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Abstrat. In his paper, �The group of automorphisms of the Fermat urve�

(see [7℄), Tzermias proved that the automorphism group of the projetive

Fermat urves in harateristi 0 is the semidiret produt of the diret sum

of 2 opies of the yli group of order n and the symmetri group on 3 letters.
In this paper we present an alternative proof of this fat aessible to someone

with basi knowledge of Riemann surfaes and group theory. Also we inlude

the geometri orrespondene of the ation.
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El grupo de automor�smos de las urvas de Fermat

Resumen. Pavlos Tzermias en su artíulo �The group of automorphisms of the

Fermat urve� (ver [7℄), prueba que el grupo de automor�smos de las urvas

de Fermat proyetivas en araterístia 0 es el produto semidireto de la

suma direta de 2 opias del grupo ílio de orden n y el grupo simétrio

de 3 letras. En este artíulo se presenta una prueba alternativa de este heho

aesible para alguien on onoimientos básios en super�ies de Riemann

y teoría de grupos. Además, se inluye la orrespondenia geométria de la

aión.

Palabras lave: Super�ies de Riemann, automor�smos.

1. Introdution

If S is a Riemann surfae, then we denote by Aut(S) its group of onformal automor-

phisms. If F (x, y, z) is a nonsingular homogeneous polynomial, then the projetive plane

urve W , whih is the zero lous in CP
2
, is a ompat Riemann surfae. The automor-

phism group of an algebrai urve is one of its most important invariants. Suh a group
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is �nite, exept for rational and ellipti urves. The onstrution and lassi�ation of

urves with large automorphism groups with respet to their genera has been onsidered

a relevant problem in algebrai geometry. A landmark paper in this diretion is [3℄,

in whih Hurwitz proved his bound |Aut(W)| ≤ 84(g(W) − 1), valid for any omplex

(projetive, geometrially irreduible) algebrai urve W of genus g ≥ 2. The Hurwitz

bound is attained by the Klein quarti. For a long time, various authors sought to �nd

Riemann surfaes with a �nite automorphism group attaining a given bound. Mabeath

in [5℄ showed that there are in�nite values of g (the genus) for whih the Hurwitz bound

is attained, and also in�nite values of g for whih the bound isn't attained. Thus, group

theory is an essential tool in this area. In fat, groups provide a unifying framework for

topis suh as geometri symmetry, permutations, matrix arithmeti and more. Group

theory is vital in many areas of mathematis (algebra, number theory, geometry, har-

moni analysis, representation theory, geometri mehanis) and in areas of siene suh

as theoretial physis and quantum hemistry.

In this paper we fous on the (projetive) nonsingular plane algebrai urve

F (n) = {[X :Y :Z] ∈ CP
2 : Xn + Y n + Zn = 0}, n ≥ 4, alled the nth Fermat urve. In

[7℄, Tzermias proved that the automorphism group of F (n) is a semidiret produt of the

diret sum of 2 opies of the yli group Zn of the order n, and the symmetri group

on 3 letters S3. Leopoldt did the same in his paper [4℄, inluding the ases over �elds of

positive harateristi. Here, we will give an alternative proof of this fat from a di�erent

point view. We also study some geometri properties of F (n), and we shall desribe the

geometri ation of its automorphism group.

2. Preliminaries

We start realling some known results about group ations.

An abstrat �nite group G ats on genus g ≥ 2 if it is (isomorphi to) a group of

automorphisms of some ompat Riemann surfae of genus g. We say that G ats as

a full group on genus g if G is the full automorphism group of some ompat Riemann

surfae of genus g.

Suppose that G ats on genus g and let W be a ompat Riemann surfae of genus g,

for whih G ⊆ Aut(W). We write G = Γ/Λ when Γ and Λ are Fuhsian groups, and Λ is

a normal subgroup of Γ, with signature (g;−). If Γ has signature (γ;m1,m2, ...,mr), we
say that G ats on genus g with signature (γ;m1,m2, ...,mr); and if G = Aut(W), we say
that G ats as full automorphism group on genus g with signature (γ;m1,m2, ...,mr). G
may at with di�erent signatures on the same genus g.

If G is a �nite group of onformal automorphisms of the ompat Riemann sur-

fae W , we will denote by W/G the quotient Riemann surfae. The branhed

overing πG : W → W/G may be partially haraterized by a vetor of numbers

(γ; m1,m2, ...,mr), alled signature (or branhing data) of G on W , where γ is the

genus of W/G, r ≤ 2γ+2 is the number of branh values of the overing and the mi are

positive integers assoiated to the branh values on W/G (they represent the degree of
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injetivity of πG at that point). The Riemann-Hurwitz formula (see [6℄)

2g− 2 = | G |

[

2γ − 2 +

r
∑

i=1

(

1−
1

mi

)

]

(1)

must be satis�ed by the integersm1,m2, ...,mr in the signature. This imposes restritions

on |G| and the branhing data that an our.

Broughton, in his paper [2℄, de�ne a generating (γ; m1,m2, ...,mr)-vetor as follows.

