Revista Integración

Escuela de Matemáticas
Universidad Industrial de Santander
Vol. 38, N ${ }^{\circ}$ 2, 2020, pág. 119-132

Inequalities for D-Synchronous Functions and Related Functionals

Silvestru Sever Dragomir ${ }^{\boxtimes}$
Victoria University, College of Engineering and Science, Melbourne, Australia. E-mail: sever.dragomir@vu.edu.au.

Abstract

We introduce in this paper the concept of quadruple D-synchronous functions which generalizes the concept of a pair of synchronous functions, we establish an inequality similar to Chebyshev inequality and we also provide some Cauchy-Bunyakovsky-Schwarz type inequalities for a functional associated with this quadruple. Some applications for univariate functions of real variable are given. Discrete inequalities are also stated. Keywords: Synchronous Functions, Lipschitzian functions, Chebyshev inequality, Cauchy-Bunyakovsky-Schwarz inequality. MSC2010: 26D15; 26D10.

\section*{Desigualdades para funciones D-sincrónicas y funciones relacionadas}

Resumen. Introducimos en este artículo el concepto de funciones D-sincrónicas cuádruples, que generaliza el concepto de un par de funciones sincrónicas; estableceremos una desigualdad similar a la desigualdad de Chebyshev y también presentamos algunas desigualdades de tipo Cauchy-Bunyakovsky-Schwarz para un funcional asociado con este cuádruple. Se dan algunas aplicaciones para funciones univariadas de la variable real. También se indican desigualdades discretas.
Palabras clave: Funciones D-sincrónicas, funciones Lipschitzianas, desigualdad de Chebyshev, desigualdad de Cauchy-Bunyakovsky-Schwarz.

1. Introduction

Let $(\Omega, \mathcal{A}, \nu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure ν on \mathcal{A} with values in $[0,+\infty]$. For

[^0]a ν-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for ν-a.e. (almost every) $x \in \Omega$, consider the Lebesgue space
$$
L_{w}(\Omega, \nu):=\left\{f: \Omega \rightarrow \mathbb{R}, f \text { is } \nu \text {-measurable and } \int_{\Omega} w(x)|f(x)| d \nu(x)<\infty\right\}
$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \nu$ instead of $\int_{\Omega} w(x) d \nu(x)$. Assume also that $\int_{\Omega} w d \nu=1$.
We say that the pair of measurable functions (f, g) are synchronous on Ω if

$$
\begin{equation*}
(f(x)-f(y))(g(x)-g(y)) \geq 0 \tag{1}
\end{equation*}
$$

for ν-a.e. $x, y \in \Omega$. If the inequality reverses in (1), the functions are called asynchronous on Ω.
If (f, g) are synchronous on Ω and $f, g, f g \in L_{w}(\Omega, \nu)$, then the following inequality, that is known in the literature as Chebyshev's Inequality, holds:

$$
\begin{equation*}
\int_{\Omega} w f g d \nu \geq \int_{\Omega} w f d \nu \int_{\Omega} w g d \nu \tag{2}
\end{equation*}
$$

where $w(x) \geq 0$ for ν-a.e. (almost every) $x \in \Omega$ and $\int_{\Omega} w d \nu=1$.
If $f, g: \Omega \rightarrow \mathbb{R}$ are ν-measurable functions and $f, g, f g \in L_{w}(\Omega, \nu)$, then we may consider the Chebyshev functional

$$
T_{w}(f, g):=\int_{\Omega} w f g d \nu-\int_{\Omega} w f d \nu \int_{\Omega} w g d \nu
$$

The following result is known in the literature as the Grüss inequality:

$$
\begin{equation*}
\left|T_{w}(f, g)\right| \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{3}
\end{equation*}
$$

provided

$$
\begin{equation*}
-\infty<\gamma \leq f(x) \leq \Gamma<\infty, \quad-\infty<\delta \leq g(x) \leq \Delta<\infty \tag{4}
\end{equation*}
$$

for ν-a.e. $x \in \Omega$.
The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
If $f \in L_{w}(\Omega, \nu)$, then we may define

$$
\begin{equation*}
D_{w}(f):=\int_{\Omega} w(x)\left|f(x)-\int_{\Omega} w(y) f(y) d \nu(y)\right| d \nu(x) \tag{5}
\end{equation*}
$$

The following refinement of Grüss inequality in the general setting of measure spaces is due to Cerone \& Dragomir [1]:

Theorem 1.1. Let $w, f, g: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions with $w \geq 0 \nu$-a.e. on Ω and $\int_{\Omega} w d \nu=1$. If $f, g, f g \in L_{w}(\Omega, \nu)$ and there exist constants δ, Δ such that

$$
\begin{equation*}
-\infty<\delta \leq g(x) \leq \Delta<\infty \text { for } \nu \text {-a.e. } x \in \Omega \tag{6}
\end{equation*}
$$

then we have the inequality

$$
\begin{equation*}
\left|T_{w}(f, g)\right| \leq \frac{1}{2}(\Delta-\delta) D_{w}(f) \tag{7}
\end{equation*}
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.
Motivated by the above results, we introduce in this paper the concept of quadruple D-synchronous functions that generalizes the concept of a pair of synchronous functions, we establish an inequality similar to Chebyshev inequality and also provide some Cauchy-Bunyakovsky-Schwarz type inequalities for a functional associated with this quadruple. Some applications for univariate functions of real variable are given. Discrete inequalities are also stated.

