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Abstrat. In this paper we establish the uniqueness of radial solutions for

a semipositone Dirihlet problem in an annulus, having a presribed large

number of nodal regions. Shooting method and Prüfer transformation are

the main tools used in this work.
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Sobre la uniidad de soluiones que ambian de signo

para un problema Semipositone en anillos

Resumen. En este artíulo estableemos la uniidad de soluiones radiales

para un problema de Dirihlet, de tipo Semipositone, en un anillo, on un

número presrito (grande) de regiones nodales. Las prinipales herramien-

tas usadas en este trabajo son el método del disparo y la transformaión de

Prüfer.

Palabras lave: Semipositone, problema no homogéneo, uniidad de solu-

iones que ambian de signo, problemas de Dirihlet on peso, problemas

elíptios no lineales.

1. Introdution and Statement of the Results

We onsider the annulus Ω := {x ∈ R
N : 0 < a < ‖x‖ < b}, where N ≥ 3. In this paper

we study the problem











∆u+ f(‖x‖, u) = 0, x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

u has exatly k nodal regions in Ω,

(1.1)

0
∗

E-mail: sherron�unal.edu.o

Reeived: 22 August 2016, Aepted: 31 Otober 2016.

To ite this artile: H. Aduén, S. Herrón, On the uniqueness of sign-hanging solutions to a semipositone

problem in annuli, Rev. Integr. Temas Mat. 34 (2016), No. 2, 207�224.

207

sygonari
Texto escrito a máquina
DOI: http://dx.doi.org/10.18273/revint.v34n2-2016007

sygonari
Nuevo sello
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where f(‖x‖, u) = K(‖x‖)
(

|u|p−1u− C ||x||−p(N−2)
)

for some onstant C > 0. Here, ∆
denotes the Laplaian operator and K ∈ C2([a, b]) is a given positive weight whih is

nondereasing.

Beause f(‖x‖, 0) < 0 for every x ∈ Ω, our problem is alled semipositone. These

problems are harder than positone even in the ase of positive solutions (see [4℄, [26℄).

When we are looking for positive solutions the di�ulty is due to the fat that in the

semipositone ase, solutions have to live in regions where the reation term is negative

as well as positive (see [7℄).

A radial solution u(r) of (1.1), where r = ‖x‖, satis�es















u′′(r) +
N − 1

r
u′(r) +K(r)

(

|u(r)|p−1u(r)− Cr−p(N−2)
)

= 0, a < r < b,

u(a) = u(b) = 0,

u has exatly k zeros in (a, b).

(1.2)

To the best of our knowledge, uniqueness results about sign-hanging solutions to (1.2)

(more general, in the semipositone ase) are not known. By onsidering exterior domains,

a uniqueness result of nonnegative solution for a semipositone problem is ahieved in [32℄

(also see referenes therein). More reently, in [35℄ the author obtained uniqueness of

sign-hanging radial solutions in some ball and annulus onsidering K = 1, C = 0 and

the partiular nonlinearity f(u) = |u|p−1u − u. In the superlinear ontext it seems hard

to get uniqueness of sign-hanging radial solutions with a presribed number of zeros.

Some previous works as, for instane, [34℄, [35℄ have attained suh uniqueness, but at

the expense of giving up too muh generality; some of these are homogeneous problems,

very partiular geometry of the domain, spei� ases of nonlinearity or impossing low-

dimensional domains. In this work we prove a uniqueness result for the problem (1.2) in

a ring-shaped domain restrited to

2(b/a)N−1 − 1 < p < (N + 2)/(N − 2). (1.3)

Note that these inequalities imply that b < a(N/(N−2))1/(N−1)
. This is our ompromise;

but we are able to get suh uniqueness in a more general ontext, namely for a weighted

semipositone problem. We use some ideas inspired by the work of H. Aduén, A. Castro

and J. Cossio in [1℄. We extend and improve a previous result exhibited in [1℄. This im-

provement is re�eted in several aspets: �rst, our nonlinearity K(‖x‖)|u|p−1u in plae

of |u|p−1u; namely, the nonlinearity involves a weight. Seond, our non-homogeneity also

has a weight and mainly, the third reason, the result of uniqueness. Tanaka, in [34℄,

onsidered the problem (1.2) in a ball with C = 0 and also demonstrated uniqueness.

Although our region is di�erent, we ompensate this di�erene onsidering an inhomo-

geneous problem, making it a more di�ult problem of partial di�erential equation. In

this sense we an say that we have improved a theorem obtained in [34℄.

In order to fae (1.1) we rewrite it in the form











∆u+K(‖x‖)|u|p−1u = q(‖x‖), x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,

u has exatly k nodal regions in Ω,

(1.4)
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with q(‖x‖) := C ·K(‖x‖)‖x‖−p(N−2)
and C > 0 is a onstant.

There are a lot of works related to the existene, nonexistene and multipliity of radial

solutions for di�erential equations with the struture appearing in (1.4), but without the

nodal ondition. Results about uniqueness of positive radial solutions are also known.

