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Abstract. We introduce the concepts Hausdorff maximal limit continuum
and Hausdorff strong maximal limit continuum, for Hausdorff continua; these
definitions extend the concepts of maximal limit continuum and strong max-
imal limit continuum, respectiveley, introduced by J. J. Charatonik and W.
J. Charatonik in 1998 for metric continua [1, Definitions 2.2 and 2.3]. We
show that in metric continua, being a maximal limit continuum is equivalent
to being a Hausdorff maximal limit continuum. We also show that in metric
continua, being a strong maximal limit continuum implies being a Hausdorff
strong maximal limit continuum. Finally, we show an equivalence of having
the property of Kelley, in terms of these new definitions, whose analog version
for metric continua was given by J. J. Charatonik and W. J. Charatonik.
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La propiedad de Kelley para continuos de Hausdorff

Resumen. Introducimos los conceptos de continuo límite maximal de Haus-
dorff y continuo límite maximal fuerte de Hausdorff, para continuos de Haus-
dorff; estos conceptos extienden los ya definidos para continuos métricos:
continuo límite maximal y continuo límite maximal fuerte, los cuales fueron
dados por J. J. Charatonik y W. J. Charatonik en 1998 [1, Definitions 2.2 and
2.3]. Mostramos que en los continuos métricos el ser continuo límite maximal
es equivalente a ser continuo límite maximal de Hausdorff. Probamos que en
los continuos métricos todo continuo límite maximal fuerte es un continuo
límite maximal fuerte de Hausdorff. Por último, mostramos una equivalencia
para que un continuo de Huasdorff tenga la propiedad de Kelley en términos
de estos nuevos conceptos, cuya versión análoga para continuos métricos fue
dada por J. J. Charatonik y W. J. Charatonik.
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56 M. Chacón-Tirado & M. de J. López

1. Introduction

A continuum is a compact, connected Hausdorff space with more than one point. A
metric continuum is a continuum with a metric d that generates its topology.

The property of Kelley for metric continua was introduced by J. L. Kelley as property 3.2
in [4, p. 26]; he used it to study the contractibility of hyperspaces (see [13, Chapter XVI]
and [3, pp. 167–172]). In 1999, W. J. Charatonik [2, Definition 2.1] and W. Makuchowski
[9, p. 124] extended the property of Kelley for continua; in particular, Charatonik shows
an example of a homogeneous continuum that does not have the property of Kelley, and
Makuchowski uses the property of Kelley to show that several definitions of local connec-
tivity are equivalent in the hyperspace C(X) of a continuum X having the property of
Kelley. Concerning the generalization of some properties of metric continua to continua,
S. Macías studied the property of Kelley for continua and introduces the uniform Effros
property [6, p. 60]. In [7] and [8], the author proved that several properties of Jones’ set
function T , valid for metric continua, hold for continua as well.

In 1998, J. J. Charatonik and W. J. Charatonik defined the concepts of maximal limit
continuum and strong maximal limit continuum, for metric continua [1, Definitions 3.2
and 3.3]; the authors used those definitions to show several properties of continua having
the property of Kelley, and to show that some properties are equivalent to the property
of Kelley. In this paper we extend the metric concepts of maximal limit continuum and
strong maximal limit continuum, to continua, which we call Hausdorff maximal limit
continuum and Hausdorff strong maximal limit continuum, respectively. We show that
in metric continua, the definition of maximal limit continuum is equivalent to the defini-
tion of Hausdorff maximal limit continuum (Theorem 4.8), and the definition of strong
maximal limit continuum is stronger that the definition of Hausdorff strong maximal
limit continuum (Proposition 4.13). To end the paper, we show that the equivalences of
[1, Theorem 3.11] still hold under these new extensions (Theorem 4.19).

2. Preliminaries

Given a continuum X , we consider the collection of all nonempty closed subsets of X ,
which is denoted by 2X ; in other words,

2X = {A ⊂ X : A is a nonempty closed subset of X},

topologized with the Vietoris topology, which can be described as follows: for each n ∈ N
and each finite collection U1, . . . , Un of open subsets of X , we define

〈U1, . . . , Un〉 = {A ∈ 2X : A ⊂
n⋃

i=1

Ui and A ∩ Ui 6= ∅, for each i ∈ {1, . . . , n}}.