De�nition 2.1. A 2γ+ r tuple (a1, a2, ..., aγ , b1, b2, ..., bγ , c1, c2, ..., cr) of elements of G is

alled a generating (γ; m1,m2, ...,mr)-vetor if it satis�es:

1. G = 〈a1, a2, ..., aγ , b1, b2, ..., bγ , c1, c2, ..., cr〉,

2. order (ci) = mi,

3.

γ
∏

i=1

[ai, bi]
r
∏

j=1

cj = 1.

The following theorem is the basi theorem translating the topologial problem of ons-

truting group ations to a problem in �nite group theory (see [1℄, [2℄, [8℄).

Theorem 2.2. Riemann's existene Theorem

A �nite group G ats on a Riemann surfae W of genus g, with signature

(γ; m1,m2, ...,mr), if and only if

1. The Riemann-Hurwitz formula is satis�ed;

2. G has a generating (γ; m1,m2, ...,mr)-vetor.

3. Fermat urves

Let n ≥ 4. The projetive Fermat urve of degree n over C is the algebrai non singular

urve

F (n) = {[X :Y :Z] ∈ CP
2 : Xn + Y n + Zn = 0}.

It is well known that F (n) is a smooth ompat Riemann surfae of genus

g(F (n)) =
(n− 1)(n− 2)

2
.

We are interested in �nding the automorphisms group of the projetive Fermat urve of

degree n over C. Let G = Aut(F (n)) be the group of automorphisms of F (n). Then G

is a �nite group; in fat, |G| ≤ 48n(n− 3). Let ω = e
2π

n
i
be a nth primitive root of unity

and let φi : F (n) → F (n), i=1,2,3,4, be a funtion given by :

φ1([X :Y :Z]) = [Y,X,Z],

φ2([X :Y :Z]) = [Z,X, Y ],

φ3([X :Y :Z]) = [ωX :Y :Z],

φ4([X :Y :Z]) = [X : ωY :Z].

Vol. 34, No. 2, 2016℄
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Then for eah i, φi is an automorphism of F (n). It is lear that 〈φ1, φ2〉 ≤ G is isomorphi

to S3, the symmetri group on 3 letters. Also 〈φ3, φ4〉 ≤ G is isomorphi to Zn × Zn.

From now on, we will use the notation S3 and Zn × Zn to refer to the above subgroups

of G.

Let H be the subgroup of G generated by S3 and Zn × Zn. It is easily seen that

S3 ∩ (Zn × Zn) = {1}. Also

φ1(φ3(φ
−1

1 ([X :Y :Z]))) = φ4([X :Y :Z]); φ1(φ4(φ
−1

1 ([X :Y :Z]))) = φ3([X :Y :Z]);

φ2(φ3(φ
−1

2 ([X :Y :Z])))=φ4([X :Y :Z]); φ2(φ4(φ
−1

2 ([X :Y :Z])))=φ−1

3 (φ−1

4 ([X :Y :Z])).

Then Zn×Zn is a normal subgroup of H . Therefore, H ∼= (Zn×Zn)⋊S3 and |H | = 6n2
.

The following theorem was proved in [7℄; here we shall prove the same theorem from

another point of view.

Theorem 3.1. Let n ≥ 4 and G the automorphism group of F (n). Then G = H.

Proof. On one hand, sine H ≤ G and |H | = 6n2
, we get |G| = 6n2m, for some positive

integerm. On the other hand, G ats in F (n) and we will denote by F (n)/G the quotient

Riemann surfae. Let π : F (n) → F (n)/G be the natural projetion and let ri be the

orresponding rami�ation indies. Then, by the Riemann-Hurwitz formula (1), we have

n(n− 3) = 6n2m

(

2g(F (n)/G)− 2 +

r
∑

i=1

(

1−
1

ri

)

)

,

where r ≥ 0, ri ≥ 2, for i = 1, 2, · · · , r. Also, we have g(F (n)/G) = 0. Indeed, if

g(F (n)/G) ≥ 1, then n− 3 ≥ 3nm, whih is absurd. So we obtain

n− 3 = 6nm

(

−2 +

r
∑

i=1

(

1−
1

ri

)

)

. (2)

As n ≥ 4, we have n−3 > 0, so R =
∑r

i=1

(

1− 1

ri

)

> 2. It is lear that r ≥ 3. Moreover

we an see that eah point in the set S = {[X :Y :Z] ∈ F (n) : XY Z = 0} is �xed by a

subgroup of size 2n. First, we an see that the points [X : Y :Z] ∈ F (n) suh that not

all its entries are non-zero are in the same orbit. In fat, if X = 0, then (Y/Z)n = −1,
so we have n points [0 : eiπ/nωj : 1], with j = 0, 1, · · · , n− 1; if Y = 0, we get the points
[eiπ/nωj : 0 : 1], j = 0, 1, · · · , n − 1; and if Z = 0, [eiπ/nωj : 1 : 0], j = 0, 1, · · · , n − 1.
These points belong to the same orbit, sine φ4([0 : eiπ/nωj : 1]) = [0 : eiπ/nωj+1 : 1],
φ1([0 : eiπ/nωj : 1]) = [eiπ/nωj : 0 : 1] and φ−1

2 ([0 : eiπ/nωj : 1] = [eiπ/nωj : 1 : 0]. Thus,
if p ∈ S, then p is �xed by a subgroup of H of order 2n (for example, the stabilizer

subgroup of p = [0 : eiπ/n : 1] is Hp = 〈ϕ1〉, where ϕ1[X : Y :Z] = [X : ωZ : Y ]); then
the stabilizer subgroup of p, Gp, has order at least 2n, and therefore ri ≥ 2n, for some

i = 1, · · · , r. We an assume r1 ≥ 2n.