Almost all those results involve homogeneous problems, i.e., q ≡ 0 (see, for instane,

[6℄, [30℄, [31℄, [36℄). In [6℄, the authors studied the equation ∆u +K(‖x‖)f(u) = 0, with
K ∈ C2

and they showed that the problem has at most one positive solution, assuming

f being sublinear, more preisely f(s)/s > f ′(s) for s 6= 0. In [30℄ and [31℄, onsidering

the nonlinearity f(u) = |u|p−1u,N ≥ 3 and p > 1, the authors obtained uniqueness of

positive radial solutions under one additional ondition over rK ′(r)/K(r). In [36℄, the

author studied the same problem with K = 1 and f(u) = −u+up
subjet to the Dirihlet

boundary ondition on an annulus in R
N . As a by-produt, his approah also provides a

muh simpler, if not the simplest, new proof for the uniqueness of positive solutions to the

same problem, in a �nite ball or in the whole spae R
N .Without pretense of ompleteness,

we refer for instane to the papers [2℄, [9℄, [12℄, [17℄, [24℄, [25℄, [28℄, [27℄, [38℄, [39℄ and [40℄, as

well as the referenes therein, where results about uniqueness of positive radial solutions

an be found. On the other hand, by onsidering K = 1 and C = 0, Kajikiya in [23℄ and

the authors in [10℄ showed uniqueness to the di�erential equation in (1.1). In an annulus,

also uniqueness was obtained by Ni and Nussbaum [31℄ with K(t) = tl, l ∈ R and C = 0.
Additionally, in [34℄ a uniqueness result for problem (1.1) was proved in the homogeneous

ontext (C = 0). Also, in [22℄, [33℄, authors onsidered a sublinear nonlinearity. We must

mention that existene results have been obtained by Y. Naito [29℄ in the homogeneous

ase. In relation to the ase q 6= 0 onsidered here, in�nitely many radially symmetri

solutions were found in [8℄ while, more relevantly, [14℄, [15℄ showed results with a large

presribed number of zeros. Other works as [1℄, [3℄, [5℄, [11℄, [16℄, [18℄, [19℄ also onsider

nonhomogeneous problems. The referenes [3℄, [5℄ and [18℄ show existene of solutions

for the non-homogeneous ellipti equation∆u+|u|p−1u+g(x) = 0 in R
N
and its weighted

version with nonlinearity K(x)|u|p−1u in plae of |u|p−1u. The results in [3℄, [5℄ and [18℄

onsider the range N/(N − 2) < p that overs the ritial and superritial variational

ones p > (N+2)/(N−2). In [3℄ and [5℄, it was onsidered bounded ontinuous fore terms

g(x) while singular fores like g(x) = ‖x‖−γ
were treated in [18℄. Papers [11℄, [13℄, [19℄

studied quasilinear equations but they do not showed a uniqueness result.

To investigate the uniqueness of nodal radial solutions of the problem (1.4), we onsider

the following:















v′′(r) +
N − 1

r
v′(r) +K(r)|v(r)|p−1v(r) = q(r), a < r < b,

v(a) = v(b) = 0, v′(a) =: α > 0,

v has exatly k zeros in (a, b),

(1.5)

where

′ ≡ d
dr and v(r) := u(x) with r = ‖x‖.

Sine we apply the shooting method (f. [20℄, [21℄, [37℄), we study the initial value problem

(1.5) with v′(a) = α > 0 as the shooting parameter.

The following theorem is an existene result for (1.5) and it has been established by

Vol. 34, No. 2, 2016℄
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Dambrosio [15, Theorem B℄.

Theorem 1.1 (Dambrosio). If 1 < p < (N + 2)/(N − 2), then there exists k∗ ∈ N suh

that for every integer k ≥ k∗ the problem (1.5) has at least one solution.

Let v(·, α) be a funtion that satis�es (1.5). Hene v, v′ ∈ C1([a, b] × (0,∞)) and

vα(r, α) =
∂v
∂α (r, α) is a solution of the linearized problem







w′′ +
N − 1

r
w′ + pK(r)|v|p−1w = 0, a < r < b,

w′(a) = 1, w(a) = 0.
(1.6)

(See, for example, [37℄).

Most of the lemmas or results presented here involving omputations with the term of

the right hand side of the equation (1.5) are valid for more general funtions q, more

preisely for ontinuous funtions.

Our �rst result, aside from its own relevane, is ruial in our approah in order to get our

seond theorem. It establishes the osillatory behavior of the solution w to the linearized

equation (1.6). In other words, it exposes the interation of the zeros of the solution v
to the inhomogeneous di�erential equation (1.4) with any bounded external fore q > 0,
and the respetive solution w to the linearized equation (1.6). Thus, we an prove the

following theorem.

Theorem 1.2. There exists α̃1 > 0 suh that if |v′(a)| > α̃1 and z1, z2 are onseutive

zeroes of v, then the funtion w has a zero in (z1, z2).

Remark 1.3. The previous result holds true for any bounded and positive funtion q in

problem (1.5).

Let us de�ne V (r) := rK ′(r)/K(r) for r ∈ [a, b]. Our main seond result reads as follows:

Theorem 1.4. Let q(r) := C r−p(N−2)K(r) with K ′ ≥ 0. There exists k∗ ∈ N suh that

if k ≥ k∗ and if for all r ∈ [a, b],

[V (r) − p(N − 2)−N + 4][V (r) − p(N − 2) +N ]− 2rV ′(r) < 0, (1.7)

then the solution of problem (1.2) exists and it is unique.

Remark 1.5. Let us onsider h ∈ R and K(r) := rh for r ∈ [a, b]. If p > max{N/(N −
2), 2(b/a)N−1 − 1} and

p(N − 2)−N < h < p(N − 2) +N − 4,

then the ondition (1.7) is satis�ed and therefore we get Theorem 1.4 with this weight K
and p ∈ (N/(N − 2), (N + 2)/(N − 2)). Hene, there are examples of funtions K that

give us uniqueness with p in the well-known gap (N/(N − 2), (N + 2)/(N − 2)).