2. D-Synchronous functions

Let $(\Omega, \mathcal{A}, \nu)$ be a measurable space and $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be four ν-measurable functions on Ω.

Definition 2.1. The quadruple (f, g, h, ℓ) is called D-Synchronous (D-Asynchronous) on Ω if

$$
\operatorname{det}\left(\begin{array}{cc}
f(x) & f(y) \tag{8}\\
g(x) & g(y)
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
h(x) & h(y) \\
\ell(x) & \ell(y)
\end{array}\right) \geq(\leq) 0
$$

for ν-a.e. (almost every) $x, y \in \Omega$.
This concept is a generalization of synchronous functions, since for $g=1, \ell=1$ the quadruple (f, g, h, ℓ) is D-Synchronous if, and only if, (f, h) is synchronous on Ω.
If $g, \ell \neq 0 \nu$-a.e on Ω, then

$$
\begin{align*}
\operatorname{det}\left(\begin{array}{cc}
f(x) & f(y) \\
g(x) & g(y)
\end{array}\right) & \operatorname{det}\left(\begin{array}{cc}
h(x) & h(y) \\
\ell(x) & \ell(y)
\end{array}\right) \tag{9}\\
& =(f(x) g(y)-g(x) f(y))(h(x) \ell(y)-\ell(x) h(y)) \\
& =g(x) \ell(x) g(y) \ell(y)\left(\frac{f(x)}{g(x)}-\frac{f(y)}{g(y)}\right)\left(\frac{h(x)}{\ell(x)}-\frac{h(y)}{\ell(y)}\right)
\end{align*}
$$

for ν-a.e. $x, y \in \Omega$. So, if $g \ell>0 \nu$-a.e on Ω the quadruple (f, g, h, ℓ) is D-Synchronous if, and only if, $\left(\frac{f}{g}, \frac{h}{\ell}\right)$ is synchronous on Ω.
Theorem 2.2. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω and such that the quadruple (f, g, h, ℓ) is D-Synchronous ($D-$ Asynchronous), $w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$ and $f h, g \ell, g h, f \ell \in L_{w}(\Omega, \nu)$. Then,

$$
\operatorname{det}\left(\begin{array}{cc}
\int_{\Omega} w f h d \nu & \int_{\Omega} w g h d \nu \tag{10}\\
\int_{\Omega} w f \ell d \nu & \int_{\Omega} w g \ell d \nu
\end{array}\right) \geq(\leq) 0
$$

Vol. 38, No. 2, 2020]

Proof. Since the quadruple (f, g, h, ℓ) is D-Synchronous, then

$$
\begin{align*}
0 \leq & (f(x) g(y)-g(x) f(y))(h(x) \ell(y)-\ell(x) h(y)) \tag{11}\\
= & f(x) h(x) g(y) \ell(y)+g(x) \ell(x) f(y) h(y) \\
& -f(x) \ell(x) g(y) h(y)-g(x) h(x) f(y) \ell(y)
\end{align*}
$$

for ν-a.e. $x, y \in \Omega$.
This is equivalent to

$$
\begin{align*}
f(x) h(x) g(y) \ell(y)+g(x) \ell(x) f & (y) h(y) \\
& \geq f(x) \ell(x) g(y) h(y)+g(x) h(x) f(y) \ell(y) \tag{12}
\end{align*}
$$

for ν-a.e. $x, y \in \Omega$.
Multiply (12) by $w(x) w(y) \geq 0$ to get

$$
\begin{align*}
w(x) f(x) h & (x) w(y) g(y) \ell(y)+w(x) g(x) \ell(x) w(y) f(y) h(y) \\
& \geq w(x) f(x) \ell(x) w(y) g(y) h(y)+w(x) g(x) h(x) w(y) f(y) \ell(y) \tag{13}
\end{align*}
$$

for ν-a.e. $x, y \in \Omega$.
If we integrate the inequality (13) over $x \in \Omega$, then we get

$$
\begin{align*}
w(y) g(y) \ell(y) \int_{\Omega} w f h d \nu & +w(y) f(y) h(y) \int_{\Omega} w g \ell d \nu \\
& \geq w(y) g(y) h(y) \int_{\Omega} w f \ell d \nu+w(y) f(y) \ell(y) \int_{\Omega} w g h d \nu \tag{14}
\end{align*}
$$

for ν-a.e. $y \in \Omega$.
Finally, if we integrate the inequality (14) over $y \in \Omega$, then we get

$$
\begin{aligned}
& \int_{\Omega} w f h d \nu \int_{\Omega} w g \ell d \nu+\int_{\Omega} w g \ell d \nu \int_{\Omega} w f h d \nu \\
& \geq \int_{\Omega} w f \ell d \nu \int_{\Omega} w g h d \nu+\int_{\Omega} w g h d \nu \int_{\Omega} w f \ell d \nu
\end{aligned}
$$

which is equivalent to the desired result (10).
Corollary 2.3. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω and such that $g \ell>0 \nu$-a.e on $\Omega,\left(\frac{f}{g}, \frac{h}{\ell}\right)$ is synchronous (asynchronous) on $\Omega, w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$ and $f h, g \ell, g h, f \ell \in L_{w}(\Omega, \nu)$; then the inequality (10) is valid.

Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on $\Omega, w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$ and $f h, g \ell, g h, f \ell \in L_{w}(\Omega, \nu)$; then we can consider the functionals

$$
\begin{align*}
\mathcal{D}(f, g, h, \ell ; w, \Omega) & :=\operatorname{det}\left(\begin{array}{cc}
\int_{\Omega} w f h d \nu & \int_{\Omega} w g h d \nu \\
\int_{\Omega} w f \ell d \nu & \int_{\Omega} w g \ell d \nu
\end{array}\right) \tag{15}\\
& =\int_{\Omega} w f h d \nu \int_{\Omega} w g \ell d \nu-\int_{\Omega} w f \ell d \nu \int_{\Omega} w g h d \nu
\end{align*}
$$

and, for $(f, g)=(h, \ell)$,

$$
\begin{align*}
\mathcal{D}(f, g ; w, \Omega) & :=\mathcal{D}(f, g, f, g ; w, \Omega) \tag{16}\\
& =\operatorname{det}\left(\begin{array}{cc}
\int_{\Omega} w f^{2} d \nu & \int_{\Omega} w f g d \nu \\
\int_{\Omega} w f g d \nu & \int_{\Omega} w g^{2} d \nu
\end{array}\right) \\
& =\int_{\Omega} w f^{2} d \nu \int_{\Omega} w g^{2} d \nu-\left(\int_{\Omega} w f g d \nu\right)^{2}
\end{align*}
$$

provided $f^{2}, g^{2} \in L_{w}(\Omega, \nu)$.
We can improve the inequality (10) as follows:
Theorem 2.4. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω and such that the quadruple (f, g, h, ℓ) is D-Synchronous, $w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$ and $f h, g \ell$, $g h, f \ell \in L_{w}(\Omega, \nu)$; then,

$$
\begin{align*}
\mathcal{D}(f, g, h, \ell ; w, \Omega) \geq & \max \{|\mathcal{D}(|f|,|g|, h, \ell ; w, \Omega)| \tag{17}\\
& |\mathcal{D}(f, g,|h|,|\ell| ; w, \Omega)|,|\mathcal{D}(|f|,|g|,|h|,|\ell| ; w, \Omega)|\} \\
\geq & 0
\end{align*}
$$

Proof. We use the continuity property of the modulus, namely

$$
|a-b| \geq||a|-|b||, a, b \in \mathbb{R}
$$

Since (f, g, h, ℓ) is D-Synchronous, then

$$
\begin{align*}
(f(x) g(y) & -g(x) f(y))(h(x) \ell(y)-\ell(x) h(y)) \tag{18}\\
& =|f(x) g(y)-g(x) f(y)||h(x) \ell(y)-\ell(x) h(y)| \\
& \geq\left\{\begin{array}{l}
|(|f(x)||g(y)|-|g(x)||f(y)|)(h(x) \ell(y)-\ell(x) h(y))| \\
|(f(x) g(y)-g(x) f(y))(|h(x)||\ell(y)|-|\ell(x)||h(y)|)| \\
|(|f(x)||g(y)|-|g(x)||f(y)|)(|h(x)||\ell(y)|-|\ell(x)||h(y)|)|
\end{array}\right.
\end{align*}
$$

for ν-a.e. $x, y \in \Omega$.
As in the proof of Theorem 2.2, we have the identity

$$
\begin{align*}
& \mathcal{D}(f, g, h, \ell ; w, \Omega)=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)(f(x) g(y)-g(x) f(y)) \tag{19}\\
& \times(h(x) \ell(y)-\ell(x) h(y)) d \nu(x) d \nu(y)
\end{align*}
$$

Vol. 38, No. 2, 2020]

By using the identity (19) and the first branch in (18) we have

$$
\begin{aligned}
\mathcal{D}(f, g, h, \ell ; w, \Omega) \geq & \left.\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) \right\rvert\,(|f(x)||g(y)|-|g(x)||f(y)|) \\
& \times(h(x) \ell(y)-\ell(x) h(y)) \mid d \nu(x) d \nu(y) \\
\geq & \left.\frac{1}{2} \right\rvert\, \int_{\Omega} \int_{\Omega} w(x) w(y)(|f(x)||g(y)|-|g(x)||f(y)|) \\
& \quad \times(h(x) \ell(y)-\ell(x) h(y)) d \nu(x) d \nu(y) \mid \\
= & |\mathcal{D}(|f|,|g|, h, \ell ; w, \Omega)|
\end{aligned}
$$

which proves the first part of (17).
The second and third part of (17) can be proved in a similar way and details are omitted.

