 0) = u0(x),

and periodic boundary conditions

ζ(x, t) = ζ(x + L, t) and u(x, t) = u(x+ L, t),

where L > 0 is a positive constant. The symbol H denotes the periodic Hilbert Transform
defined by

Hf(x) =
1

L
p.v.

� L/2

−L/2

cot
�π(ξ − x)

L

�
f(ξ)dξ,

where the expression p.v.

�
stands for the integration in the principal value sense. We

refer the reader to the works by Duoandikoetxea [8] and Butzer and Nesser [3] for more
information about the Hilbert Transform. In particular, the following property of this
linear operator is important in the present paper:

H(eikx) = i sign(k)eikx, k ∈ Z, (2)

where

sign(k) =





−1, k < 0,

0, k = 0,

1, k > 0.

The system above was deduced by Muñoz [12] and it describes the propagation of a
weakly nonlinear (α << 1) internal wave propagating at the interface of two immiscible
fluids with constant densities, which are contained at rest in a long channel (ǫ << 1)
with a horizontal rigid top and bottom, and the thickness of the lower layer is assumed
to be effectively infinite, i.e., h2 >> h1 (deep water limit). In Figure 1, we sketch the
physical setting of the problem. In system (1), the constant ρ is given by ρ2

ρ1
−1, where ρ1

and ρ2 represent the densities of the fluids and ρ2/ρ1 > 1 (for stable stratification). The
constants α and ǫ are small positive real numbers that measure the intensity of nonlinear

and dispersive effects, respectively, α =
a

h1
and ǫ =

h1

L
, where h1 denotes the thickness

of the upper fluid layer and the parameters L and a correspond to the characteristic
wavelength and characteristic wave amplitude, respectively. The dimensionless variable
x represents the spatial position and t the propagation time. The function u = u(x, t) is
the velocity monitored at the normalized depth z = 1−

�
2/3, and ζ = ζ(x, t) is the wave

amplitude at the point x and time t, measured with respect to the rest level of the two-
fluid interface. The phenomenon of propagation of waves on the interface between two
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present paper is to show that system (1) is locally well posed in the product periodic
Sobolev space Hs

per × Hs
per , provided that s ≥ 0, by using semigroup theory and the

Banach fixed point principle. This theory can be used to solve a wide class of problems
commonly known as evolution equations that arise in many areas of application such
as physics, chemistry, biology, engineering and economics, among others. Existence and
uniqueness of system (1) is necessary in order to study, in a future research, the stability
of travelling wave solutions of system (1).

The second purpose of this paper is to conduct some numerical experiments to analyze
the accuracy of the fully discrete solver, introduced by Muñoz in [12], for approximating
solutions of system (1) in both the linear and nonlinear cases on a spatial periodic domain.
In [12] was only considered the error of the corresponding semi-discrete formulation. It
is important to notice that the presence of the nonlocal dispersive operator H in system
(1) makes the numerical investigation harder than the study of equations with only local
terms. In this numerical method, the system is discretized in space by the Fourier spectral
method and in time by a second-order accurate scheme. A potential application of this
numerical tool is to explore the admissible range of velocity to guarantee the existence of
solitary waves of the system and to establish whether they are orbitally stable/unstable
under small disturbances.

The paper is organized as follows. In Section 2, we introduce notation, definitions and
results necessary for the theory developed in the paper. In Section 3, we establish the
local well-posedness of system (1) in the periodic case by using semigroup theory and
Banach’s fixed point theorem. Finally in Section 4, we present the numerical results
obtained with a scheme which uses spectral discretization in space and a second-order
finite difference approximation for time stepping of the initial value problem associated
to system (1).

2. Preliminaries

Throughout this paper we will work with L-periodic functions, where L is a positive real
number. The symbol K will denote a positive constant that is updated according to the
context.

Let N,Z,R and C be the sets of naturals, integers, reals and complex numbers, respec-
tively. We will denote by L2(0, L) = L2 the Banach space of the all Lebesgue-measurable
functions on C which are 2-integrable on [0, L]. The usual norm defined on L2 is

�f�L2 :=

(∫ L

0

|f(x)|2dx
)1/2

.

Additionally,

�f, g� =
∫ L

0

f(x)g(x)dx

is an inner product in L2 and �f�L2 = �f, f�1/2.
Let Ck

per(0, L) = Ck
per , k = 0, 1, 2, ... be the space of all k times continuously-differentiable

functions (or class Ck) of period L. Further, Cper = Cper(0, L) = C0
per(0, L) is the space
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of all continuous functions that are L-periodic and C∞
per = C∞

per(0, L) =
⋂

k C
k
per . We will

denote by P the space of all functions φ : R → C of class C∞, that are L-periodic. We
say that T : P → C defines a periodic distribution, i.e., T ∈ P ′, if T is linear and there
exist a sequence (Ψn)n∈N ⊂ P such that

T (φ) = lim
n→∞

∫ L

0

Ψn(x)φ(x)dx, ∀φ ∈ P .