The collection of all sets of the form 〈U1, . . . , Un〉, is a basis for a topology for 2X , which
is called the Vietoris topology [11, Definition 1.7]. The set 2X , endowed with the Vietoris
topology, is called hyperspace of closed subsets of X . Also, we consider the collection of
all subcontinua of X , denoted and defined by

C(X) = {A ∈ 2X : A is connected},
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On the property of Kelley for Hausdorff continua 57

as a subspace of 2X . The collection C(X) is called the hyperspace of subcontinua of X .
It is known that if X is a continuum, then 2X and C(X) are also continua [11, Theorems
4.9 and 4.10]. In this way, given a continuum X , we have that

2C(X) = {A ⊂ C(X) : A is a nonempty closed subset of C(X)}

and
C(C(X)) = {A ∈ 2C(X) : A is connected}

are also continua.

If X is a topological space, given a subset A of X , the interior of A is denoted by int(A)
and the closure of A by cl(A). Given A,B ∈ C(X) with A ⊂ B, we consider the collection

C(A,B) = {K ∈ C(X) : A ⊂ K ⊂ B}.

Remark 2.1. If A and B are subcontinua of X and A ⊂ B, then C(A,B) is a nonempty
connected closed subset of C(X); in other words, C(A,B) is an element of C(C(X)).

Proof. Let L ∈ C(X)−C(A,B). We have that L−B 6= ∅ or A−L 6= ∅. If L−B 6= ∅, then
there exists x ∈ L−B. Consider an open subset U of X such that x ∈ U and U ∩B = ∅.
Therefore, L ∈ 〈U,X〉 and 〈U,X〉 ∩ C(A,B) = ∅. Now, if A − L 6= ∅, then there exists
a ∈ A− L. Consider an open subset V of X such that a ∈ V and cl(V ) ∩ L = ∅. Notice
that L ∈ 〈X− cl(V )〉. Let L′ ∈ 〈X− cl(V )〉; then a /∈ L′, consequently A * L′. It follows
that L′ /∈ C(A,B). Now, the proof that the hyperspace C(X) is arcwise connected, by
McWaters [10, Theorem, p. 1209] contains a proof that sets of the form C(A,B) are
connected. �XXX

Let X be a continuum and A ⊂ 2X ; we denote
⋃
A = {x ∈ X : there exists A ∈ A such

that x ∈ A}.

Now, if X is a metric continuum, the hyperspace 2X is also considered with the Hausdorff
metric, which we denote by H . It is known that the Hausdorff metric of 2X generates
the Vietoris topology [13, (0.13) Theorem]. Given r > 0, x ∈ X and A ∈ 2X , let B(r, x)
be the open ball in X with center x and radius r and let BH(r, A) be the open ball in
2X with center A and radius r; also, let Nd(r, A) =

⋃
{B(r, x) : x ∈ A}.

Given a function between spaces X and Y , f : X → Y , A ⊂ X , and B ⊂ Y , let
f [A] = {f(a) : a ∈ A} the image of A under f , and f−1[B] = {x ∈ X : f(x) ∈ B}, the
inverse image of B under f.

3. Limit superior of nets in 2
X

A directed set is a pair (D,≤), where D is a nonempty set and ≤ is a partial order in D,
such that for each a, b ∈ D, there exists c ∈ D such that a ≤ c and b ≤ c. A net in X
is a function f : D → X , where D is a directed set; we also denote a net f by {xd}d∈D,
where xd = f(d), for each d ∈ D.

We recall that a net {xd}d∈D in X converges to a point x ∈ X , if for each open subset
U of X with x ∈ U , there exists n ∈ D such that if m ∈ D and n ≤ m, then xm ∈ U.
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58 M. Chacón-Tirado & M. de J. López

Given a continuum X , if {Ad}d∈D is a net in 2X , we define the limit superior of {Ad}d∈D

as follows:

lim sup{Ad}d∈D = {x ∈ X : for each open subset U of X with x ∈ U and

for each d ∈ D, there exists m ∈ D such that m ≥ d and U ∩Am 6= ∅}.