3. Further results for the functional \mathcal{D}

We have the following Schwarz's type inequality for the functional \mathcal{D} :
Theorem 3.1. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on $\Omega, w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$ and $f^{2}, g^{2}, h^{2}, \ell^{2} \in L_{w}(\Omega, \nu)$. Then,

$$
\begin{equation*}
\mathcal{D}^{2}(f, g, h, \ell ; w, \Omega) \leq \mathcal{D}(f, g ; w, \Omega) \mathcal{D}(h, \ell ; w, \Omega) \tag{20}
\end{equation*}
$$

Proof. As in the proof of Theorem 2.4, we have the identities

$$
\begin{gathered}
\mathcal{D}(f, g, h, \ell ; w, \Omega)=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)(f(x) g(y)-g(x) f(y)) \\
\times(h(x) \ell(y)-\ell(x) h(y)) d \nu(x) d \nu(y), \\
\mathcal{D}(f, g ; w, \Omega)=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)(f(x) g(y)-g(x) f(y))^{2} d \nu(x) d \nu(y)
\end{gathered}
$$

and

$$
\mathcal{D}(h, \ell ; w, \Omega)=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)(h(x) \ell(y)-\ell(x) h(y))^{2} d \nu(x) d \nu(y)
$$

By the Cauchy-Bunyakovsky-Schwarz double integral inequality we have

$$
\begin{aligned}
&\left(\int_{\Omega} \int_{\Omega} w(x)\right.w(y)(f(x) g(y)-g(x) f(y))(h(x) \ell(y)-\ell(x) h(y)) d \nu(x) d \nu(y))^{2} \\
& \leq \int_{\Omega} \int_{\Omega} w(x) w(y)(h(x) g(y)-g(x) h(y))^{2} d \nu(x) d \nu(y) \\
& \quad \times \int_{\Omega} \int_{\Omega} w(x) w(y)(h(x) \ell(y)-\ell(x) h(y))^{2} d \nu(x) d \nu(y)
\end{aligned}
$$

which produces the desired result (20).

Corollary 3.2. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω with $g^{2}, \ell^{2} \in$ $L_{w}(\Omega, \nu), w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$, and $a, A, b, B \in \mathbb{R}$ such that $A>a, B>b$,

$$
\begin{equation*}
a g \leq f \leq A g \quad \text { and } \quad b \ell \leq h \leq B \ell \tag{21}
\end{equation*}
$$

ν-a.e. on Ω. Then,

$$
\begin{equation*}
|\mathcal{D}(f, g, h, \ell ; w, \Omega)| \leq \frac{1}{4}(A-a)(B-b) \int_{\Omega} w g^{2} d \nu \int_{\Omega} w \ell^{2} d \nu \tag{22}
\end{equation*}
$$

Proof. In [2] (see also [4, p. 8]) we proved the following reverse of Cauchy-BunyakovskySchwarz integral inequality

$$
\int_{\Omega} w f^{2} d \nu \int_{\Omega} w g^{2} d \nu-\left(\int_{\Omega} w f g d \nu\right)^{2} \leq \frac{1}{4}(A-a)^{2}\left(\int_{\Omega} w g^{2} d \nu\right)^{2}
$$

provided that $a g \leq f \leq A g \nu$-a.e. on Ω and $g^{2} \in L_{w}(\Omega, \nu)$.
Since, we also have

$$
\int_{\Omega} w h^{2} d \nu \int_{\Omega} w \ell^{2} d \nu-\left(\int_{\Omega} w h \ell d \nu\right)^{2} \leq \frac{1}{4}(B-b)^{2}\left(\int_{\Omega} w \ell^{2} d \nu\right)^{2}
$$

provided that $b \ell \leq h \leq B \ell \nu$-a.e. on Ω and $\ell^{2} \in L_{w}(\Omega, \nu)$. Then, by (20) we have

$$
\mathcal{D}^{2}(f, g, h, \ell ; w, \Omega) \leq \frac{1}{16}(A-a)^{2}(B-b)^{2}\left(\int_{\Omega} w g^{2} d \nu\right)^{2}\left(\int_{\Omega} w \ell^{2} d \nu\right)^{2}
$$

that is equivalent to the desired result (22).
For positive margins we also have:
Corollary 3.3. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be four ν-measurable functions on Ω with $g^{2}, \ell^{2} \in$ $L_{w}(\Omega, \nu), w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$, and $a, A, b, B>0$ such that $A>a, B>b$,

$$
\begin{equation*}
a g \leq f \leq A g \text { and } b \ell \leq h \leq B \ell \tag{23}
\end{equation*}
$$

ν-a.e. on Ω. Then we have

$$
\begin{equation*}
|\mathcal{D}(f, g, h, \ell ; w, \Omega)| \leq \frac{1}{4} \frac{(A-a)(B-b)}{\sqrt{a A b B}} \int_{\Omega} w f g d \nu \int_{\Omega} w h \ell d \nu \tag{24}
\end{equation*}
$$

Proof. In [3] (see also [4, p. 16]) we proved the following reverse of Cauchy-BunyakovskySchwarz integral inequality:

$$
\int_{\Omega} w f^{2} d \nu \int_{\Omega} w g^{2} d \nu-\left(\int_{\Omega} w f g d \nu\right)^{2} \leq \frac{(A-a)^{2}}{4 a A}\left(\int_{\Omega} w f g d \nu\right)^{2}
$$

whenever $a g \leq f \leq A g \nu$-a.e. on Ω.
Since

$$
\int_{\Omega} w h^{2} d \nu \int_{\Omega} w \ell^{2} d \nu-\left(\int_{\Omega} w h \ell d \nu\right)^{2} \leq \frac{(B-b)^{2}}{4 b B}\left(\int_{\Omega} w h \ell d \nu\right)^{2}
$$

provided $b \ell \leq h \leq B \ell \nu$-a.e. on Ω, then by (20) we get the desired result (24).

