Continuous images of hereditarily indecomposable continua

DAVID P. BELLAMY

University of Delaware, Professor of Mathematical Sciences, emeritus, Newark, USA.

Abstract. The theorem proven here is that every compact metric continuum is a continuous image of some hereditarily indecomposable metric continuum.

Keywords: Continuous maps, continuum, hereditarily indecomposable.

MSC2010: 54F15, 54F45, 54E45, 54C60.

1. Introduction

These definitions are needed in what follows and may or may not be familiar to everyone. A continuum X is a compact, connected metric space. A continuum X is indecomposable provided that whenever A and B are proper subcontinua of X, $A \cup B$ is a proper subset of X; X is hereditarily indecomposable if, and only if, every subcontinuum of X is indecomposable. A map is a continuous function. A map f from a continuum X to a continuum Y is weakly confluent provided that given any continuum $M \subseteq Y$ there exists a continuum $W \subseteq X$ such that $f(W) = M$. When X is a continuum, $C(X)$ is the hyperspace of subcontinua of X. If a and b are points in \mathbb{R}^n with $a \neq b$, $[a, b]$ denotes the line segment from a to b. Let S^n denote the n dimensional sphere. An arc $A \subseteq S^3$ is tame if and only if there is a homeomorphism $h: S^3 \rightarrow S^3$ such that $h(A)$ is an arc of a great circle in S^3.

Some time later, in conversation, Rogers asked whether every continuum is a continuous image of some hereditarily indecomposable continuum. This article provides a proof that the answer to this question is also yes.

The author first announced this result in [1] but has not published it previously. It has come to my attention that in [4] this result has been extended to the non-metric case, building on the metric result.

2. Necessary Lemmas

Lemma 2.1. Let X and Y be continua. Then $f : X \to Y$ is weakly confluent if, and only if, the hyperspace map induced by f, $C(f) : C(X) \to C(Y)$, is surjective.

Proof. This is just a restatement of the definition of weakly confluent. \blacklozenge

Lemma 2.2. There exists a hereditarily indecomposable subcontinuum of \mathbb{R}^4 which separates \mathbb{R}^4.

Remark on proof. R. H. Bing [2] proved this not just for $n = 4$, but for every $n > 1$.

Lemma 2.3. Each homotopically essential map from a continuum X to the three sphere, S^3, is weakly confluent.

Proof. This was essentially proven, although in a different context, by S. Mazurkiewicz in [5, Theoreme I, p. 328]. This argument gives the necessary details. Let X be a continuum, and suppose $g : X \to S^3$ be a homotopically essential map. To prove that g is weakly confluent, it suffices to prove that every tame arc in S^3 is equal to $g(M)$ for some continuum $M \subseteq X$. This follows from Lemma 2.1 because the set of tame arcs is dense in $C(S^3)$.

First, set up some machinery and notation, as follows. Let J be a tame arc in S^3; let D_n be the closed disk in the complex plane with radius $(1/n)$ centered at 0. Let E_n be the corresponding open disk, and let T_n be the circle $D_n \setminus E_n$. Let C_n be the solid cylinder $D_n \times [0, 1]$. Since J is a tame, there exists an embedding h of C_1 into S^3 such that $h(\{0\} \times [0, 1]) = J$. Consider C_n as a subset of S^3 by identifying C_1 with $h(C_1)$, and for each $t \in [0, 1]$ let t denote the point $h(0, t) \in J$.

Let F_n denote the manifold boundary of C_n, that is, $F_n = (D_n \times \{0, 1\}) \cup (T_n \times [0, 1])$. Note that given any n and any $a, b \in J$ there is an isotopy $H : C_n \times [0, 1] \to C_n$ satisfying the following:

(i) for each $s \in [0, 1], H(J \times \{s\}) = J$;

(ii) for each $x \in F_n$ and each $t \in [0, 1], H(x, t) = x$;

(iii) for every $x \in C_n, H(x, 0) = x$; and

(iv) $H(b, 1) = a$.
By setting \(H(x,t) = x \) for every \(x \in S^3 \setminus C_n \), and every \(t \in [0,1] \), \(H \) can be considered to be a function (hence an isotopy) from \(S^3 \times [0,1] \) to \(S^3 \).

Now, suppose \(X \) is a continuum and let \(g : X \to S^3 \) be a homotopically essential map. To prove that \(g \) is weakly confluent, it suffices to prove that there exists a continuum \(M \subseteq X \) such that \(g(M) = J \).