Let s ∈ R. The Sobolev space, denoted by Hs
per = Hs

per(0, L), is defined as

Hs
per =

{
f ∈ P ′ : �f�2s :=

∞∑

n=−∞
(1 + n2)s

∣∣∣f̂(n)
∣∣∣
2

< ∞
}
,

where f̂ : Z → C represents the coefficient of the Fourier Transform of f define by

f̂(n) =
1

L

〈
f, e−2πinx/L

〉
.

If f ∈ Cper , f̂(n) can be written as

f̂(n) =
1

L

∫ L

0

f(x)e−2πinx/Ldx, n ∈ Z.

We recall that for s > 1/2, the space Hs
per is an algebra, i.e., �fg�s ≤ K�f�s �g�s.

We will denote by Xs the product space Hs
per×Hs

per . It is easy to show that the expression

�Y �Xs
= (�ζ�2s + �u�2s)1/2

defines a norm in Xs with Y = (ζ, u)T . Sometimes we will also use the equivalent norm

�Y �Xs
= �ζ�s + �u�s .

Finally, we recall some definitions about semigroup theory. Let X be a Banach space. A
one parameter family (T (t))t≥0 of bounded linear operators from X into X is a semigroup
of bounded linear operators on X if

i. T (0) = I, (I is the identity operator on X);

ii. T (t+ s) = T (t)T (s), ∀t, s ≥ 0 (the semigroup property).

The linear operator A defined by

Ax = lim
t→0+

T (t)x − x

t
∀x ∈ D(A),

with domain

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x

t
exists

}
,
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64 F.A. Pipicano & J.C. Muñoz Grajales

is called the infinitesimal generator of the semigroup T (t). A semigroup (T (t))t≥0 of
bounded linear operators on X is called a C0 semigroup if

lim
t→0+

T (t)x = x ∀x ∈ X.

If C0 is a semigroup, D(A) is dense on X . We refer the reader to [13] for a detailed
information about semigroups of bounded linear operators.

3. Existence and uniqueness

In this section we will investigate the local well-posedness for the regularized Benjamin-
Ono system

ζt − ((1 − αζ)u)x =
ǫ2

6
ζxxt,

ut + αuux − ρζx =
ρ2
ρ1

ǫH(uxt) +
ǫ2

6
uxxt,

(3)

where ρ = ρ2

ρ1
− 1, under the initial conditions

ζ(x, 0) = ζ0(x) and u(x, 0) = u0(x),

and periodic boundary conditions

ζ(x, t) = ζ(x + L, t) and u(x, t) = u(x+ L, t).

The system in (3) can be written as

�
ζt
ut

�
=

�
0 A−1D

ρB−1D 0

��
ζ
u

�
+

�
0 A−1D

ρB−1D 0

��− α
2ρu

2

−αζu

�
,

where

D = ∂x, A =

�
I − ǫ2

6
∂xx

�
and B =

�
I − ǫ2

6
∂xx − ρ2

ρ1
ǫH∂x

�
.

If we denote

Y (t) =

�
ζ(t)
u(t)

�
, A =

�
0 A−1D

ρB−1D 0

�
and F (Y ) =

�− α
2ρu

2

−αζu

�
,

we conclude that Y formally must satisfy the following initial value problem:




∂tY = A(Y ) +AF (Y ),

Y (0) = Y0 =

�
ζ0

u0

�
.

(4)

Remark 3.1. The operators A,B : Hs
per → Hs−2

per are linear and bounded. In fact, let

φ ∈ Hs
per and let us denote wn = 2πn

L . Observe that

�Aφ�2s−2 =
�

n

(1 + n2)s−2

�
1 +

ǫ2w2
n

6

�2
|φn|2 ≤ K

�

n

(1 + n2)s|φn|2 = K�φ�2s
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and

�Bφ�2s−2 =
�

n

(1+n2)s−2

�
1 +

ǫ2w2
n

6
+

ρ2ǫ|wn|
ρ1

�2
|φn|2 ≤ K

�

n

(1+n2)s|φn|2 = K �φ�2s .

Let us define the operators A−1, B−1 : Hs−2
per → Hs

per as

A−1φ =
�

n

φn

1 +
ǫ2w2

n

6

eiwnx and B−1φ =
�

n

φn

1 +
ǫ2w2

n

6 + ρ2ǫ|wn|
ρ1

eiwnx.