If bounds for the sum and difference are available, then we have:
Corollary 3.4. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω with $g^{2}, \ell^{2} \in$ $L_{w}(\Omega, \nu), w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$. Assume that there exists the constants P_{1}, Q_{1}, P_{2}, Q_{2} such that

$$
\begin{equation*}
|g-f| \leq P_{1}, \quad|g+f| \leq Q_{1}, \quad|h-\ell| \leq P_{2}, \quad|h+\ell| \leq Q_{2} \tag{25}
\end{equation*}
$$

a.e. on Ω; then,

$$
\begin{equation*}
|\mathcal{D}(f, g, h, \ell ; w, \Omega)| \leq \frac{1}{4} P_{1} Q_{1} P_{2} Q_{2} \tag{26}
\end{equation*}
$$

Proof. In the recent paper [5] we obtained amongst other the following reverse of Cauchy-Bunyakovsky-Schwarz integral inequality:

$$
\int_{\Omega} w f^{2} d \nu \int_{\Omega} w g^{2} d \nu-\left(\int_{\Omega} w f g d \nu\right)^{2} \leq \frac{1}{4} P_{1}^{2} Q_{1}^{2}
$$

provided $|g-f| \leq P_{1},|g+f| \leq Q_{1}$ a.e. on Ω.
Since

$$
\int_{\Omega} w h^{2} d \nu \int_{\Omega} w \ell^{2} d \nu-\left(\int_{\Omega} w h \ell d \nu\right)^{2} \leq \frac{1}{4} P_{2}^{2} Q_{2}^{2}
$$

if $|h-\ell| \leq P_{2},|h+\ell| \leq Q_{2}$ a.e. on Ω, then by (20) we get the desired result (26).
If bounds for each function are available, then we have:
Corollary 3.5. Let $f, g, h, \ell: \Omega \rightarrow \mathbb{R}$ be ν-measurable functions on Ω and $w \geq 0$ a.e. on Ω with $\int_{\Omega} w d \nu=1$. Assume that there exists the constants a_{i}, A_{i}, b_{i} and B_{i} with $i \in\{1,2\}$ such that

$$
\begin{equation*}
0<a_{1} \leq f \leq A_{1}<\infty, \quad 0<a_{2} \leq g \leq A_{2}<\infty \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
0<b_{1} \leq h \leq B_{1}<\infty, \quad 0<b_{2} \leq \ell \leq B_{2}<\infty \tag{28}
\end{equation*}
$$

a.e. on Ω; then,

$$
\begin{equation*}
|\mathcal{D}(f, g, h, \ell ; w, \Omega)| \leq \frac{1}{3}\left(A_{1} A_{2}-a_{1} a_{2}\right)\left(B_{1} B_{2}-b_{1} b_{2}\right) \tag{29}
\end{equation*}
$$

Proof. We use the following Ozeki's type inequality obtained in [6]:

$$
\int_{\Omega} w f^{2} d \nu \int_{\Omega} w g^{2} d \nu-\left(\int_{\Omega} w f g d \nu\right)^{2} \leq \frac{1}{3}\left(A_{1} A_{2}-a_{1} a_{2}\right)^{2}
$$

provided $0<a_{1} \leq f \leq A_{1}<\infty, 0<a_{2} \leq g \leq A_{2}<\infty$ a.e. on Ω.
Since

$$
\int_{\Omega} w h^{2} d \nu \int_{\Omega} w \ell^{2} d \nu-\left(\int_{\Omega} w h \ell d \nu\right)^{2} \leq \frac{1}{3}\left(B_{1} B_{2}-b_{1} b_{2}\right)^{2}
$$

when $0<b_{1} \leq h \leq B_{1}<\infty, 0<b_{2} \leq \ell \leq B_{2}<\infty$ a.e. on Ω, then by (20) we get the desired result (29).

4. Results for univariate functions

Let $\Omega=[a, b]$ be an interval of real numbers, and assume that $f, g, h, \ell:[a, b] \rightarrow \mathbb{R}$ are measurable D-Synchronous (D-Aynchronous), $w \geq 0$ a.e. on $[a, b]$ with $\int_{a}^{b} w(t) d t=1$ and $f h, g \ell, g h, f \ell \in L_{w}([a, b])$; then,

$$
\begin{align*}
\int_{a}^{b} w(t) f(t) h(t) d t & \int_{a}^{b} w(t) g(t) \ell(t) d t \tag{30}\\
& \geq(\leq) \int_{a}^{b} w(t) g(t) h(t) d t \int_{a}^{b} w(t) f(t) \ell(t) d t
\end{align*}
$$

Now, assume that $[a, b] \subset(0, \infty)$ and take $f(t)=t^{p}, g(t)=t^{q}, h(t)=t^{r}$ and $\ell(t)=t^{s}$ with $p, q, r, s \in \mathbb{R}$. Then,

$$
\frac{f(t)}{g(t)}=t^{p-q} \quad \text { and } \quad \frac{h(t)}{\ell(t)}=t^{r-s}
$$