Proceed by contradiction; assume there is no such \(M \). Then no component of \(g^{-1}(J) \) intersects both \(g^{-1}(0) \) and \(g^{-1}(1) \). By compactness, there is a separation, \(R_0 \cup R_1 \) of \(g^{-1}(J) \) satisfying \(g^{-1}(0) \subseteq R_0 \) and \(g^{-1}(1) \subseteq R_1 \). Since \(R_0 \) and \(R_1 \) are disjoint closed sets in \(X \), there exist open subsets \(S_0 \) and \(S_1 \) of \(X \) such that \(R_0 \subseteq S_0 \) and \(R_1 \subseteq S_1 \) and \(Cl(S_0) \cap Cl(S_1) = \emptyset \). There exists \(n \) such that \(g^{-1}(Cn) \subseteq S_0 \cup S_1 \). Let \(p = \inf g(R_1) \) and let \(q = \sup g(R_0) \), and let \(a, b \in J \) be such that \(0 < a < p \) and \(q < b < 1 \). If \(p > q \), then \(g \) is not surjective and hence not essential, so \(0 < a < p \) and \(q < b < 1 \). Using the number \(n \) and the points \(a \) and \(b \) just chosen, let \(H : S^3 \times [0,1] \to S^3 \) be the isotopy described above. Define a homotopy \(G : X \times [0,1] \to S^3 \) by \(G(x,t) = g(x) \) if \(x \in X \setminus S_0 \) and \(G(x,t) = H(g(x),t) \) if \(x \in Cl(S_0) \). Define \(f : X \to S^3 \) by \(f(x) = G(x,1) \).

Then, note that if \(y \in J \) and \(a < y < p \), then there does not exist \(z \in X \) such that \(f(z) = y \), so \(f \) is nonsurjective. Hence, \(f \) is inessential. Since \(g \) is homotopic to \(f \), \(g \) is inessential also, a contradiction, which completes the proof. \(\Box \)

Lemma 2.4. A continuum \(X \subseteq R^3 \) admits a homotopically essential map onto \(S^3 \) if, and only if, \(R^4 \) \(X \) is not connected \(S^3 \).

Remark on Proof. This is a special case of the Borsuk separation theorem. I do not have a reference to the original proof, but a proof can be found in almost any advanced topology or algebraic topology book.

Lemma 2.5. Given any continuum \(Y \), there is a continuum \(X \subseteq S^3 \) that admits a continuous surjection \(f : X \to Y \).

Proof. Let \(Y \) be a continuum and let \(C \) and \(D \) be Cantor sets in \(R^3 \) such that \(C \) and \(D \) lie on lines skew to each other. Then, whenever \(a, p \in C \) and \(b, q \in D \), and \(a, p, b, \) and \(q \) are all different, the line segments \([a,b]\) and \([p,q]\) are disjoint. Let \(g : C \cup D \to Y \) be a map such that \(g(C) : C \to Y \) and \(g(D) : D \to Y \) are both onto. Such a \(g \) exists since a Cantor set can be mapped onto every compact metric space. Define \(X = \bigcup\{[a,b] : a \in C; b \in D \text{ and } g(a) = g(b)\} \). Then \(X \) is a continuum in \(R^3 \). For each \(x \in X \), let \([a(x),b(x)]\) be a segment in \(X \) satisfying \(a(x) \in C; b(x) \in D \), and \(x \in [a(x),b(x)] \). (This segment is unique unless \(x = a(x) \) or \(x = b(x) \).) Define \(f : X \to Y \) by \(f(x) = g(a(x)) = g(b(x)) \). It is straightforward to verify that \(f : X \to Y \) is continuous and onto. Since for any point \(p \in S^3 \), \(S^3 \setminus \{p\} \) is a copy of \(R^3 \), \(X \) can be treated as a subcontinuum of \(S^3 \). \(\Box \)

3. **Main Result**

Theorem 3.1. Let \(Y \) be an arbitrary continuum. There exists a hereditarily indecomposable continuum \(K \) that admits a surjective map \(f : K \to Y \).
Proof. Let Y be a continuum. By Lemma 2.5, there is a continuum $T \subseteq S^3$ and an onto map $g: T \to Y$. By Lemma 2.2, there exists a hereditarily indecomposable continuum $L \subseteq R^4$ that separates R^4. Thus by Lemma 2.4, there is a homotopically essential map $h: L \to S^3$. By Lemma 2.3, h is weakly confluent, so there exists a continuum $K \subseteq L$ such that $h(K) = T$. Let $f = g \circ (h|K)$. Then $f: K \to Y$ is the desired map; K is hereditarily indecomposable since it is a subcontinuum of L. \hfill \Box

References