Note that the operators A−1 and B−1 are also linear and bounded. It follows that the
operator A : Xs−1 → Xs is linear and bounded. In fact, the explicit form of A is

A
�
ζ
u

�
=

�

n�=0

�
iσnun

iγnζn

�
eiwnx,

where
σn =

wn

1 +
ǫ2w2

n

6

and γn =
ρwn

1 +
ǫ2w2

n

6 + ρ2ǫ|wn|
ρ1

.

For our purposes, in this article, we consider the operator A from Xs into Xs, s ≥ 0.

3.1. Linear problem

In this part, we consider the linear case of system (4):

�
∂tY = A(Y ),

Y (0) = Y0.
(5)

To construct the linear semigroup of operators, for s ≥ 0, we consider the expansions

ζ(x, t) =
�

n

ζn(t)e
iwnx and u(x, t) =

�

n

un(t)e
iwnx. (6)

By replacing the expressions of (6) into (5) we obtain





�

n

ζ′n(t)e
iwnx =

�

n

un(t)iσne
iwnx,

�

n

u′
n(t)e

iwnx =
�

n

ζn(t)iγne
iwnx.

Therefore, for each n ∈ Z we have the system

�
ζ′n(t) = iσnun(t),

u′
n(t) = iγnζn(t),

under the initial conditions

ζn(0) = ζ0,n and un(0) = u
0,n

.
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66 F.A. Pipicano & J.C. Muñoz Grajales

A direct calculation shows that the explicit solutions of this system are given by




ζn(t) = ζ0,n cos
�√

σnγnt
�
+ iΓnu0,n sin

�√
σnγnt

�
,

un(t) = u0,n cos
�√

σnγnt
�
+ iΘnζ0,n sin

�√
σnγnt

�
,

for n �= 0, and
ζ0(t) = ζ0,0 and u0(t) = u0,0.

Here

Γn = sign(γn)

�
σn

γn
, Θn =

1

Γn
, n �= 0,

Γ0 = Θ0 = 0, where sign(x) denotes the sign function of x. Here we used the property
of the Hilbert Transform given in (2).

Let us define for t ≥ 0 and

Y =

�
ζ
u

�
=

�

n

�
ζn(t)
un(t)

�
eiwnx, (7)

the family of linear operators

T (t)(Y ) =
�

n�=0

Mn(t)

�
ζn
un

�
eiwnx +

�
ζ0
u0

�
,

where

Mn(t) =

�
cos

�√
σnγnt

�
iΓn sin

�√
σnγnt

�

iΘn sin
�√

σnγnt
�

cos
�√

σnγnt
�

�
.

Note that if Y =

�
ζ
u

�
is an element of Xs, s ≥ 0, then

�T (t)Y �2Xs

=
�

n�=0

(1 + n2)s |ζn cos (
√
σnγnt) + iΓnun sin (

√
σnγnt)|2 + |ζ0|2

+
�

n�=0

(1 + n2)s |un cos (
√
σnγnt) + iΘnζn sin (

√
σnγnt)|2 + |u0|2

≤
�

n�=0

(1 + n2)sK
�
|ζn|2 + |un|2

�
+ |ζ0|2 +

�

n�=0

(1 + n2)sK
�
|ζn|2 + |un|2

�
+ |u0|2

≤ K
�
�ζ�2s + �ζ�2s

�
= K�Y �2Xs

,

since

|ζn cos (
√
σnγnt) + iΓnun sin (

√
σnγnt)|2 ≤ K

�
|ζn|2 + |un|2

�
,

|un cos (
√
σnγnt) + iΘnζn sin (

√
σnγnt)|2 ≤ K

�
|ζn|2 + |un|2

�
,

(8)

and due to the terms Γn and Θn are controlled by a constant. Thus,

�T (t)Y �Xs
≤ K�Y �Xs

. (9)

Therefore (T (t))t≥0 is well defined from Xs into Xs, s ≥ 0.
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Theorem 3.2. The family (T (t))t≥0 is a C0-semigroup of linear and bounded operators
in Xs.

Proof. A direct calculation shows that (T (t))t≥0 is a family of linear operators and each
T (t) is bounded due to (9).

Note that

T (0)(Y ) =
∑

n�=0

(
1 0
0 1

)(
ζn
un

)
+

(
ζ0
u0

)
= Y.

Thus, T (0) = I. The semigroup property T (t + s) = T (t)T (s), is a consequence of the
equality:

Mn(t+ s) = Mn(t)Mn(s).

Hence, (T (t))t≥0 is a semigroup of linear and bounded operators on Xs.