This paper is organized as follows. In Setion 2 we prove some useful fats related to

the energy of the solution. In Setion 3 we present tehnial lemmas and Setion 4 is

devoted to show Theorem 1.2 whih gives us a zero of the solution of the linearized

equation, between two onseutive zeros of the solution to the problem (1.5). Setion 5

onerns the study of a transformed problem, whih is equivalent to (1.5), and �nally, in

Setion 6 we prove Theorem 1.4.
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2. Energy analysis

We will denote by 0 < m := minK and ‖K‖∞ = ‖K‖.

We de�ne the energy funtion assoiated to a solution v:

E(r, α) ≡ E(r) =
1

2K(r)
|v′(r)|2 +

1

p+ 1
|v(r)|p+1. (2.1)

Lemma 2.1. The energy funtion de�ned in (2.1) satis�es the following properties:

1. lim
α→+∞

E(r, α) = +∞ uniformly for all r ∈ [a, b].

2. There exist positive onstants α0 and C2 suh that for all α ≥ α0 and a ≤ s < t ≤ b,

C2E(s, α) ≤ E(t, α) ≤ 2E(s, α). (2.2)

Proof. Di�erentiating (2.1) with respet to r and applying (1.5) it follows that

E′(r, α) =
q(r)v′(r, α)

K(r)
−

(

N − 1

rK(r)
+

K ′(r)

2K2(r)

)

|v′(r, α)|2. (2.3)

Taking into aount (2.3) and from the regularity ofK and q there exist positive onstants
C := ‖q‖/m and D := (N − 1)/(ma) + ‖K‖/(2m2), suh that for all r ∈ [a, b],

E′(r, α) ≥ −C|v′(r, α)| −D|v′(r, α)|2

≥ −
C2

2
−

1

2
|v′(r, α)|2 −D|v′(r, α)|2

= −C̄ − D̄|v′(r, α)|2.

Thus, if k1 := 2 ||K||∞D̄ then

e−k1r
(

ek1rE(r, α)
)′

≥ (k1/2K(r)− D̄)|v′(r, α)|2 − C̄ ≥ −C̄. (2.4)

Hene

(

ek1rE(r, α)
)′

≥ −C̄ek1b := −k2. Integrating we obtain positive onstants k3
and k4 suh that E(r) ≥ k3|α|

2 − k4. This proves the �rst part of the lemma. Again,

a suitable integration of (2.4) on [s, t] gives us positive onstants c1 and c2 suh that

E(t, α) ≥ c1E(s, α) − c2. From the previous inequality and the onlusion of the �rst

part of the lemma, there exists α1 > 0 suh that for all α ≥ α1 holds C2E(s, α) ≤ E(t, α),
where C2 := c1/2.

On the other hand, for all r ∈ [a, b] we have

E′(r, α) ≤ C|v′(r, α)| −
N − 1

b‖K‖
|v′(r, α)|2 (sine K ′ ≥ 0)

≤
C2ε2

2
+

1

2ε2
|v′(r, α)|2 −D0|v

′(r, α)|2

=
C2

4D0
=: c3,

where we took ε2 = 1/2D0. Integrating on [s, t] we have E(t, α) ≤ E(s, α) + c4. From
the �rst part of the lemma there exists α2 > 0 suh that for all α ≥ α2, E(s, α) ≥ c4.
De�ning α0 := max{α1, α2} we get E(t, α) ≤ 2E(s, α). This proves the seond part of

the lemma. �XXX
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3. Preliminary lemmas

From now on, when we mention a solution v with k zeros in (a, b), we denote z0 :=
a, zk+1 := b and zi as the ith zero of v(·, α) in (a, b) for i = 1, 2, . . . , k. Due to the

uniqueness of the initial value problem we note that v(·, α) and v′(·, α) annot vanish

simultaneously. Thus zi is a simple zero and, moreover,

(−1)iv′(zi, α) ≡ (−1)i
d

dr
v(zi, α) > 0 for i = 0, 1, 2, . . . , k + 1. (3.1)

Another useful tool that we need is the Prüfer transformation for the solution v(·, α) of
the di�erential equation, with initial onditions in (1.5). We de�ne the funtions ρ(r, α)
and θ(r, α) by

v(r, α) = ρ(r, α) sin θ(r, α),

rN−1v′(r, α) = ρ(r, α) cos θ(r, α).

Thus we see that ρ(r, α) and θ(r, α) an be written in the form

ρ(r, α) = (v2(r, θ) + r2(N−1)[v′(r, θ)]2)1/2 > 0

and

θ(r, α) = arctan

(

v(r, α)

rN−1v′(r, α)

)

.

From v, v′ ∈ C1([a, b]× (0,∞)), it follows that ρ, θ ∈ C1([a, b]× (0,∞)). Straightforward
alulations give

∂θ

∂r
(r, α) ≡ θ′(r) =

rN−1

ρ2
[(v′(r, α))2 − v(r, α) q(r) +K(r)|v(r, α)|p+1 ],

for r ∈ [a, b]. We will see that θ(r, α) is stritly inreasing in r ∈ [a, b] for eah α > 0
�xed and large enough. In fat, it is su�ient to show that v(r, α) q(r) < (v′(r, α))2 +
K(r)|v(r, α)|p+1

. For simpliity of notation we omit the arguments (r, α). Let s =
(p + 1)/p, s′ = p + 1 and ε > 0 be suh that εp+1 = 1/m(p − 1), with m = minK.
From the �rst part of Lemma 2.1, there exists α∗ > 0 suh that for α > α∗

we have

E(r, α) > εs||q||s∞/(2sm) uniformly in r. By using Young's Inequality with this ε we �nd

v q = (v/ε)(qε) ≤
|v|p+1

(p+ 1) εp+1
+

εs ||q||s∞
s

<
m(p− 1)

p+ 1
|v|p+1 + 2mE(r, α)

≤ |v′|2 +K(r)|v|p+1,

for every α > α∗
and uniformly in r ∈ [a, b].