The limit superior of a net in 2X was first considered by Mrówka [12, p. 237]. We present
two properties of the limit superior that will be used in this paper.

Lemma 3.1 ([12, 4., p. 238]). Let X be a continuum and let {Ad}d∈D be a net in 2X .
Then lim sup{Ad}d∈D is an element of 2X .

Lemma 3.2. Let X be a continuum and let {Ad}d∈D be a net in C(X) converging to
A ∈ C(X). Then A ∈ lim sup{C(Ad, X)}d∈D.

Proof. Let U be an open subset of C(X) such that A ∈ U . Since {Ad}d∈D converges to
A, there exists n ∈ D such that for each m ∈ D, if n ≤ m, then Am ∈ U . Let s ∈ D and
choose m ∈ D such that s ≤ m and n ≤ m; then Am ∈ U and Am ∈ C(Am, X), hence
U ∩ C(Am, X) 6= ∅. We have proved that A ∈ lim sup{C(Ad, X)}d∈D. �XXX

4. Main results

In 1942, J. L. Kelley introduced the concept of property of Kelley for metric continua,
originally called property 3.2 [4, p. 26]:

Definition 4.1. Let X be a metric continuum with metric d. We say that X has the
property of Kelley if for each ε > 0 there exists δ > 0 such that for any p, q ∈ X ,
if d(p, q) < δ, then for each K ∈ C({p}, X), there exists L ∈ C({q}, X) such that
H(K,L) < ε.

Let us recall that H is the Hausdorff metric of the hyperspaces 2X and C(X); for A ∈ 2X

and r > 0, BH(r, A) is the open ball in 2X of radius r and center A.

In 1999, W. J. Charatonik [2, Definition 2.1] and W. Makuchowski [9, p. 124] introduced
independently the concept of property of Kelley for continua, as follows:

Definition 4.2. Let X be a continuum and p ∈ X . We say that X has the property of
Kelley at p, if for each K ∈ C({p}, X) and for each open subset U of C(X) with K ∈ U ,
there exists an open subset U of X with p ∈ U such that if q ∈ U , then there exists
L ∈ C({q}, X) ∩ U . We say that X has the property of Kelley if it has the property of
Kelley at each of its points.

In [14, p. 292] the author says that the property of Kelley and the pointwise version of
property of Kelley are equivalent for metric continua. Since it is clear that the pointwise
version of the property of Kelley on [14, p. 292] is equivalent to the pointwise version of
the property of Kelley given in Definition 4.2, we have that Definition 4.2 is equivalent
to Definition 4.1.
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On the property of Kelley for Hausdorff continua 59

In the following theorem we summarize two characterizations of continua having the
property of Kelley. The equivalence of (1) and (3) was proved by Wardle for metric
continua in [14, (2.2) THEOREM], and Charatonik mentions without proof that the
result is valid for continua [2, Proposition 2.3]; Makuchowski proved the equivalence of
(1) and (2) [9, Theorem 11]. For the convenience of the reader, we prove (2) ⇒ (3) and
(3) ⇒ (1) .

Theorem 4.3. Let X be a continuum. Then the following conditions are equivalent:

(1) X has the property of Kelley.

(2) For each open subset U of C(X), it holds that
⋃
U is an open subset of X.

(3) The function f : X → 2C(X), defined by f(p) = C({p}, X) for each p ∈ X, is
continuous.

Proof. In this proof, since we consider the hyperspaces 2X and 2C(X), we will use the
notation 〈·〉2C(X) to denote the basic open sets of the Vietoris topology in 2C(X).

We prove that (2)⇒(3). Let U be an open subset of 2C(X) and let p ∈ f−1[U]. Notice
that C({p}, X) = f(p) ∈ U. Thus there are open subsets, U1, . . . ,Un, of C(X) such that
C({p}, X) ∈ 〈U1, . . . ,Un〉2C(X) ⊂ U. By (2), for each i ∈ {1, . . . , n} we have that

⋃
Ui

is an open subset of X . Since C({p}, X) ∩ Ui 6= ∅, for each i ∈ {1, . . . , n}, there exists
A ∈ C({p}, X) ∩ Ui; since p ∈ A ∈ Ui, we have that p ∈

⋃
Ui, for each i ∈ {1, . . . , n}.