If $(p-q)(r-s)>0$, then the functions $\left(\frac{f}{g}, \frac{h}{\ell}\right)$ have the same monotonicity on $[a, b]$ while if $(p-q)(r-s)<0$ then $\left(\frac{f}{g}, \frac{h}{\ell}\right)$ have opposite monotonicity on $[a, b]$. Therefore, by (30) we have for any nonnegative integrable function w with $\int_{a}^{b} w(t) d t=1$ that

$$
\begin{equation*}
\int_{a}^{b} w(t) t^{p+r} d t \int_{a}^{b} w(t) t^{q+s} d t \geq(\leq) \int_{a}^{b} w(t) t^{q+r} d t \int_{a}^{b} w(t) t^{p+s} d t \tag{31}
\end{equation*}
$$

provided $(p-q)(r-s)>(<) 0$.
Assume that $[a, b] \subset(0, \infty)$ and take $f(t)=\exp (\alpha t), g(t)=\exp (\beta t), h(t)=\exp (\gamma t)$ and $\ell(t)=\exp (\delta t)$, with $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Then,

$$
\frac{f(t)}{g(t)}=\exp [(\alpha-\beta) t] \quad \text { and } \quad \frac{h(t)}{\ell(t)}=\exp [(\gamma-\delta) t]
$$

If $(\alpha-\beta)(\gamma-\delta)>0$, then the functions $\left(\frac{f}{g}, \frac{h}{\ell}\right)$ have the same monotonicity on $[a, b]$, while if $(\alpha-\beta)(\gamma-\delta)<0$ then $\left(\frac{f}{g}, \frac{h}{\ell}\right)$ have opposite monotonicity on $[a, b]$. Therefore, by (30) we have for any nonnegative integrable function w with $\int_{a}^{b} w(t) d t=1$ that

$$
\begin{align*}
\int_{a}^{b} w(t) \exp [(\alpha+\gamma) t] d t & \int_{a}^{b} w(t) \exp [(\beta+\delta) t] d t \tag{32}\\
& \geq(\leq) \int_{a}^{b} w(t) \exp [(\beta+\gamma) t] d t \int_{a}^{b} w(t) \exp [(\alpha+\delta) t] d t
\end{align*}
$$

provided $(\alpha-\beta)(\gamma-\delta)>(<) 0$.
Consider the functional

$$
\begin{align*}
\mathcal{D}_{p, q, r, s}(w):= & \int_{a}^{b} w(t) t^{p+r} d t \int_{a}^{b} w(t) t^{q+s} d t \tag{33}\\
& -\int_{a}^{b} w(t) t^{q+r} d t \int_{a}^{b} w(t) t^{p+s} d t
\end{align*}
$$

Vol. 38, No. 2, 2020]
for any nonnegative integrable function w with $\int_{a}^{b} w(t) d t=1$, and $p, q, r, s \in \mathbb{R}$. We observe that for $t \in[a, b] \subset(0, \infty)$ we have

$$
\begin{align*}
k_{p, q}(a, b) & :=\left\{\begin{array}{l}
a^{p-q}, \text { if } p \geq q, \\
b^{p-q}, \text { if } p<q,
\end{array} \leq \frac{f(t)}{g(t)}=t^{p-q}\right. \tag{34}\\
& \leq K_{p, q}(a, b):=\left\{\begin{array}{l}
b^{p-q}, \text { if } p \geq q \\
a^{p-q} \text { if } p<q
\end{array}\right.
\end{align*}
$$

and, similarly,

$$
k_{r, s}(a, b) \leq \frac{h(t)}{\ell(t)}=t^{r-s} \leq K_{r, s}(a, b)
$$

Using the inequality (22) we have

$$
\begin{align*}
\left|\mathcal{D}_{p, q, r, s}(w)\right| \leq \frac{1}{4} & {\left[K_{p, q}(a, b)-k_{p, q}(a, b)\right]\left[K_{r, s}(a, b)-k_{r, s}(a, b)\right] } \tag{35}\\
& \times \int_{a}^{b} w(t) t^{2 q} d t \int_{a}^{b} w(t) t^{2 s} d t
\end{align*}
$$

while from (24) we have

$$
\begin{align*}
\left|\mathcal{D}_{p, q, r, s}(w)\right| \leq \frac{1}{4} & \frac{\left[K_{p, q}(a, b)-k_{p, q}(a, b)\right]\left[K_{r, s}(a, b)-k_{r, s}(a, b)\right]}{\sqrt{k_{p, q}(a, b) k_{r, s}(a, b) K_{p, q}(a, b) K_{r, s}(a, b)}} \tag{36}\\
& \times \int_{a}^{b} w(t) t^{p+q} d t \int_{a}^{b} w(t) t^{r+s} d t .
\end{align*}
$$

We also have for $t \in[a, b] \subset(0, \infty)$ that

$$
\begin{aligned}
u_{p}(a, b) & :=\left\{\begin{array}{l}
a^{p}, \text { if } p \geq 0, \\
b^{p}, \text { if } p<0,
\end{array} \leq f(t)=t^{p}\right. \\
& \leq U_{p}(a, b):=\left\{\begin{array}{l}
b^{p}, \text { if } p \geq 0 \\
a^{p}, \text { if } p<0
\end{array}\right.
\end{aligned}
$$

and the corresponding bounds for $g(t)=t^{q}, h(t)=t^{r}$ and $\ell(t)=t^{s}$, with $p, q, r, s \in \mathbb{R}$. Making use of the inequality (29) we get

$$
\begin{align*}
\left|\mathcal{D}_{p, q, r, s}(w)\right| \leq \frac{1}{3} & \left(U_{p}(a, b) U_{q}(a, b)-u_{p}(a, b) u_{q}(a, b)\right) \tag{37}\\
& \times\left(U_{r}(a, b) U_{s}(a, b)-u_{r}(a, b) u_{s}(a, b)\right)
\end{align*}
$$