We note that ρ(a, α) = aN−1α, and for simpliity we de�ne θ(a, α) = 0; therefore it is

simple to hek that v(r, α) is a solution of (1.5) if and only if

θ(b, α) = kπ. (3.2)

Hene, the number of solutions of (1.5) is equal to the number of roots α > 0 of (3.2).

The following lemma is proved in the same way as Lemma 2.3 in [1℄.
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Lemma 3.1. There exists M̂ > 0 suh that if |v′(a)| ≥ M̂ , then, between two onseutive

zeroes of v there is exatly one ritial point.

Lemma 3.2. Given δ > 0 there exists M1(δ) ≡ M1 > 0 suh that if |v′(a)| ≥ M1, then

z2−z1 ≤ δ for any two onseutive zeroes z1, z2 of v. Moreover, M1(δ) → +∞ as δ → 0.

Proof. Let Γ be a �xed onstant suh that Γ > (N − 1)(N − 3)δ2/(4a2) + 64π2
and

onsider y satisfying, for all r > 0,
{

y′′ + N−1
r y′ + Γ

δ2 y = 0,

y(0) = 1, y′(0) = 0.

By applying the Sturm's omparison theorem (f. [20℄, [21℄, [37℄) with the solution φ to

the problem y′′ + 64π2

δ2 y = 0, y(0) = 1 and y′(0) = 0, we onlude

d− c <
δ

4
, (3.3)

where c < d are onseutive zeroes of y. Let K2(δ) ≡ K2 > 0 be suh that for |v| ≥ K2

holds

(

m|v|p−1 −
‖q‖∞
|v|

)

≥
Γ

δ2
. (3.4)

Let t ∈ (z1, z2) be suh that |v(s)| ≤ K2 for all s ∈ (z1, t). Hene, realling the de�nition
of the energy and taking into aount 2E(s) ≥ C2E(a), we get

|v′(s)|2 ≥ K(s)

(

C2|v
′(a)|2

2||K||∞
−

2Kp+1
2

p+ 1

)

. (3.5)

Now, for some s̄ ∈ (z1, t) we have |t− z1| = |v(t)|/|v′(s̄)|. Considering (3.5), and if

|v′(a)| ≥

{

4||K||

C2

(

8K2
2

mδ2
+

Kp+1
2

p+ 1

)}1/2

≡ M2, (3.6)

we onlude t− z1 ≤ δ
4

√

m/K(s̄) ≤ δ/4. Similarly, if (3.6) holds and |v(s)| ≤ K2 for all

s ∈ (t, z2), then z2 − t ≤ δ/4.

Thus, if |v′(a)| satis�es (3.6) and |v′(a)| ≥ M̂ (from Lemma (3.1)) then v has a unique

ritial point in (z1, z2) and there exist t1 < t2 in the interval (z1, z2) suh that |v| ≥ K2

in [t1, t2] and |v| ≤ K2 on [z1, t1] ∪ [t2, z2]. We laim that t2 − t1 ≤ δ/2. In fat, if

t2 − t1 > δ/2 then, by (3.3), y has at least two zeroes in [t1, t2]. Hene, by the de�nition

of t1, t2 and the Sturm Comparison Theorem (keeping in mind (3.4)), v has a zero in

(t1, t2), whih is a ontradition. Hene, t2 − t1 ≤ δ/2 and z2 − z1 ≤ δ. Therefore, the

�rst part of the lemma is proved.

From (2.2),

E(t, v′(a)) ≥ C2|v
′(a)|2/(2||K||) ≥ δ−1,

provided that

|v′(a)| ≥

√

2||K||

δC2
.

Vol. 34, No. 2, 2016℄
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Thus, the seond part is ahieved by hoosing

M1(δ) := max{M̂,M2,
√

2||K||/(δC2) }.

The lemma is proved. �XXX

4. Proof of Theorem 1.2

Proof. De�ne M∗ := 2((N − 1)/a)(b/a)N−1, δ0 := (p− 1)/(3M∗),

Φ2 :=
||K||

C2

[

2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

+
‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2
]

,

Ψ2 :=
||K||

C2

[

1

m

(

‖q‖∞
M∗

)2(
p+ 1

p− 1

||K||

m
+ 1

)2

+
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)(p+1)/p
]

and

α̃1 := max{α0, M̂ ,M1(δ0),Φ,Ψ}. (4.1)

Sine z1 and z2 are onseutive zeroes of v we may assume, without loss of generality,

that v > 0 in (z1, z2).

Suppose that w > 0 in (z1, z2) (similar arguments prove the ase w < 0 in (z1, z2)). Let
ρ ∈ (z1, z2) be suh that v′(ρ) = 0. Sine α̃1 ≥ M̂ , by Lemma 3.1, v(ρ) = max{v(r) : r ∈
(z1, z2)}. By (4.1) and Lemma 2.1,

E(ρ, v′(a)) = E(ρ) >
1

p+ 1

(

(p+ 1)‖q‖∞
m(p− 1)

)(p+1)/p

.