Let W = U1 ∪ · · · ∪ Un and define V ′ = {v ∈ X : C({v}, X) ⊂ W}. We will show that V ′

is a neighborhood of p in X . In order to prove this assertion, first we prove that

C(X) = W ∪
⋃

{〈U〉 ∩C(X) :

U is an open subset of X, p /∈ U and p ∈ int(X − U)}. (1)

Notice that C({p}, X) ⊂ W . If A ∈ C(X) and A /∈ C({p}, X), then we choose two
disjoint nonempty open subsets U and V of X such that A ⊂ U and p ∈ V . Then
A ∈ 〈U〉 ∩ C(X) and p ∈ V ⊂ int(X − U), and thus (1) follows.

On the other hand, by compactness of C(X), there exist k ∈ N and U1, . . . , Uk open
subsets of X such that p ∈ int(X − Ui) for each i ∈ {1, . . . , k} and

C(X) = W ∪
k⋃

i=1

(〈Ui〉 ∩C(X)).

Notice that p ∈ int(X −
⋃k

i=1 Ui). Let v ∈ int(X −
⋃k

i=1 Ui) and B ∈ C({v}, X); notice

that if B ∈ 〈Ui〉, then v ∈ Ui; therefore B /∈
⋃k

i=1(〈Ui〉 ∩ C(X)), and B ∈ W . We have

proved that C({v}, X) ⊂ W for each v ∈ int(X −
⋃k

i=1 Ui), then V ′ is a neighborhood
of p.

Now, let V = V ′ ∩ (
⋂n

i=1(
⋃

Ui)). We have that V is a neighborhood of p. We consider a
point v ∈ V , and we will prove that f(v) ∈ 〈U1, . . . ,Un〉2C(X) . Notice that v ∈ V ⊂ V ′,
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60 M. Chacón-Tirado & M. de J. López

therefore, C({v}, X) ⊂ W = U1 ∪ · · · ∪Un. Let i ∈ {1, . . . , n}; since v ∈ V ⊂
⋂n

i=1(
⋃
Ui),

then v ∈
⋃
Ui. Hence, there exists D ∈ Ui such that v ∈ D ∈ Ui. This implies that

D ∈ C({v}, X) ∩ Ui 6= ∅. Thus, f(v) = C({v}, X) ∈ 〈U1, . . . ,Un〉2C(X) ⊂ U, therefore
f(v) ∈ U. We obtained that f−1[U] is an open subset of X , and this ends the implication
(2)⇒(3).

We see that (3)⇒(1). Let p ∈ X , let K ∈ C({p}, X) and let U be an open subset of
C(X) such that K ∈ U . Notice that C({p}, X) ∈ 〈U , C(X)〉2C(X) , because C({p}, X) ⊂
U ∪ C(X) = C(X), C({p}, X) ∩ U 6= ∅ and C({p}, X) ∩ C(X) = C({p}, X) 6= ∅. Let
U = f−1[〈U , C(X)〉2C(X) ]; we have that U is an open subset of X and p ∈ U . Let
q ∈ U , then f(q) ∈ 〈U , C(X)〉2C(X) , hence f(q) = C({q}, X) and C({q}, X)∩U 6= ∅. Let
L ∈ C({q}, X)∩ U , then q ∈ L and L ∈ U . Therefore, X has the property of Kelley. �XXX

In 1998, J. J. Charatonik and W. J. Charatonik introduced the following definition for
metric continua [1, Definition 3.2.]:

Definition 4.4. Let K be a subcontinuum of a metric continuum X . A subcontinuum
M ⊂ K is called a maximal limit continuum in K provided that there is a sequence
{Mn}n∈N of subcontinua of X , converging to M , such that for each sequence {M ′

n}n∈N

of subcontinua of X with Mn ⊂ M ′
n for each n ∈ N, if {M ′

n}n∈N converges to some
M ′ ∈ C(K), then M ′ = M .

For U ⊂ C(X), we define the collection

F (U) = {B ∈ C(X) : C(B,X) ∩ U 6= ∅}.