Similar results may be stated for the functional

$$
\begin{aligned}
\mathcal{D}_{\alpha, \beta, \gamma, \delta}(w):= & \int_{a}^{b} w(t) \exp [(\alpha+\gamma) t] d t \int_{a}^{b} w(t) \exp [(\beta+\delta) t] d t \\
& -\int_{a}^{b} w(t) \exp [(\beta+\gamma) t] d t \int_{a}^{b} w(t) \exp [(\alpha+\delta) t] d t
\end{aligned}
$$

for any nonnegative integrable function w with $\int_{a}^{b} w(t) d t=1$, for $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and $[a, b] \subset(0, \infty)$. Details are omitted.
We say that the function $\varphi:[a, b] \rightarrow \mathbb{R}$ is Lipschitzian with the constant $L>0$ if

$$
|\varphi(t)-\varphi(s)| \leq L|t-s|
$$

for any $t, s \in[a, b]$.
Define the functional

$$
\begin{aligned}
\mathcal{D}(f, g, h, \ell ; w,[a, b]):= & \int_{a}^{b} w(t) f(t) h(t) d t \int_{a}^{b} w(t) g(t) \ell(t) d t \\
& -\int_{a}^{b} w(t) g(t) h(t) d t \int_{a}^{b} w(t) f(t) \ell(t) d t
\end{aligned}
$$

In the next result we provided two upper bounds in terms of Lipschitzian constants:
Theorem 4.1. Let $f, g, h, \ell:[a, b] \rightarrow \mathbb{R}$ be measurable functions and $w \geq 0$ a.e. on $[a, b]$ with $\int_{a}^{b} w(t) d t=1$.
(i) If $g(t), \ell(t) \neq 0$ for any $t \in[a, b]$, and $\frac{f}{g}$ is Lipschitzian with the constant $L>0$, and $\frac{h}{\ell}$ is Lipschitzian with the constant $K>0$, and $g \ell$, $g \ell e^{2} \in L_{w}([a, b])$ with $e(t)=t, t \in[a, b]$, then

$$
\begin{align*}
& |\mathcal{D}(f, g, h, \ell ; w,[a, b])| \\
& \qquad L K\left[\int_{a}^{b} w(s)|g(s)||\ell(s)|\right. \\
& \leq d s \int_{a}^{b} w(t)|\ell(t)||g(t)| t^{2} d t \tag{38}\\
& \\
& \left.-\left(\int_{a}^{b} w(t)|g(t)||\ell(t)| t d t\right)^{2}\right]
\end{align*}
$$

(ii) If, in addition, we have wg $\in L_{\infty}[a, b]$ and

$$
\|w g \ell\|_{\infty}=\operatorname{esssup}_{t \in[a, b]}|w(t) g(t) \ell(t)|<\infty
$$

then

$$
\begin{equation*}
|\mathcal{D}(f, g, h, \ell ; w,[a, b])| \leq \frac{1}{12}(b-a)^{4} L K\|w g \ell\|_{\infty}^{2} \tag{39}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\mathcal{D}(f, g, h, \ell ; w,[a, b])= & \frac{1}{2} \int_{a}^{b} \int_{a}^{b} w(t) w(s)(f(t) g(s)-g(t) f(s)) \\
& \times(h(t) \ell(s)-\ell(t) h(s)) d t d s \\
= & \frac{1}{2} \int_{a}^{b} \int_{a}^{b} w(t) w(s) g(t) g(s) \ell(t) \ell(s) \\
& \times\left(\frac{f(t)}{g(t)}-\frac{f(s)}{g(s)}\right)\left(\frac{h(t)}{\ell(t)}-\frac{h(s)}{\ell(s)}\right) d t d s
\end{aligned}
$$

Vol. 38, No. 2, 2020]

By taking modulus in this equality, we get

$$
\begin{align*}
\mid \mathcal{D} & (f, g, h, \ell ; w,[a, b]) \mid \tag{40}\\
& \leq \frac{1}{2} \int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)| \times\left|\frac{f(t)}{g(t)}-\frac{f(s)}{g(s)}\right|\left|\frac{h(t)}{\ell(t)}-\frac{h(s)}{\ell(s)}\right| d t d s \\
& \leq \frac{1}{2} L K \int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)|(t-s)^{2} d t d s
\end{align*}
$$

Now, observe that

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)|(t-s)^{2} d t d s \tag{41}\\
&= \int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)|\left(t^{2}-2 t s+s^{2}\right) d t d s \\
&= 2\left(\int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)| t^{2} d t d s\right. \\
&\left.-\int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)| t s d t d s\right) \\
&= 2\left[\int_{a}^{b} w(s)|g(s)||\ell(s)| d s \int_{a}^{b} w(t)|g(t)||\ell(t)| t^{2} d t\right. \\
&\left.-\left(\int_{a}^{b} w(t)|g(t)||\ell(t)| t d t\right)^{2}\right]
\end{align*}
$$

On making use of (40) and (41) we get the desired result (38).
If $w g \ell \in L_{\infty}[a, b]$, then

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} w(t) w(s)|g(t)||g(s)||\ell(t)||\ell(s)|(t-s)^{2} d t d s \\
& \leq\|w g \ell\|_{\infty}^{2} \int_{a}^{b} \int_{a}^{b}(t-s)^{2} d t d s=\frac{1}{6}(b-a)^{4}\|w g \ell\|_{\infty}^{2} \tag{42}
\end{align*}
$$

Therefore, by inequalities (40) and (42) we obtain the desired result (39).