From here follows vp(ρ) > [(p + 1)/(p− 1)][‖q‖∞/m]. Thus, by the Intermediate Value

Theorem there exist t1, t2 suh that z1 < t1 < ρ < t2 < z2 and

vp(t1) =
(p+ 1)‖q‖∞
(p− 1)m

= vp(t2). (4.2)

Multiplying (1.5) by rN−1 w and (1.6) by rN−1 v, and integrating by parts on [s, t] ⊂
[t1, t2] we have

tN−1(w′v − v′w)(t) − sN−1(w′v − v′w)(s)

+

∫ t

s

rN−1[(p− 1)K(r)|v|p + q]w(r)dr = 0.
(4.3)

Claim: w′(ρ) < 0.

Proof of the laim. Suppose that w′(ρ) ≥ 0. Thus

−sN−1(w′v − v′w)(s) +

∫ ρ

s

rN−1[(p− 1)K(r)|v|p + q]w(r)dr ≤ 0, (4.4)

for any s ∈ [t1, ρ).
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On the other hand, for s ∈ [t1, ρ] we have (from (1.6))

sN−1w′(s) = ρN−1w′(ρ) + p

∫ ρ

s

rN−1K(r)|v(r)|p−1w(r) dr. (4.5)

Sine the right hand side of (4.5) is positive, it follows that w′(s) > 0 for s ∈ [t1, ρ],
whih implies that w is inreasing on that interval. Thus w(s) ≥ w(t1) for all s ∈ [t1, ρ].
Multiplying the ODE in (1.5) by rN−1

and integrating we get

tN−1
1 v′(t1) =

∫ ρ

t1

rN−1(K(r)vp(r) − q(r)) dr. (4.6)

By using (4.2) and v(t1) ≤ v(r) the right hand side is less than or equal to

∫ ρ

t1
rN−1[K(r)vp(r) +mp−1

p+1v
p(r)] dr, and hene

tN−1
1 v′(t1) ≤

2p

p+ 1

∫ ρ

t1

rN−1K(r)vp(r) dr. (4.7)

Now,

∫ ρ

t1

rN−1[(p− 1)K(r)|v|p + q(r)]w(r)dr

≥ w(t1)

∫ ρ

t1

rN−1[(p− 1)K(r)|v|p + q(r)] dr

= w(t1)

(
∫ ρ

t1

rN−1(p− 1)K(r)|v|p dr +

∫ ρ

t1

rN−1q(r) dr

)

≥
p− 1

2
tN−1
1 w(t1)v

′(t1) ( by (4.6) and (4.7)).

(4.8)

We also observe that we have used the fat

(p− 1)K(r)|v|p + q(r) ≥ (p− 1)m|v|p(t1) + q(r) ≥ (p+ 1)||q|| − ||q|| ≥ 0.

Combining (4.4) and (4.8) we obtain

−tN−1
1 (w′v − v′w)(t1) +

p− 1

2
tN−1
1 w(t1)v

′(t1) ≤ 0. (4.9)

Sine r 7→ rN−1w′(r) is dereasing in (z1, z2) (see (1.6)) then for t ∈ (z1, t1], t
N−1w′(t) ≥

tN−1
1 w′(t1), and thus, by (4.9),

w′(t) ≥ (
p− 1

2
)w(t1)v

′(t1)/v(t1).

Therefore

w(t1) ≥ w(t1)− w(z1) ≥
(p− 1)w(t1)v

′(t1)

2v(t1)
(t1 − z1). (4.10)

By Taylor's formula

0 = v(z1) = v(t1) + v′(t1)(t1 − z1) +
v′′(ζ)

2
(t1 − z1)

2

= v(t1) + v′(t1)(t1 − z1)

−
1

2

{

N − 1

ζ
v′(ζ) +K(ζ)|vp(ζ)| − q(ζ)

}

(t1 − z1)
2,

(4.11)
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for some ζ ∈ (z1, t1). Also, by (1.5),

ζN−1v′(ζ) = tN−1
1 v′(t1) +

∫ t1

ζ

rN−1[K(r)vp(r)− q(r)]dr

≤ tN−1
1

[

v′(t1) + (
p+ 1

p− 1

||K||

m
+ 1)‖q‖∞(t1 − z1)

]

.

(4.12)

The above and (4.1) give

v′(ζ) ≤ (b/a)N−12v′(t1). (4.13)

In order to see this, aording to the de�nition of α̃1 and by the seond part of Lemma

2.1, C2Φ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t1), whih implies

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

+
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)(p+1)/p

≤ 2E(t1),

and due to (4.2),

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

≤ 2E(t1)−
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

= |v′(t1)|
2/K(t1).

From this and (4.12) we have (4.13).

On the other hand,

C2Ψ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t1).

Reasoning as before we prove that

||q||

(

p+ 1

p− 1

‖K‖

m
+ 1

)

≤ M∗v′(t1),

and ombining it with (4.13) and (4.11) we get

v(t1) ≤
1

2

(

N − 1

a
(b/a)N−12v′(t1) + ||q||

(p+ 1

p− 1

‖K‖

m
+ 1
)

)

(t1 − z1)
2

≤ M∗ v′(t1)(t1 − z1)
2.

(4.14)

From (4.10) it is lear that t1 − z1 ≤ 2v(t1)/((p− 1)v′(t1)). Taking into aount (4.14),

v(t1) ≤
4M∗v′(t1)v

2(t1)

(p− 1)2|v′(t1)|2
,

or equivalently, v′(t1) ≤ 4M∗v(t1)/(p− 1)2. Then, by using (4.14),

(z2 − z1)
2 ≥ (t1 − z1)

2 ≥
v(t1)

M∗v′(t1)
≥

(p− 1)2

4(M∗)2
,

whih implies

z2 − z1 ≥
p− 1

2M∗
> δ0,
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This ontradits Lemma 3.2 and thus the laim is proved. Therefore

w′(ρ) < 0.

