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Abstract. In this work, we prove the existence of periodic solutions for
some enzyme catalysed reaction models subject to periodic substrate input.
We also obtain uniqueness and asymptotic stability of the periodic solution
of some classes of reaction equations. Numerical simulations are performed
using specific substrate functions to illustrate our analytical findings.
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Oscilaciones en reacciones enzimáticas con entradas

periódicas

Resumen. En este trabajo probamos la existencia de soluciones periódicas
para algunos modelos de reacciones catalizadas por enzimas sujetas a una
entrada periódica de sustrato. También obtenemos unicidad y estabilidad
asintótica de la solución periódica de algunas clases de reacciones. Realiza-
mos simulaciones numéricas utilizando funciones específicas de sustrato para
ilustrar nuestros hallazgos analíticos.
Palabras clave: Sistemas cooperativos, cinética enzimática, órbitas periódi-
cas.

1. Introduction

Mathematical models have become important tools in analyzing chemical reactions; of
special interest are enzymatic reactions in biochemical systems. Enzymes are important
in regulating biological processes acting as activators or inhibitors in a reaction. A basic
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scheme for a catalysed reaction is based into the Michaelis-Menten equation, which is
fundamental for enzyme kinetics. It can be described by the following kinetic mechanism:

I(t)
−→ S + E

k1

⇄
k−1

C
k2

−→ P + E , (1)

where E denotes enzyme, S denotes substrate, P denotes product and C denotes enzyme
substrate complex. I(t) is the rate of input of the substrate into the system. Letting
[A] denote concentration of a chemical specie A. A well-studied law of action kinetic
is the law of mass action; it assumes that the rate of a reaction is proportional to the
concentrations of its reactants; the law of mass action leads to the system of following
non-linear reaction equations:

d[S]

dt
= I(t)− k1[S][E] + k−1[C],

d[E]

dt
= −k1[S][E] + (k−1 + k2)[C],

d[C]

dt
= k1[S][E]− (k−1 + k2)[C],

d[P ]

dt
= k2[C].

(2)

All of the parameters are positive constants. Since the scheme (1) is reversible, then,
by adding the second and third equations in the system (2), we have ([E] + [C])′ = 0;
therefore [E] + [C] = K for all time t for some positive constant K. Using this relation,
and since the last equation in system (2) decouples from the other equations, we can
reduce model (2) to a two-dimensional system in terms of [S] and [C], as follows:

d[S]

dt
= I(t)− k1(K − [C])[S] + k−1[C],

d[C]

dt
= k1(K − [C])[S]− (k−1 + k2)[C].

(3)

In chemical engineering it is common to use stirred tank reactors where fresh nutrient are
supplied at periodic rate from external sources; on the other hand, a natural situation in
biological system is that the rate of input of the substrate I fluctuates in periodic form;
this is due to intrinsic oscillations in living organisms. So, for the interest of the chemical
industry or for biological reasons of the reactions considered, we can assume that I is a
non negative, non constant continuous T -periodic function;

I(t+ T ) = I(t) and I(t) ≥ 0, ∀t ∈ R.

In the study of enzymatic models the analysis of periodic solutions is seen as an impor-
tant goal, since this periodicity reveals the recurrence of biochemical rhythms of living
organisms. Hence, determining existence of such solutions under different parameter
configurations and input functions is crucial.

Stoleriu and coworkers [5] studied the existence of periodic solutions in a particular class
of input rate I, by using Brouwer’s fixed-point theorem. Katriel [1] proved the existence of

[Revista Integración, temas de matemáticas



Oscillations in enzymatic reactions with periodic input 301

periodic orbits of (3), by using Leray-Schauder degree theory. Moreover, he asked if that
periodic solution is unique and asymptotically stable. Using the theory of cooperative
systems, in the sequel we will recover Katriel’s result as an application of our main result;
moreover, we obtain the uniqueness of such orbit, and that the periodic solution attracts
all other positive solutions, answering affirmatively to Katriel’s questions [1]. On the
other hand, considering the generalized mass-action law we obtain more general systems
of type (3); for that kind of systems we also prove the existence of periodic orbits.

2. Results

We first review the cooperative systems (this material is included for completeness and
to fix some of the notation); for a brief introduction to cooperative systems see [4]. For
two points x, y ∈ R

n denote the partial order u ≤ v, if ui ≤ vi for each i; also denote
u < v if u ≤ v and u 6= v. Consider a system

ẋ = f(t, x(t), y(t)),

ẏ = g(t, x(t), y(t)),
(4)

where f, g are C1 in an open D ⊂ R
2 and continuous T -periodic functions on t. Recall

that (4) is said a cooperative system in R×D if

fy(t, x, y) ≥ 0, and gx(t, x, y) ≥ 0, ∀ t ∈ R, (x, y) ∈ D. (5)

The cooperative systems have very important properties. For example: the monotonicity
of the local flow generated by (4).