If r ≥ 4, we have R ≥ 7

8
+ (r − 1)−

∑r
i=2

1

ri
≥ 7

8
+ r−1

2
≥ 7

8
+ 3

2
= 19

8
, beause ri ≥ 2,

for i = 2, 3, · · · , r. Then, replaing in (2), we get n − 3 > 2nm, whih is impossible.

Therefore r = 3.
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As R = 3 − ( 1

r1
+ 1

r2
+ 1

r3
) > 2, then we an't have ri = 2 for more than one value of

i = 1, 2, 3.

Summarizing, we have that the signature of the ation of G in F (n) is (0; r1, r2, r3), with
r1 ≥ 2n, r2 ≥ 3 and r3 ≥ 2.

Replaing in the 2 we obtain

n− 3 = 6nm

(

1−

(

1

r1
+

1

r2
+

1

r3

))

≥ 6nm

(

1

6
−

1

2n

)

, then n− 3 ≥ (n− 3)m;

thusm = 1, and G = H is laimed, also the signature of ation ofG in F (n) is (0; 2n, 3, 2).
�XXX

In the following setion, we desribe the ation of G = (Zn ×Zn)⋊ S3 in the projetive

Fermat urve F (n), n ≥ 4.

4. Geometri orrespondene

As has been seen here, the automorphism group, G, of the projetive Fermat urve is

generated by the automorphisms φ1([X :Y :Z]) = [Y,X,Z], φ2([X :Y :Z]) = [Z :X :Y ],
φ3([X : Y :Z]) = [ωX : Y :Z] and φ4([X : Y :Z]) = [X : ωY :Z], and ats in F (n) whit
signature (0; 2n, 3, 2). In this setion we will give a realization of the rami�ation type

(0; 2n, 3, 2) by �nding a set of generators of G that satisfy the signature.

Proposition 4.1. Let n ≥ 4 and a = φ4φ3φ
−1
2 φ1, b = φ2φ3 and c = φ1φ

−1
2 elements of

G. Then G ats in F (n) with signature (0; 2n, 3, 2) and (a, b, c) is a generating vetor of

type (0; 2n, 3, 2).

Proof. As we saw before, the signature (0; 2n, 3, 2), satis�es Riemann-Hurwitz formula

(see (1)). As a, b, c ∈ G, 〈a, b, c〉 ≤ G and

a([X :Y :Z]) = φ4φ3φ
−1

2 φ1([X :Y :Z])

= φ4(φ3(φ
−1

2 ([Y :X :Z])))

= φ4(φ3([X :Z :Y ]))

= φ4([ωX : ωZ :Y ]) = [X :Z : ω−1Y ],

b([X :Y :Z]) = φ2φ3([X :Y :Z])

= φ2([ωX :Y :Z]) = [Z : ωX :Y ],

c([X :Y :Z]) = φ1φ
−1
2 ([X :Y :Z])

= φ1(φ
−1
2 ([X :Y :Z])) = φ1([Y :Z :X ]) = [Z :Y :X ],

we get that |a| = 2n, |b| = 3, |c| = 2. Moreover, abc = 1. In fat

abc([X :Y :Z]) = a(b([Z :Y :X ]))

= a([X,ωZ, Y ]) = [X :Y :Z].
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Finally, we will prove that G = 〈a, b, c〉. Sine a−1([X : Y : Z]) = [X,ωZ, Y ] and
b2([X :Y :Z]) = [Y, ωZ, ωX ], we get

acb2([X :Y :Z]) = a(c([Y, ωZ, ωX ]))

= a([ωX : ωZ :Y ]) = [ωX :Y :Z] = φ3([X :Y :Z]),

a−1b2cb([X :Y :Z]) = a−1(b2(c([Z : ωX :Y ])))

= a−1(b2([Y : ωX :Z])) = a−1([X :Z :Y ])

= [X : ωY :Z] = φ4([X :Y :Z]),

bφ−1

3 [X :Y :Z] = b([ω−1X :Y :Z])

= [Z :X :Y ] = φ2([X :Y :Z]),

φ−1

2 c([X :Y :Z]) = φ−1

2 ([Z :Y :X ])

= [Y :X :Z] = φ1([X :Y :Z]).

Hene 〈a, b, c〉 = G. Thus, aording to the Riemann's existene Theorem 2.2, (a, b, c) is
a generating vetor of type (0; 2n, 3, 2). �XXX
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