Using the previous inequality, taking t = t2 and s = ρ in (4.3), we have

tN−1
2 (w′v − v′w)(t2) = ρN−1w′(ρ)v(ρ)

−

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r)dr

< −

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r)dr.

(4.15)

Multiplying the ODE in (1.6) by rN−1
and integrating in [ρ, s] with s ∈ [ρ, t2] we prove

that w is dereasing in [ρ, t2]. Using the same proedure with the ODE in (1.5), we arrive

to

−tN−1
2 v′(t2) =

∫ t2

ρ

rN−1[K(r)vp(r)− q(r)] dr

≤

∫ t2

ρ

rN−1(K(r)vp(r) + ||q||) dr

=

∫ t2

ρ

rN−1[K(r)vp(r) +
m(p− 1)

p+ 1
vp(t2)] dr

≤
2p

p+ 1

∫ t2

ρ

rN−1K(r)vp(r) dr.

(4.16)

In a similar fashion as in (4.8), and using (4.16), we onlude

∫ t2

ρ

rN−1[(p− 1)K(r)vp(r) + q(r)]w(r) dr ≥ −
p− 1

2
tN−1
2 v′(t2)w(t2).

This implies that (4.15) beomes

tN−1
2 (w′v − v′w)(t2) ≤

p− 1

2
tN−1
2 v′(t2)w(t2). (4.17)

Now, we onentrate on the orresponding subinterval to the right of ρ. Sine the map

r 7→ rN−1w′(r) is dereasing in (z1, z2), taking t ∈ [t2, z2) we get t
N−1
2 w′(t2) ≥ tN−1w′(t),

and by (4.17),

tN−1
2 w′(t2) ≤

1

v(t2)

[

p− 1

2
tN−1
2 w(t2)v

′(t2) + tN−1
2 w(t2)v

′(t2)

]

,

and thus,

w′(t) ≤ −
p+ 1

2

(

t2
t

)N−1
w(t2)|v

′(t2)|

v(t2)
≤ −

p+ 1

2

(a

b

)N−1 w(t2)|v
′(t2)|

v(t2)
.

Therefore

−w(t2) ≤ w(z2)− w(t2) ≤ −
p+ 1

2

(a

b

)N−1 w(t2)|v
′(t2)|

v(t2)
(z2 − t2). (4.18)
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As before, by Taylor's formula,

0 = v(z2) = v(t2) + v′(t2)(z2 − t2) +
v′′(τ)

2
(z2 − t2)

2

= v(t2) + v′(t2)(z2 − t2)

−
1

2

{

N − 1

τ
v′(τ) +K(τ)|vp(τ)| − q(τ)

}

(z2 − t2)
2,

(4.19)

for some τ ∈ (t2, z2). On the other hand,

τN−1v′(τ) = tN−1
2 v′(t2) +

∫ τ

t2

rN−1[q(r) −K(r)vp(r)] dr

and

∫ τ

t2
rN−1[K(r)vp(r) − q(r)] dr ≤ τN−1(||K|| p+1

(p−1)m + 1)||q||(τ − t2) imply

τN−1v′(τ) ≥ tN−1
2 v′(t2)− τN−1

(

||K||

m

p+ 1

p− 1
+ 1

)

||q||(τ − t2).

Moreover, |v′(τ)| ≤ (b/a)N−1 |v′(t2)|+
(

||K||
m

p+1
p−1 + 1

)

||q||(τ − t2). From the de�nition of

Φ it is lear that

C2Φ
2 ≤ C2|v

′(a)|2 = 2C2K(a)E(a) ≤ 2C2||K||E(a) ≤ 2||K||E(t2),

and thus

‖q‖2∞(b − a)2

m

(

p+ 1

p− 1

||K||

m
+ 1

)2

≤ 2E(t2)−
2

p+ 1

(

p+ 1

p− 1

‖q‖∞
m

)

p+1

p

= 2E(t2)−
2

p+ 1
vp+1(t2)

= |v′(t2)|
2/K(t2) ≤ |v′(t2)|

2/m.

Consequently,

(

||K||
m

p+1
p−1 + 1

)

||q||(τ − t2) ≤ |v′(t2)|, and therefore

|v′(τ)| ≤ [(b/a)N−1 + 1]|v′(t2)|. (4.20)

Also, as we mentioned, it is simple to hek that

||q||

(

p+ 1

p− 1

‖K‖

m
+ 1

)

≤ M∗|v′(t2)|.

Combining (4.20), (4.19), the previous inequality, v(τ) ≤ v(t2) and replaing the seond

equality of (4.2), we have

v(t2) ≤
1

2

{

N − 1

a
[(b/a)N−1 + 1]|v′(t2)|+ ||q||

(

||K||(p+ 1)

m(p− 1)
+ 1

)}

(z2 − t2)
2

− v′(t2)(z2 − t2)

≤ Θ|v′(t2)|(z2 − t2)
2 − v′(t2)(z2 − t2).
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Here Θ := 1
2

{

N−1
a [(b/a)N−1 + 1] +M∗

}

= N−1
2a [3(b/a)N−1 + 1]. Now, an elementary

omputation shows that

(

z2 − t2 +
1

2Θ

)2

≥
1

4Θ2
−

v(t2)

Θ v′(t2)
.