We say that a pair of T -periodic differentiable functions (a(t), b(t)) is a subsolution pair
of (4) if

ȧ ≤ f(t, a(t), b(t)),

ḃ ≤ g(t, a(t), b(t)), for all t.
(6)

Analogously, a pair of T -periodic differentiable functions (A(t), B(t)) is a supersolution
pair if

Ȧ ≥ f(t, A(t), B(t));

Ḃ ≥ g(t, A(t), B(t)), for all t.
(7)

We say that sub-and supersolution pairs are ordered if for all t we have a(t) < A(t) and
b(t) < B(t).

Finally, we say that a solution (u(t), w(t)) of (4) is globally attracting on a positively
invariant set R ⊆ R

2 if all solutions (x(t), y(t)) with (x(0), y(0)) ∈ R satisfy

(x(t), y(t)) − (u(t), w(t)) → 0, t → ∞.

An important feature for the cooperative system (4) about periodic orbits was established
in [2], Theorem 2.1. More precisely, the following result holds.
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Theorem 2.1. Assume that the system (4) is cooperative and has ordered sub- and super-
solution pairs (a(t), b(t)) and (A(t), B(t)). Then the system has a T -periodic solution,
satisfying a(t) < x(t) < A(t), b(t) < x(t) < B(t), ∀t. Furthermore, any solution of
(4), with the initial (x(0), y(0)) ∈ (a(0), A(0)) × (b(0), B(0)), converges to the prod-
uct (x̂(t), x̌(t)) × (ŷ(t), y̌(t)), where (x̂(t), ŷ(t)), (x̌(t), y̌(t)) are the minimal, maximal T -
periodic solution, respectively.

Now we state our first result

Theorem 2.2. Assume k1, k2, k−1,K > 0, and I(t) is a non negative, non constant
continuous T -periodic function. Then we get:

i) There is at least one T -periodic solution [S(t)], [C(t)] of (3) whose components are
positive if, and only if,

0 < Ī < k2K, where Ī :=
1

T

∫ T

0

I(t)dt. (8)

ii) Under (8) the T -periodic solution is unique in R
2
+.

iii) It attracts all other positive solutions of (3), when t → ∞.

Proof. i) It is clear that (8) is a necessary condition for the existence of a T -periodic
solution. In fact by adding both equations in (3) and integrating the result on [0, T ].
Now assume the condition (8); first, note that system (3) is of cooperating type, so
to use Theorem 2.1 we need construct sub- and super-solution pairs. First we take
(a(t), b(t)) = (0, 0), which is a subsolution pair.

For the super-solution pair we take A(t) to be the unique positive T -periodic solution of

A′(t) = I(t)− k1(K −M)A(t) + k−1M + θ, (9)

with θ and M < K positive constants to be fixed later. Also we take B(t) = M . To
obtain that (A(t), B(t)) are a supersolution pair, it must be fulfilled that

I(t)− k1(K −M)A(t) + k−1M + θ ≥ I(t)− k1(K −M)A(t) + k−1M, (10)

and

0 ≥ k1(K −M)A(t)− (k−1 + k2)M. (11)

Now, the periodic solutions A(t) of (9) (as function of M) satisfy

k1 lim
M→K

(K −M)A = Ī + k−1K + θ.

Taking the limit M → K in the right side of (11) we get Ī + θ − k2K, which is negative
by (8) for θ sufficiently small; therefore, the inequality (11) is satisfied for θ small and
M close to K. Thus we have sub- and super-solution pairs; then, by Theorem 2.1. there
is at least one T -periodic solution, which proves i).
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ii) By adding both equations in (3) and integrating for a periodic solution we get

k2

∫ T

0

[C]dt =

∫ T

0

I(t)dt; (12)

this is also true for the maximal periodic solution ([Š(t)], [Č(t)]), i.e.,

k2

∫ T

0

[Č(t)]dt =

∫ T

0

I(t)dt; (13)

thus, from (12) and (13) we have

k2

∫ T

0

([Č]− [C])dt =

∫ T

0

I(t)− I(t)dt = 0; (14)

therefore for any periodic solution we have [Č] = [C], but from the second equation in
(3) we obtain that [Š(t)] = [S(t)]; this establishes the uniqueness.

iii) Note that the band (0,K) is attractor to (3) in R
2, and by Theorem 2.1 there is a

unique periodic solution in (0, A(0)) × (0,K) which is attractor in this set, where A is
the unique periodic solution of (9). Since

k1 lim
M→K

(K −M)A(t) = Ī + k−1K + θ =: η > 0,

then A(0) becomes arbitrarily large. Then the periodic solution is globally attracting on
all positive solutions of (3), when t → ∞ �XXX

As we have really mentioned Katriel [1] proved the existence of periodic orbits of (3)
under the condition (8), by using Leray-Schauder degree theory. Moreover, he proposed
the next question: is it true that if 0 < Ī < k2K, the periodic solution is unique and
globally stable? From our result we obtain a different proof of existence, and we answer
affirmatively his questions.