On the other hand, let Y =

(
ζ
u

)
be an element in Xs. Then

�T (t)Y − Y �2Xs
=

∑

n�=0

(1 + n2)s |ζn (cos (
√
σnγnt)− 1) + iΓnun sin (

√
σnγnt)|2

+
∑

n�=0

(1 + n2)s |un (cos (
√
σnγnt)− 1) + iΘnζn sin (

√
σnγnt)|2 .

Note that the series at the right side above converge uniformly in t ≥ 0 with upper
bounds similar to (8). Thus, as a consequence of the dominated convergence theorem for
sums, we have

lim
t→0+

�T (t)Y − Y �2Xs

=
∑

n�=0

lim
t→0+

(1 + n2)s |ζn (cos (
√
σnγnt)− 1) + iΓnun sin (

√
σnγnt)|2

+
∑

n�=0

lim
t→0+

(1 + n2)s |un (cos (
√
σnγnt)− 1) + iΘnζn sin (

√
σnγnt)|2

= 0 + 0 = 0.

Thus limt→0+ T (t)Y = Y . This shows that (T (t))t≥0 is a C0-semigroup. ����

Theorem 3.3. The linear operator A : Xs → Xs, with s ≥ 0, is the infinitesimal generator
of the semigroup (T (t))t≥0.

Proof. Note that

∥∥∥∥
1

t
[T (t)(Y )− Y ]−A(Y )

∥∥∥∥
Xs

=

∥∥∥∥∥∥
∑

n�=0

(
cos(

√
σnγnt)−1

t ζn + iΓn
sin(

√
σnγnt)

t un − iσnun
cos(

√
σnγnt)−1

t un + iΘn
sin(

√
σnγnt)

t ζn − iγnζn

)∥∥∥∥∥∥
Xs

.
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68 F.A. Pipicano & J.C. Muñoz Grajales

Note that the terms

cos(
√
σnγnt)− 1

t
,

sin(
√
σnγnt)

t
, Γn, Θn, and

√
σnγn

are controlled by a constant. This implies that

∣∣∣∣
cos(

√
σnγnt)− 1

t
ζn + iΓn

sin(
√
σnγnt)

t
un − iσnun

∣∣∣∣
2

≤ K|ζn|2

and ∣∣∣∣
cos(

√
σnγnt)− 1

t
un + iΘn

sin(
√
σnγnt)

t
ζn − iγnζn

∣∣∣∣
2

≤ K|un|2.

Therefore, the dominated convergence theorem for sums implies that

lim
t→0+

∥∥∥∥
1

t
[T (t)(Y )− Y ]−A(Y )

∥∥∥∥
Xs

=

∥∥∥∥∥∥
∑

n�=0

(
limt→0+

cos(
√
σnγnt)−1

t ζn + iΓn
sin(

√
σnγnt)

t un − iσnun

limt→0+
cos(

√
σnγnt)−1

t un + iΘn
sin(

√
σnγnt)

t ζn − iγnζn

)∥∥∥∥∥∥
Xs

= 0.

Therefore A(Y ) = limt→0+

(
T (t)−I

t

)
(Y ) for any Y ∈ Xs, which proves that the operator

A is the infinitesimal generator of the semigroup (T (t))t≥0. ����

3.2. Nonlinear problem

In this part, we study the existence, uniqueness and behavior of the solutions for the
problem (4), under changes of the initial data.

Lemma 3.4. Let L1 = A−1D and L2 = B−1D, u ∈ Hr
per and v ∈ Hr′

per with 0 ≤ r ≤ s,
0 ≤ r′ ≤ s, 0 ≤ 2s− r − r′ < 1/4. Then,

�L1(uv)�Hs
per

≤ Cr,r′,s�u�Hr
per

�v�Hr′
per

and

�L2(uv)�Hs
per

≤ Cr,r′,s�u�Hr
per

�v�Hr′
per

,

where Cr,r′,s is a constant depending on r, r′, s.

Proof. Let us observe that

L̂1u(k) =
iwn

1 +
ǫ2w2

n

6

û(k),

L̂2u(k) =
iwn

1 +
ǫ2w2

n

6 + ρ2

ρ1
ǫ|wn|

û(k),
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 69

and
|iwn|

1 +
ǫ2w2

n

6

≤ C|n|
1 + n2

,

|iwn|
1 +

ǫ2w2
n

6 + ρ2

ρ1
ǫ|wn|

≤ C|n|
1 + n2

.

Therefore, the proof is analogous to Lemma 3.1 in [16]. ����

Lemma 3.5. If Y, Y ∈ C([0, T ],Xs) with s ≥ 0, then, for Y = (ζ, u)T and Y = (ζ, u)T

we have ∥∥A(F (Y )− F (Y ))
∥∥
Xs

≤
∥∥Y − Y

∥∥
Xs

L(�u�s , �u�s ,
∥∥ζ

∥∥
s
), (10)

where L is a linear polynomial depending on �u�s, �u�s and
∥∥ζ

∥∥
s
.