Next, using (4.18), we dedue

(

z2 − t2 +
1

2Θ

)2

≥
1

4Θ2
+

1

Θ

p+ 1

2

(a

b

)N−1

(z2 − t2).

This implies that z2−t2 ≥ (1/Θ)
(

p+1
2

(

a
b

)N−1
− 1
)

> 0, provided that p+1 > 2(b/a)N−1

(see (1.3)), whih ontradits Lemma 3.2.

This seond ontradition implies that w annot be positive on (z1, z2). Replaing w by

−w in the above arguments we see that w annot be negative at all points in (z1, z2).
Hene w must have a zero in (z1, z2), whih proves our Theorem 1.2. �XXX

5. Transforming the problem

We reall that q : [a, b] → R is a di�erentiable funtion. By using the transformation

φ : [a, b] → [a, a3−NbN−2] given by φ(t) = a3−N tN−2
, we transform (1.5) into a new

annulus and a new problem. In fat, we de�ne

U(t, α) = a−1(N − 2)tv(a1−βtβ , α), W (t) = a−1(N − 2)tw(a1−βtβ),

with β = 1/(N − 2), v the solution of (1.5) and w the solution of (1.6). Notie that

U(a) = 0 = U(b1) and U ′(a) = α, where b1 := a3−NbN−2. Then U = U(t, α) and

W = W (t) satisfy

U ′′(t) +M(t)|U |p−1U(t) = Q(t), a < t ≤ b1, (5.1a)

U(a) = 0, U ′(a) = α, (5.1b)

W ′′(t) + pM(t)|U |p−1W (t) = 0, a < t ≤ b1, (5.1)

W (a) = 0, W ′(a) = 1, (5.1d)

where M(t) = βp+1ap−2β+1t2β−p−1K(a1−βtβ) and Q(t) = βa1−2βt2β−1q(a1−βtβ). We

de�ne Zi = φ(zi) = a3−NzN−2
i , i = 0, 1, 2, . . . , k + 1. Then we see that

U(Zi, α) = 0, for i = 0, 1, 2, . . . , k + 1,

(−1)i−1U(t, α) > 0 for t ∈ (Zi−1, Zi), i = 1, 2, . . . , k + 1.

Also, there exist Si ∈ (Zi−1, Zi) suh that U ′(Si, α) = 0, for i = 1, 2, . . . , k + 1 and α
large. Atually, Si is unique as we show next. It is easy to hek that v′(a1−βtβ) =
aβt−β [U ′(t)− t−1U(t)]. Therefore,

E(a1−βtβ , α, v) ≡ E(a1−βtβ)

=
a2βt−2β

2K(a1−βtβ)
[U ′(t)− t−1U(t)]2 +

ap+1t−p−1

(p+ 1)(N − 2)p+1
|U(t)|p+1.
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Partiularly, if τ ∈ (a, b1) is a ritial point of U, then

E(a1−βτβ) =
a2βτ−2β−2

2K(a1−βτβ)
U2(τ) +

ap+1τ−p−1

(p+ 1)(N − 2)p+1
|U(τ)|p+1. (5.2)

Applying the Young's Inequality with ε = τ2, s = (p + 1)/2 and its onjugate r =
(p+1)/(p−1) in the �rst term in (5.2), we �nd positive onstants λ1 and λ2 independent

on α and τ suh that

E(a1−βτβ) ≤ λ1 + λ2|U(τ)|p+1.

On the other hand, by Lemma 2.1 we an say that |U(τ)|p+1
is large for α >> 1. Finally,

taking into aount (5.1a), it follows that U(τ)U ′′(τ) < 0 for every ritial point τ . Thus,
U has only one ritial point in (Zi−1, Zi), whih onludes the laim.

In addition, it is lear that U ′(t, α) > 0 for t ∈ (a, S1) and

(−1)iU ′(t, α) > 0 for t ∈ (Si, Si+1), i = 1, 2, . . . , k, (5.3)

(−1)kU ′(t, α) > 0 for t ∈ (Sk+1, Zk+1]. (5.4)

Lemma 5.1. Let W be the solution of (5.1), (5.1d). Then, for eah i ∈ {1, 2, . . . , k +
1},W has at least one zero in (Zi−1, Zi).

Proof. We �x i ∈ {1, 2, . . . , k + 1}. As a onsequene of Theorem 1.2, there exists ri ∈
(zi−1, zi) suh that w(ri) = 0. If we de�ne Ri = a3−NrN−2

i , we see that Ri ∈ (Zi−1, Zi)
and W (Ri) = 0. �XXX

Lemma 5.2. The Inequality (1.7) holds if and only if ([M(t)]−1/2)′′ < 0 for a < t < b.

Proof. Let t = a3−NrN−2
. Then [M(t)]−1/2 = Crρ[K(r)]−1/2

, where

C = β−p/2−1/2a−ρ
and ρ = 1

2 [p(N − 2) +N − 4]. Hene, we obtain

d

dt
[M(t)]−1/2 = CaN−3β[ρrρ−N+2K−1/2 −

1

2
rρ−N+3K−3/2K ′].

Moreover,

d2

dt2
[M(t)]−1/2 = Ca2(N−3) β

2rρ−2N+4

K1/2
×

[

ρ(ρ−N + 2)−
1

2
(2ρ−N + 3)

rK ′

K
+

3

4

(

rK ′

K

)2

−
1

2

r2K ′′

K

]

.