We extend the concept maximal limit continuum for continua as follows:

Definition 4.5. Let K be a subcontinuum of a continuum X . A subcontinuum M ⊂ K
is called Hausdorff maximal limit continuum in K provided that for each subcontinuum
L ⊂ X with M ( L ⊂ K there is an open subset U of C(X) such that L ∈ U and the
collection F (U) is not neighborhood of M .

Remark 4.6. Let K be a subcontinuum of a continuum X . If M ⊂ K is a Hausdorff
maximal limit continuum in K, then for each subcontinuum L ⊂ X with M ( L ⊂ K
there exists an open subset U of C(X) such that L ∈ U , and for each neighborhood
V ⊂ C(X) of M there exists B ∈ V such that C(B,X) ∩ U = ∅.

Proof. Let L be a subcontinuum of X such that M ( L ⊂ K. By hypothesis, there is an
open subset U of C(X) such that L ∈ U and the collection F (U) is not a neighborhood
of M . Now, let V ⊂ C(X) be a neighborhood of M . Since F (U) is not neighborhood of
M , we obtain that V * F (U). Hence, there exists B ∈ V such that C(B,X)∩U = ∅. �XXX

The following lemma follows from the definition.

Lemma 4.7. Let K be a subcontinuum of a continuum X. Then K is a Hausdorff
maximal limit continuum in K.
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On the property of Kelley for Hausdorff continua 61

We are going to prove that in metric continua Definitions 4.4 and 4.5 are equivalent:

Theorem 4.8. Let X be a metric continuum, K ∈ C(X) and M ∈ C(K). Then the
following statements are equivalent:

(1) M is a maximal limit continuum in K.

(2) M is a Hausdorff maximal limit continuum in K.

Proof. We prove that (1)⇒(2). Assume that X is a metric continuum that satisfies
(1) but does not satisfy (2). Let {Mn}n∈N be the sequence converging to M , given
by (1). Since X does not satisfy (2), there exists L ∈ C(X) such that M ( L ⊂ K
and for each k ∈ N, we have that the set F (BH( 1

k
, L)) is a neighborhood of M . Since

{Mn}n∈N converges to M , for each k ∈ N there exists nk ∈ N such that for every
n ≥ nk, we have that Mn ∈ F (BH( 1

k
, L)). We can assume that the sequence {nk}k∈N

is strictly increasing. Let n ∈ N with n ≥ n1, let k ∈ N such that nk ≤ n < nk+1;
thus we obtain that Mn ∈ F (BH( 1

k
, L)), therefore C(Mn, X) ∩ BH( 1

k
, L) 6= ∅; choose

M ′
n ∈ C(Mn, X) ∩ BH( 1

k
, L). Then the sequence {M ′

n}
∞
n=n1

converges to L ⊂ K and
L 6= M , which is a contradiction.

We prove that (2)⇒(1). For each L ∈ C(M,K) − {M}, let UL be an open subset of
C(X) such that L ∈ UL and F (UL) is not neighborhood of M . Since C(M,K) is a
compact metric space, let {Ui : i ∈ N} be a countable subcover of the cover {UL : L ∈
C(M,K)− {M}} of the space C(M,K)− {M}. We can choose a sequence {Mn}n∈N in
C(X) such that H(M,Mn) ≤

1
n
, for each n ∈ N, and satisfying the following properties:

M1 /∈ F (U1), M2 /∈ F (U2), M3 /∈ F (U1), M4 /∈ F (U2), M5 /∈ F (U3), M6 /∈ F (U1),
M7 /∈ F (U2), M8 /∈ F (U3), M9 /∈ F (U4), and so on inductively. We consider a sequence
{M ′

n}n∈N in C(X) convergent to some M ′ ∈ C(K) and such that Mn ⊂ M ′
n, for each

n ∈ N; hence, M ⊂ M ′. Assume that M 6= M ′, then there exists k ∈ N such that
M ′ ∈ Uk, and choose a subsequence {M ′

nj
}j∈N of the sequence {M ′

n}n∈N such that
Mnj

/∈ F (Uk), for each j ∈ N. So, for each j ∈ N, we have that C(Mnj
, X) ∩ Uk = ∅,

then M ′
nj

∈ C(X) − Uk. Since C(X) − Uk is a closed subset of C(X), we have that
M ′ ∈ C(X)− Uk, which is a contradiction. We conclude that M = M ′. �XXX