Proof. First of all, suppose that s > 1
2 . Since Hs

per is an algebra for s > 1/2, we have

∥∥A(F (Y )− F (Y ))
∥∥
Xs

≤ K
∥∥F (Y )− F (Y )

∥∥
Xs

= K
[∥∥u2 − u2

∥∥
s
+
∥∥ζu− ζu

∥∥
s

]

≤ K
(
�u− u�s �u+ u�s +

∥∥ζ − ζ
∥∥
s
�u+ u�s + �ζ�s �u− u�s + �u�s

∥∥ζ − ζ
∥∥
s

)

≤ K
(
�u− u�s [�u�s + �u�s + �ζ�s] +

∥∥ζ − ζ
∥∥
s
[�u�s + �u�s]

)

≤ L(�u�s , �u�s ,
∥∥ζ

∥∥
s
)
∥∥Y − Y

∥∥
Xs

,

where L(�u�s , �u�s ,
∥∥ζ

∥∥
s
) = K (�u�s + �u�s + �ζ�s).

On the other hand, we recall that

A =

(
0 A−1D

ρB−1D 0

)
.

Thus, for 0 ≤ s < 1, we can apply Lemma 3.4 with r = 3s
4 < s, r′ = s, to get again the

inequality (10). ����

Theorem 3.6. If Y ∈ C([0, T ];Xs) with s ≥ 0 is a solution of (4), then Y satisfies the
integral equation

Y (t) = T (t)Y0 +

∫ t

0

T (t− ξ)AF (Y (ξ))dξ. (11)

Analogously, if Y ∈ C([0, T ];Xs), s ≥ 0, is a solution of (11), then Y ∈ C1([0, T ];Xs)
and satisfies (4) in the following sense:

lim
h→0+

∥∥∥∥
Y (t+ h)− Y (t)

h
−A(Y (t))−AF (Y (t))

∥∥∥∥
Xs

= 0.

Proof. Let Y (t) ∈ C([0, T ];Xs) be a solution of the IVP (4). Then, for 0 ≤ ξ ≤ t we have

T (t− ξ)Y ′(ξ) = T (t− ξ)A(Y (ξ)) + T (t− ξ)AF (Y (ξ)).
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Note that
d

dξ
(T (t− ξ)Y (ξ)) = T (t− ξ)Y ′(ξ)− T (t− ξ)A(Y (ξ)).

Thus,
d

dξ
(T (t− ξ)Y (ξ)) = T (t− ξ)AF (Y (ξ)). (12)

Integrating on both sides of the equation (12), we obtain that Y satisfies the integral
equation

Y (t) = T (t)Y0 +

∫ t

0

T (t− ξ)AF (Y (ξ))dξ.

On the other hand, suppose that Y (t) ∈ C([0, T ];Xs) is a solution of the integral equation
(11). Consider the expression

Γ :=

∥∥∥∥
Y (t+ h)− Y (t)

h
−A(Y (t)) −AF (Y (t))

∥∥∥∥
Xs

. (13)

Replacing the expression (11) into (13) and applying the triangle inequality, we obtain

Γ ≤
∥∥∥∥T (t)

(T (h)− I

h

)
Y0 − T (t)A(Y0)

∥∥∥∥
Xs

+

∥∥∥∥
[T (h)− I

h
−A

] ∫ t

0

T (t− ξ)AF (Y (ξ))dξ

∥∥∥∥
Xs

+

∥∥∥∥∥
1

h

∫ t+h

t

T (t+ h− ξ)AF (Y (ξ))dξ −AF (Y (t))

∥∥∥∥∥
Xs

.

Note that

lim
h→0+

∥∥∥∥T (t)

(T (h)− I

h

)
Y0 − T (t)A(Y0)

∥∥∥∥
Xs

= 0,

lim
h→0+

∥∥∥∥
[T (h)− I

h
−A

] ∫ t

0

T (t− ξ)AF (Y (ξ))dξ

∥∥∥∥
Xs

= 0.