Sine r2K ′′/K = rV ′ − V + V 2, we have

4C−1β−2a2(3−N)K1/2

rρ−2N+4

d2

dt2
[M(t)]−1/2

= 4ρ(ρ−N + 2)− 2(2ρ−N + 2)V + V 2 − 2rV ′

= (V − 2ρ)(V − 2ρ− 4 + 2N)− 2rV ′

= [V − p(N − 2)−N + 4][V − p(N − 2) +N ]− 2rV ′.

From this, the lemma follows. �XXX
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6. Uniqueness result

In this setion we prove our uniqueness result for the problem















v′′(r) +
N − 1

r
v′(r) +K(r)|v(r)|p−1v(r) = C r−p(N−2)K(r), a < r < b,

v(a) = v(b) = 0, v′(a) =: α > 0,

v has exatly k zeros in (a, b),

(6.1)

where C > 0 is onstant.

First, we establish some fats where the partiular form of q(r) := C r−p(N−2)K(r) is

ruial. Due to the de�nition of q, we obtain:

Lemma 6.1. Let U be a solution of (5.1a), (5.1b), and W be a solution of (5.1), (5.1d).

Then, for a ≤ t ≤ b1,

d

d t

(

[M(t)]−1/2[W ′ U ′ −W U ′′]− ([M(t)]−1/2)′W U ′
)

= −([M(t)]−1/2)′′W U ′. (6.2)

Proof. By (5.1a), we note that U ′′′ = Q′ − M ′(t)|U |p−1U − pM(t)|U |p−1U ′
for every

a ≤ t ≤ b1. From here, and replaing U ′′
and W ′′

from (5.1a) and (5.1) respetively, the

assertion follows from diret omputations. �XXX

Lemma 6.2. Assume that (1.7) holds. Let W be a solution of (5.1), (5.1d). Then the

following hold:

(i) W (t) > 0 for t ∈ (a, S1].

(ii) W has at most one zero in (Si, Si+1] for eah i ∈ {1, 2, . . . , k}.

(iii) W has at most one zero in (Sk+1, Zk+1].

Proof. (i) Suppose that there exists t2 ∈ (a, S1] suh that W (t2) = 0 and W (t) > 0
for t ∈ (a, t2). Then we have W ′(t2) < 0. Sine t2 ∈ (a, S1], then U ′(t2) ≥ 0, and
thus W ′(t2)U

′(t2) ≤ 0. Integrating (6.2) over (a, t2] and using Lemma 5.2, we get

W ′(t2)U
′(t2) > 0, whih is a ontradition. The proof of (i) is omplete.

(ii) Assume that there exist t1 and t2 suh that Si < t1 < t2 ≤ Si+1,W (t1) = W (t2) = 0
and W (t) 6= 0 for t ∈ (t1, t2). We may suppose that W (t) > 0 for t ∈ (t1, t2). Then we

have W ′(t1) > 0 and W ′(t2) < 0. Let U be a solution of (5.1a), (5.1b). Integrating (6.2)

over [t1, t2], then multiplying by (−1)i and using Lemma 5.2 and (5.3), we obtain

0 > (M(t2))
−1/2W ′(t2)(−1)iU ′(t2)− (M(t1))

−1/2W ′(t1)(−1)iU ′(t1) > 0,

whih is a ontradition. The ase where W (t) < 0 for t ∈ (t1, t2) is treated in a similar

way. The proof of (ii) is omplete.

(iii) The proof is similar to the previous one and taking into aount (5.4). �XXX

Lemma 6.3. If v(r, α) is a solution of (6.1) with k zeros in (a, b), w = vα is a solution

of (1.6) and (1.7) holds, then (−1)iw(zi) > 0 for i = 1, 2, . . . , k + 1.
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Proof. By Lemmas 5.1 and 6.2, there exists a number C1 ∈ (S1, Z1) suh that W (t) > 0
for t ∈ (a, C1),W (C1) = 0 and W (t) < 0 for t ∈ (C1, S2]. In partiular, we have

W (Z1) < 0. Also, from Lemmas 5.1 and 6.2 we see that there exists a number C2 ∈
(S2, Z2) suh that W (t) < 0 for t ∈ (S2, C2),W (C2) = 0 and W (t) > 0 for t ∈ (C2, S3].
Sine C2 < Z2 < S3, we have W (Z2) > 0. Repeating the proess, we onlude that

(−1)iW (Zi) > 0 for eah i = 1, 2, . . . , k + 1. This implies that (−1)iw(zi) > 0 for eah

i = 1, 2, . . . , k + 1. The lemma is proved. �XXX

Using the previous lemma in the same way presented in [34, Lemma 2.2℄, the following

important ingredient in the proof of the main theorem is shown.

Lemma 6.4. Let k ∈ N and let v(r, α0) be a solution of (1.5) for some α0 > 0. If (1.7)

holds, then θα(b, α0) > 0.

Proof of Theorem 1.4. Realling Theorem 1.1, we see that (1.5) has at least one solution.

Now we show that the solution of (1.5) is unique. Assume, to the ontrary, that there

exist numbers 0 < α1 < α2 suh that v(·, α1) and v(·, α2) are solutions to (1.5). Then

θ(b, α1) = θ(b, α2) = kπ.

Lemma 6.4 implies that θα(b, α1) > 0 and θα(b, α2) > 0. By the regularity of θα(b, ·)
we have that θ(b, α0) = kπ and θα(b, α0) ≤ 0 for some α0 ∈ (α1, α2). This ontradits
Lemma 6.4 and, onsequently, (1.5) has only one solution. The proof of Theorem 1.4 is

omplete.
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