In 1998, J. J. Charatonik and W. J. Charatonik introduced the following definition for
metric continua [1, Definition 3.3.]:

Definition 4.9. Let K be a subcontinuum of a metric continuum X . A continuum
M ⊂ K is called a strong maximal limit continuum in K provided that there is a sequence
{Mn}n∈N of subcontinua of X converging to M , such that for each subsequence {Mnk

}k∈N

of {Mn}n∈N and for each sequence {M ′
k}k∈N of subcontinua of X with Mnk

⊂ M ′
k for

each k ∈ N, if {M ′
k}k∈N converges to some M ′ ∈ C(K), then M ′ = M .

For M,U ⊂ C(X), we define the collection

G(M,U) = {B ∈ C(X) : C(B,X) ∩ U ∩ (C(X)−M) 6= ∅}.

Concerning the definition of strong maximal limit continuum, we propose the following
concept:
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Definition 4.10. Let K be a subcontinuum of a continuum X . A subcontinuum M ⊂ K
is called Hausdorff strong maximal limit continuum in K provided that for each open
subset M of C(X) such that M ∈ M, there exists an open subset U of C(X) such that
C(M,K) ⊂ U and the collection G(M,U) is not neighborhood of M .

Remark 4.11. Let K be a subcontinuum of a continuum X . If M ⊂ K is a Hausdorff
strong maximal limit continuum in K, then for each open subset M of C(X) such that
M ∈ M, there exists an open subset U of C(X) such that C(M,K) ⊂ U , and for each
neighborhood V of M in C(X) there exists B ∈ V such that C(B,X)∩U∩(C(X)−M) =
∅, equivalently C(B,X) ∩ U ⊂ M.

Proof. Let M be an open subset of C(X) such that M ∈ M. By hypothesis, there is
an open subset U of C(X) such that C(M,K) ⊂ U and the collection G(M,U) is not a
neighborhood of M . Let V be a neighborhood of M in C(X). Since G(M,U) is not a
neighborhood of M , we obtain that V * G(M,U). Hence, there exists B ∈ V such that
C(B,X) ∩ U ⊂ M. �XXX

Lemma 4.12. Let K be a subcontinuum of a continuum X. Then K is a Hausdorff
strong maximal limit continuum in K.

Proof. Let M be an open subset of C(X) such that K ∈ M. Since C(K,K) = {K} ⊂ M,
we consider U = M. Notice that G(M,U) = {B ∈ C(X) : C(B,X)∩U ∩ (C(X)−M) 6=
∅} = ∅, which is not a neighborhood of K. �XXX

We show that a strong maximal limit continuum is also a Hausdorff strong maximal limit
continuum.

Proposition 4.13. Let X be a metric continuum, K ∈ C(X) and M ∈ C(K). If M is
a strong maximal limit continuum in K, then M is a Hausdorff strong maximal limit
continuum in K.

Proof. Let d be a metric on X , and let H be the Hausdorff metric on C(X). Let
{Mn}n∈N be a sequence that witnesses that M is a strong maximal limit continuum
in K. We consider an open subset M of C(X) such that M ∈ M. Suppose that
for each open subset U of C(X) such that C(M,K) ⊂ U , we have that the collection
G(M,U) is a neighborhood of M . Now, for each k ∈ N, let Uk = NH( 1

k
, C(M,K)).

Notice that C(M,K) ⊂ Uk, then the collection G(M,Uk) is a neighborhood of M .
Inductively we can define a subsequence {Mnk

}k∈N such that Mnk
∈ G(M,Uk), for

each k ∈ N, hence C(Mnk
, X) ∩ Uk ∩ (C(X) − M) 6= ∅. Consider an element M ′

k ∈
C(Mnk

, X) ∩ Uk ∩ (C(X) −M), for each k ∈ N. Taking a subsequence if necessary, we
may assume that {M ′

k}k∈N converges to an element M ′ ∈ C(X). For each k ∈ N, notice
that M ′

k ∈ Uk and M ′
k ∈ C(X)−M, then M ′ ∈ C(M,K) and M ′ ∈ C(X)−M, therefore

M ′ 6= M , which contradicts the choice of the sequence {Mn}n∈N. �XXX
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Question 4.14. Let X be a metric continuum, K ∈ C(X) and M ∈ C(K), such that
M is a Hausdorff strong maximal limit continuum in K. Is it true that M is a strong
maximal limit continuum in K?