The last term can be controlled by using the mean value theorem in the following way:

∥∥∥∥∥
1

h

∫ t+h

t

T (t+ h− ξ)AF (Y (ξ))dξ −AF (Y (t))

∥∥∥∥∥
Xs

(14)

≤ 1

h

∫ t+h

t

�T (t+ h− ξ)AF (Y (ξ))−AF (Y (t))�Xs
dξ

=
∥∥∥T (t+ h− ξ̃)AF (Y (ξ̃)) −AF (Y (t))

∥∥∥
Xs

≤
∥∥∥T (t+ h− ξ̃)A

[
F (Y (ξ̃))− F (Y (t))

]∥∥∥
Xs

+
∥∥∥
[
T (t+ h− ξ̃)− I

]
AF (Y (t))

∥∥∥
Xs

,

(15)
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for some t ≤ ξ̃ ≤ t+ h. Observe that the last term in (15) satisfies

lim
h→0+

∥∥∥
[
T (t+ h− ξ̃)− I

]
AF (Y (t))

∥∥∥
Xs

= 0,

since h → 0+ implies ξ̃ → 0+. Furthermore, by using Lemma 3.5, we have that the first
term in (15) can be bounded as

∥∥∥T (t+ h− ξ̃)A
[
F (Y (ξ̃))− F (Y (t))

]∥∥∥
Xs

≤ K
∥∥∥A

[
F (Y (ξ̃))− F (Y (t))

]∥∥∥
Xs

≤ L(�u�s , 0, �ζ�s)
∥∥∥F (Y (ξ̃))− F (Y (t))

∥∥∥
Xs

→ 0,

as h → 0+. Hence,

lim
h→0+

∥∥∥∥
Y (t+ h)− Y (t)

h
−A(Y (t))−AF (Y (t))

∥∥∥∥
Xs

= 0. ����

Theorem 3.7. Let Y0 ∈ Xs, s ≥ 0. Then there exist T ∗ > 0 and Y ∈ C([0, T ];Xs)
satisfying the integral equation (11).

Proof. Let us define the set

SM =

{
Y =

(
ζ
u

)
∈ C([0, T ];Xs) : sup

t∈[0,T ]

�Y (t)− T (t)Y0�Xs
≤ M

}
,

with the norm �Y �C([0,T ],Xs)
= supt∈[0,T ] (�ζ(t)�s + �u(t)�s), where Y = (ζ, u)T . Ob-

serve that endowed with this norm, SM is a complete set in C([0, T ];Xs) and F is
continuous in SM as a consequence of Lemma 3.5.

For Y ∈ SM , we define the operator

Ψ(Y (t)) = T (t)Y0 +

∫ t

0

T (t− ξ)AF (Y (ξ))dξ.

Observe that

�Ψ(Y (t+ h))−Ψ(Y (t))�Xs

=
∥∥∥T (t+ h)Y0 +

∫ t+h

0

T (t+ h− ξ)AF (Y (ξ))dξ − T (t)Y0

−
∫ t

0

T (t− ξ)AF (Y (ξ))dξ
∥∥∥
Xs

≤ �(T (t+ h)− T (t))Y0�Xs
+

∥∥∥∥
∫ t

0

(T (t+ h− ξ)− T (t− ξ))AF (Y (ξ))dξ

∥∥∥∥
Xs

+

∥∥∥∥∥

∫ t+h

t

T (t+ h− ξ)AF (Y (ξ))dξ

∥∥∥∥∥
Xs

.

Note that the first term at the right side above satisfies

lim
h→0+

�(T (t+ h)− T (t))Y0�Xs
= 0,

Vol. 34, No. 1, 2016]



72 F.A. Pipicano & J.C. Muñoz Grajales

since (T (t))t≥0 is a C0-semigroup in Xs. The second and third terms at the right side
are controlled using the Lebesgue’s dominated convergence theorem. Note that

�(T (t+ h− ξ)− T (t− ξ))AF (Y (ξ))�Xs
≤ K �AF (Y (ξ))�Xs

≤ K�F (Y (ξ))�Xs
,

and
lim

h→0+
�(T (t+ h− ξ)− T (t− ξ))AF (Y (ξ))�Xs

= 0.

Thus,

lim
h→0+

∥∥∥∥
∫ t

0

(T (t+ h− ξ)− T (t− ξ))AF (Y (ξ))dξ

∥∥∥∥
Xs

≤ lim
h→0+

∫ t

0

∥∥∥(T (t+ h− ξ)− T (t− ξ))AF (Y (ξ))
∥∥∥
Xs

dξ = 0.

Finally,

�T (t+ h− ξ)AF (Y (ξ))�Xs
≤ L(�u�s , 0, �ζ�s) �Y (ξ)�Xs

= K(�u�Xs
+ �ζ�Xs

)(�u�Xs
+ �ζ�Xs

)

= K(�u�Xs
+ �ζ�Xs

)2

= K�Y �2Xs

≤ (M +K�Y0�Xs
)2,

which is a consequence of the estimate

�Y (t)�Xs
= �Y (t)− T (t)Y0 + T (t)Y0�Xs

≤ �Y (t)− T (t)Y0�Xs
+ �T (t)Y0�Xs

≤ (M +K �Y0�Xs
).