It should be noted that the existence of periodic orbits in the particular case of I(t) :=
I0(1 + ǫ sin(ωt)) was considered in [5] by using Brouwer’s fixed-point theorem. Observe
that Theorem 2.2 gives an alternative proof to Theorem 1 in [5], which we remember
below.

Corollary 2.3. Let I(t) := I0(1 + ǫ sin(ωt)), with 0 ≤ ǫ ≤ 1. If

0 < I∗ < k2K, where I∗ := max
t∈[0,T ]

I(t), (15)

then for any value of ǫ, 0 ≤ ǫ ≤ 1, the system (3) has at least one positive 2π
ω

-periodic
solution. Moreover, the periodic solution for ǫ sufficiently small is unique.

Note that the condition (15) implies (8), but it is a stronger condition; moreover, we do
not require additional conditions for uniqueness (over ǫ), therefore Theorem 2.2 produces
a slight generalization of this result.
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To model the dynamics of the concentrations of the chemical species involved, we also
can consider the generalized mass-action law (see [3]). Under this law we obtain a more
general enzyme catalysed system than (3), written as

d[S]

dt
= I(t)− k1(K − [C]β)[S]α + k−1[C]β := f(t, S, C),

d[C]

dt
= k1(K − [C]β)[S]α − (k−1 + k2)[C]β := g(t, S, C).

(16)

All of the parameters (exponents included) are positive constants and I is a non constant
continuous T -periodic function.

With a similar proof as in Theorem 2.2, we obtain the following slight generalization of
this result:

Theorem 2.4. Assume k1, k2, k−1,K > 0, and I(t) is a non negative, non constant
continuous T -periodic function. If β > 0 and α = 1, then we get:

i) There is at least one T -periodic solution [S(t)], [C(t)] of (16) whose components
are positive if, and only if, (8) holds.

ii) Under (8) the T -periodic solution is unique in R
2
+.

iii) It attracts all other positive solutions of (16), as t → ∞.

2.1. Examples

In the previous section we established analytically the existence of periodic solutions for
system (2) of enzymatic reactions. The object of this section is to show numerical evi-
dence of the existence of periodic solutions. We numerically solved these equations using
a 4th order accurate Runge-Kutta integrator, which was programmed in FORTRAN 95.
The graphs correspond to numerical approximations of the periodic analytic solution; the
parameters are artificial, and only for the purpose of illustrating our analytical results.

Example 1. Consider the system

d[S]

dt
= I(t)− k1(K − [C])[S] + k−1[C],

d[C]

dt
= k1(K − [C])[S]− (k−1 + k2)[C],

(17)

where parameters are determined by k1 = 2, k−1 = 1, k2 = 1.5, and K = 3. The
substrate input function is determined by I(t) = 1 + 0.3 sin(2πt). Note that 0 < Ī < 4.5.
Numerical simulations are shown in the next figures, which exhibit an oscillatory behavior
according to the Theorem 2.2.
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Figure 1. Time plots for enzymatic model (17). We can see that the solutions for the initial conditions
S0 = 0.325 and C0 = 0.645 converge to the corresponding numerical approximation of the periodic orbit.

According to Theorem 2.2 the system has a periodic solution, which is globally attractive.
To illustrate this fact, we consider different initial conditions for the system (17) and
observe that the corresponding solutions tend the corresponding numerical approximation
of the periodic orbit (see figure 2).

Figure 2. Time plots for enzymatic model (17), with different initial conditions. We can see that the
corresponding numerical approximation of the periodic orbit behaves like a globally attractive orbit.

Example 2. Consider the system

d[S]

dt
= I(t)− k1(K − [C]β)[S] + k−1[C]β ,

d[C]

dt
= k1(K − [C]β)[S]− (k−1 + k2)[C]β ,

(18)

where parameters are determined by β = 5, k1 = 0.2, k−1 = 0.3, k2 = 7, and K = 0.8.
The substrate input function is determined by I(t) = cos2(2πt).
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Figure 3. Time plots for enzymatic model (18). We can see that the solutions for the initial conditions
S0 = 0.4 and C0 = 0.4 converge to the corresponding numerical approximation of the periodic orbit.
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