Proposition 4.15. Let X be a continuum, let K be a subcontinuum of X, let {Ad}d∈D

be a net in C(X) converging to A ∈ C(K) and let M be a maximal element in
C(K)∩ lim sup{C(Ad, X)}d∈D (with respect to inclusion). Then M is a Hausdorff strong
maximal limit continuum in K.

Proof. Assume that M is not a Hausdorff strong maximal limit continuum in K. Then
there exists an open subset M of C(X) with M ∈ M such that for each open subset
U of C(X) with C(M,K) ⊂ U , the collection G(M,U) is a neighborhood of M . For
each L ∈ C(M,K) − M we have that M ( L, and by maximality of M , we obtain
that L /∈ lim sup{C(Ad, X)}d∈D. Thus there exists an open subset VL of C(X) such
that L ∈ VL, and exists dL ∈ D such that if m ≥ dL, then VL ∩ C(Am, X) = ∅. By
compactness of C(M,K) − M we obtain a finite subcover, {V1,V2, . . . ,Vi}, for some
i ∈ N, of {VL : L ∈ C(M,K)−M} which covers C(M,K)−M, and for each Vj, there
exists an element dj ∈ D such that if m ≥ dj , then Vdj

∩ C(Am, X) = ∅. We consider

U = M∪V1 ∪ · · · ∪ Vi,

which is an open subset of C(X) and C(M,K) ⊂ U . Therefore, G(M,U) is a neigh-
borhood of M . Since M ∈ lim sup{C(Ad, X)}d∈D, for each d ∈ D there exists m ∈ D
such that m ≥ d and G(M,U) ∩ C(Am, X) 6= ∅. Choose n ∈ D such that n ≥ dj ,
for each j ∈ {1, 2, . . . , i}, and m ≥ n such that G(M,U) ∩ C(Am, X) 6= ∅. Consider
B ∈ G(M,U) ∩ C(Am, X). Notice that Am ⊂ B and C(B,X) ∩ U ∩ (C(X) −M) 6= ∅.
Since C(B,X) ⊂ C(Am, X), then C(Am, X) ∩ U ∩ (C(X) − M) 6= ∅. Notice that
C(Am, X)∩Vj = ∅, for each j ∈ {1, 2, . . . , i}, thus C(Am, X)∩U = C(Am, X)∩M, and
∅ 6= C(Am, X)∩ U ∩ (C(X)−M) = C(Am, X) ∩M∩ (C(X)−M) = ∅, which is a con-
tradiction. This ends the proof that M is a Hausdorff strong maximal limit continuum
in K. �XXX

We will prove that Theorem 3.11 of [1] is still valid under these new definitions. We start
with two lemmas.

Lemma 4.16. Let X be a continuum with the property of Kelley, K ∈ C(X) and M ∈
C(K). If M 6= K, then M is not a Hausdorff maximal limit continuum in K.

Proof. Suppose that a continuum X has the property of Kelley, K ∈ C(X) and M ∈
C(K) such that M is a Hausdorff maximal limit continuum in K and M 6= K. For
L = K, by Remark 4.6 there exists an open subset U of C(X) with L ∈ U such that
for each neighborhood V of M in C(X) there exists B ∈ V such that C(B,X) ∩ U = ∅.
Consider U1, . . . , Un open subsets of X such that L ∈ 〈U1, . . . , Un〉 ∩ C(X) ⊂ U . Let

U =
⋃

(〈U1, . . . , Un〉 ∩ C(X)).