Since
lim

h→0+
�T (t+ h− ξ)AF (Y (ξ))�Xs

= 0,

it follows that

lim
h→0+

∥∥∥∥∥

∫ t+h

t

T (t+ h− ξ)AF (Y (ξ))dξ

∥∥∥∥∥
Xs

≤ lim
h→0+

∫ t+h

t

�T (t+ h− ξ)AF (Y (ξ))�Xs
dξ

= 0.

Hence, if Y ∈ SM , then Ψ(Y ) ∈ C([0, T ];Xs). On the other hand,

�Ψ(Y (t)) − T (t)Y0�Xs
=

∥∥∥∥
∫ t

0

T (t− ξ)AF (Y (ξ))dξ

∥∥∥∥
Xs

≤
∫ t

0

L(�u�s , 0, �ζ�s) �Y (ξ)�Xs
dξ.

≤ TKL(M +K �Y0�Xs
, 0,M +K�Y0�Xs

)(M +K�Y0�Xs
).
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Thus, choosing

T1 =
M

KL(M +K�Y0�Xs
, 0,M +K �Y0�Xs

)(M +K�Y0�Xs
)
,

we obtain that Ψ(Y (t)) ∈ SM provided Y (t) ∈ SM .

To see that there exists T2 such that Ψ is a contraction in SM for T < T2, let us observe
that

∥∥Ψ(Y (t))−Ψ(Y (t))
∥∥
Xs

=

∥∥∥∥
∫ t

0

T (t− ξ)A
[
F (Y (ξ)) − F (Y (ξ))

]
dξ

∥∥∥∥
Xs

≤ KTL(M +K �Y0�Xs
, 0,M +K�Y0�Xs

) sup
ξ∈[0,T ]

∥∥Y (ξ)− Y (ξ)
∥∥
Xs

.

Thus, choosing

T2 =
1

KL(M +K�Y0�Xs
, 0,M +K�Y0�Xs

)
,

we obtain that Ψ is a contraction on SM . Thus, with T ∗ < min{T1, T2} and by applying
the Banach Fixed-Point Theorem on SM , we get the desired result. ����

Theorem 3.8. The solution obtained in Theorem 3.7 is unique and depends continuously
on the initial condition Y0.

Proof. Let Y =

(
ζ
u

)
and Y =

(
ζ
u

)
be elements in C([0, T ];Xs) solutions of the integral

equation (11) with initial data Y0 =

(
ζ0
u0

)
and Y 0 =

(
ζ0
u0

)
, respectively. Then,

∥∥Y (t)− Y (t)
∥∥
Xs

=

∥∥∥∥T (t)(Y0 − Y 0) +

∫ t

0

T (t− ξ)A
[
F (Y (ξ))− F (Y (ξ))

]
dξ

∥∥∥∥
Xs

≤ K
∥∥Y0 − Y 0

∥∥
Xs

+

∫ t

0

KL(�u�s , �u�s , �ζ�s)
∥∥Y (ξ)− Y (ξ)

∥∥
Xs

dξ

≤ K
(∥∥Y0 − Y 0

∥∥
Xs

+ L(�u�s , �u�s , �ζ�s)
∫ t

0

∥∥Y (ξ)− Y (ξ)
∥∥
Xs

dξ

)
.

Let L := supt∈[0,T ] L(�u(t)�s , �u(t)�s , �ζ(t)�s). The Gronwall inequality implies that

∥∥Y (t)− Y (t)
∥∥
Xs

≤ K
∥∥Y0 − Y 0

∥∥
Xs

eLt) ≤ K
∥∥Y0 − Y 0

∥∥
Xs

eLT ,

for all t ∈ [0, T ]. Hence, we conclude the uniqueness and continuous dependence of the
solutions on initial data. ����

4. Numerical results

In this section we will analyze the error of fully discrete numerical scheme for approxi-
mating the initial value problem for system (1) introduced by Muñoz in [12]. In this
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numerical scheme, the spatial computational domain [0, L] is discretized by N ∈ 2Z
equidistant points, with spacing ∆x = L/N . Then, we approximate the unknowns u
and ζ with spatial period L as truncated Fourier series in space with time-dependent
coefficients:

u(x, t) =

N/2∑

j=−N/2+1

ûj(t)e
iwjx,

ζ(x, t) =

N/2∑

j=−N/2+1

ζ̂j(t)e
iwjx,

(16)

with

wj =
2πj

L
, j = −N/2 + 1, ...0, ..., N/2.

The time-dependent coefficients ûj(t) for j = −N/2 + 1, ...0, ..., N/2 are calculated by
means of the equation

ûj(t) =
1

L

∫ L

0

u(x, t)e−iwjxdx,

and similarly for ζ̂j(t).