By Theorem 4.3, we have that U is an open subset of X ; consequently L ∈ 〈U〉 ∩C(X),
since M ⊂ L; then M ⊂ U . Let V = 〈U〉 ∩ C(X); then there exists B ∈ V such
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that C(B,X) ∩ U = ∅. Let D ∈ V , choose a point d ∈ D ⊂ U , then there exists
J ∈ 〈U1, . . . , Un〉∩C(X) such that d ∈ J . Since D∪J ⊂ U1∪· · ·∪Un and (D∪J)∩Ui 6= ∅,
for each i ∈ {1, . . . , n}. It follows that D ∪ J ∈ 〈U1, . . . , Un〉 ∩ C(X) ⊂ U . Notice that
D ∪ J ∈ C(D,X). Therefore, C(D,X) ∩ U 6= ∅, which is a contradiction. �XXX

Lemma 4.17. Let K be a subcontinuum of a continuum X and let M be a subcontinuum
of K. If M is a Hausdorff strong maximal limit continuum in K, then M is a Hausdorff
maximal limit continuum in K.

Proof. Let L ∈ C(M,K) with L 6= M . Consider disjoint nonempty open subsets M1

and M2 of C(X) such that M ∈ M1 and L ∈ M2. By hypothesis, there exists an open
subset U ′ of C(X) such that C(M,K) ⊂ U ′ and the set G(M1,U ′) is not a neighborhood
of M .

Let U = U ′ ∩M2. We will show that the set F (U) is not a neighborhood of M , first we
prove that:

F (U) ⊂ G(M1,U
′). (2)

Indeed, let B ∈ F (U); then B ∈ C(X) and C(B,X)∩U 6= ∅, equivalently C(B,X)∩U ′ ∩
M2 6= ∅, hence C(B,X)∩U ′ ∩ (C(X)−M1) 6= ∅. We have proved that B ∈ G(M1,U ′).
Thus (2) follows. Since G(M1,U

′) is not a neighborhood of M , then F (U) is not a
neighborhood of M . �XXX

Corollary 4.18. Let X be a continuum with the property of Kelley, K ∈ C(X) and
M ∈ C(K). If M 6= K, then M is not a Hausdorff strong maximal limit continuum in
K.

To conclude this paper, we prove that Theorem 3.11 of [1] is still valid under these new
definitions.

Theorem 4.19. Let X be a continuum; then, the following statements are equivalent:

(1) X has the property of Kelley.

(2) For each subcontinuum K of X, the only Hausdorff maximal limit continuum in K
is K itself.

(3) For each subcontinuum K of X, the only Hausdorff strong maximal limit continuum
in K is K itself.

Proof. By Lemma 4.7 and Lemma 4.16, we have that (1)⇒(2).

By Lemma 4.12 and Lemma 4.17, we have that (2)⇒(3).

We prove (3)⇒(1). Consider U an open subset of C(X). By Theorem 4.3, it is sufficient
to show that

⋃
U is an open subset of X . Asumme that

⋃
U is not open, and choose a

point p ∈
⋃
U − int(

⋃
U). Let

D = {V ⊂ X : V is an open subset of X and p ∈ V }
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be a directed set, where V1 ≤ V2 if V2 ⊂ V1, for each V1, V2 ∈ D. For each V ∈ D,
choose pV ∈ V −

⋃
U . Notice that the net {pV }V ∈D converges p in X and pV /∈

⋃
U ,

for each V ∈ D. Let K ∈ U such that p ∈ K. Since the net {{pV }}V∈D converges to
{p} in C(X), by Lemma 3.2 we have that {p} ∈ lim sup{C({pV }, X)}V∈D. Therefore
C(K)∩ lim sup{C({pV }, X)}V∈D 6= ∅. By the Kuratowski-Zorn Lemma [5, p. 33], there
exists M ∈ C(K) ∩ lim sup{C({pV }, X)}V∈D maximal with respect to inclusion. By
Proposition 4.15, we have that M is a Hausdorff strong maximal limit continuum in K.
By (3), we have that M = K. It follows that K ∈ lim sup{C({pV }, X)}V∈D; since U is
an open subset of C(X) and K ∈ U , then for each R ∈ D, there exists S ∈ D such that
S ≥ R and U ∩ C({pS}, X) 6= ∅. Choose B ∈ U ∩ C({pS}, X), then pS ∈ B ∈ U . Hence
pS ∈

⋃
U , which is a contradiction. We have proved that

⋃
U is an open subset of X .

This ends the proof of the theorem. �XXX
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