Projecting equations (1) with respect to the orthonormal basis φj = L−1/2eiwjx and the
inner product

�f, g� =
∫ L

0

f(x)g(x)dx,

we derive that

�ζt, φj� − �(u− αζu)x, φj� =
ǫ2

6
�ζxxt, φj�,

�ut, φj�+
α

2
�(u2)x, φj�+ (1− ρr)�ζx, φj� = ρrǫ�H(uxt), φj�+

ǫ2

6
�uxxt, φj�.

(17)

Now substituting the Fourier expansions (16) into equations (17), using the orthogonal
property of the basis φj and, integration by parts, we obtain

ζ̂′j(t)− iwjPj [(u− αζu] = − ǫ2

6
w2

j ζ̂
′
j ,

û′
j(t) +

iαwj

2
Pj [u

2] + iwj(1− ρr)ζ̂j = ρrǫ
∑

s

iwsû
′
s(t)�H(φs), φj� −

ǫ2

6
w2

j û
′
j,

(18)

where Pj [.] is the operator defined by

Pj [g] =
1

L

∫ L

0

g(x)e−iwjxdx. (19)

Then, using the properties of the Hilbert Transform, system (18) reduces to

ζ̂′j(t)− iwjPj [(u− αζu] = − ǫ2

6
w2

j ζ̂
′
j ,

û′
j(t) +

iαwj

2
Pj [u

2] + iwj(1 − ρr)ζ̂j = −ρrǫ|wj |û′
j −

ǫ2

6
w2

j û
′
j.
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Finally, we reach expressions for the Fourier coefficients of the unknowns u and ζ:

ζ̂′j =
iwj

1 + ǫ2

6 w
2
j

Pj [(u− αζu)],

û′
j =

iwj(ρr − 1)ζ̂j

1 + ρrǫ|wj |+ ǫ2

6 w
2
j

− iαwjPj [u
2]

2(1 + ρrǫ|wj |+ ǫ2

6 w
2
j )
,

(20)

subject to ζ̂j(0) = ζ̂0j , ûj(0) = û0j . Equations (20) can be considered as a system of
ordinary differential equations for each frequency wj , which we discretize numerically by
the following second-order scheme:

ζ̂
(n+1)
j − ζ̂

(n)
j

∆t
=
iwj

2

( û(n+1)
j + û

(n)
j

1 + ǫ2

6 w
2
j

)
− 3

2

( iwj

1 + ǫ2

6 w
2
j

)
Pj [αζu]

(n)

+
1

2

( iwj

1 + ǫ2

6 w
2
j

)
Pj [αζu]

(n−1),

û
(n+1)
j − û

(n)
j

∆t
=
iwj(ρr − 1)(ζ̂

(n+1)
j + ζ̂

(n)
j )

2(1 + ρrǫ|wj |+ ǫ2

6 w
2
j )

− 3iαwjPj [u
2](n)

4(1 + ρrǫ|wj |+ ǫ2

6 w
2
j )

+
iαwjPj [u

2](n−1)

4(1 + ρrǫ|wj |+ ǫ2

6 w
2
j )
.

(21)

Here ∆t denotes the time step and û
(n)
j , ζ̂

(n)
j denote the numerical approximations of the

Fourier coefficients ûj(t), ζ̂j(t), respectively, at time t = n∆t. Also the notation Pj [g]
(n)

means the value of Pj [g] when g is evaluated at time t = n∆t.

4.1. Description of the numerical experiments

In this section, we wish to analyze the accuracy of the numerical scheme (21) described
above in some numerical experiments.

Linear regime: First we solve system (1) with initial conditions

ζ(x, 0) = cos
(2πx

L

)
, u(x, 0) = − cos

(2πx
L

)
,

and subject to spatial periodic conditions on an interval [0, L]. The parameters of the
model are α = 0 (linear regime), ǫ = 1, ρr = ρ2/ρ1 = 1.1, L = 100, and the numerical
parameters are N = 27, ∆t = 0.01. In Figure 2, we superimpose the exact solution
computed in (7) in the linear case together with the output of the numerical scheme (21)
evaluated at t = 100. The difference between the profiles is about 1e − 8 showing that
the scheme reproduces very well the dispersive characteristics of model (1).

In Figure 3, we repeat the previous numerical experiment but using instead a weak level
of dispersion ǫ = 0.01 and ρr = 3. Other parameters and initial conditions are left
unchanged. The result is presented in Figure 3. We see again a good agreement (of order
1e − 8) between the prediction of the numerical scheme and the exact solution given in
(7). Neither numerical dispersion nor attenuation were observed in the simulations here
presented and in many others performed for other values of the modelling parameters.
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