5. Discrete inequalities

Consider the n-tuples of real numbers $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right)$ and $u=\left(u_{1}, \ldots, u_{n}\right)$. We say that the quadruple (x, y, z, u) is $D-$ Synchronous if

$$
\begin{align*}
0 & \leq \operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
z_{i} & z_{j} \\
u_{i} & u_{j}
\end{array}\right) \tag{43}\\
& =\left(x_{i} y_{j}-x_{j} y_{i}\right)\left(z_{i} u_{j}-z_{j} u_{i}\right)
\end{align*}
$$

for any $i, j \in\{1, \ldots, n\}$.
If $p=\left(p_{1}, \ldots, p_{n}\right)$ is a probability distribution, namely, $p_{i} \geq 0$ for any $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} p_{i}=1$, and the quadruple (x, y, z, u) is D-Synchronous, then by (10) we have:

$$
\begin{align*}
\mathcal{D}_{n}(x, y, z, u ; p) & :=\operatorname{det}\left(\begin{array}{cc}
\sum_{i=1}^{n} p_{i} x_{i} z_{i} & \sum_{i=1}^{n} p_{i} y_{i} z_{i} \\
\sum_{i=1}^{n} p_{i} x_{i} u_{i} & \sum_{i=1}^{n} p_{i} y_{i} u_{i}
\end{array}\right) \tag{44}\\
& =\sum_{i=1}^{n} p_{i} x_{i} z_{i} \sum_{i=1}^{n} p_{i} y_{i} u_{i}-\sum_{i=1}^{n} p_{i} x_{i} u_{i} \sum_{i=1}^{n} p_{i} y_{i} z_{i} \geq 0 .
\end{align*}
$$

For an n-tuples of real numbers $x=\left(x_{1}, \ldots, x_{n}\right)$, we denote by $|x|:=\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$. On making use of the inequality (17), then for any D-Synchronous quadruple (x, y, z, u) and for any probability distribution $p=\left(p_{1}, \ldots, p_{n}\right)$ we have

$$
\begin{align*}
& \mathcal{D}_{n}(x, y, z, u ; p) \\
& \quad \geq \max \left\{\left|\mathcal{D}_{n}(|x|, y, z, u ; p)\right|,\left|\mathcal{D}_{n}(x,|y|, z, u ; p)\right|,\left|\mathcal{D}_{n}(|x|,|y|, z, u ; p)\right|\right\} \geq 0 \tag{45}
\end{align*}
$$

Observe that if we consider

$$
\mathcal{D}_{n}(x, y ; p):=\mathcal{D}_{n}(x, y, x, y ; p)=\sum_{i=1}^{n} p_{i} x_{i}^{2} \sum_{i=1}^{n} p_{i} y_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right)^{2}
$$

then by (20) we have

$$
\begin{equation*}
\left|\mathcal{D}_{n}(x, y, z, u ; p)\right|^{2} \leq \mathcal{D}_{n}(x, y ; p) \mathcal{D}_{n}(z, u ; p) \tag{46}
\end{equation*}
$$

for any quadruple (x, y, z, u) and any probability distribution $p=\left(p_{1}, \ldots, p_{n}\right)$.
If $a, A, b, B \in \mathbb{R}$ and (x, y, z, u) are such that $A>a, B>b$,

$$
\begin{equation*}
a y_{i} \leq x_{i} \leq A y_{i} \text { and } b u_{i} \leq z_{i} \leq B u_{i} \tag{47}
\end{equation*}
$$

for any $i \in\{1, \ldots, n\}$, then by (22) we have

$$
\begin{equation*}
\left|\mathcal{D}_{n}(x, y, z, u ; p)\right| \leq \frac{1}{4}(A-a)(B-b) \sum_{i=1}^{n} p_{i} y_{i}^{2} \sum_{i=1}^{n} p_{i} u_{i}^{2} \tag{48}
\end{equation*}
$$

If $a, A, b, B>0$ and condition (47) is valid, then by (24) we have

$$
\begin{equation*}
\left|\mathcal{D}_{n}(x, y, z, u ; p)\right| \leq \frac{1}{4} \frac{(A-a)(B-b)}{\sqrt{a A b B}} \sum_{i=1}^{n} p_{i} x_{i} y_{i} \sum_{i=1}^{n} p_{i} z_{i} u_{i} . \tag{49}
\end{equation*}
$$

Now, if we use the Klamkin-McLenaghan's inequality

$$
\sum_{i=1}^{n} p_{i} x_{i}^{2} \sum_{i=1}^{n} p_{i} y_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right)^{2} \leq(\sqrt{A}-\sqrt{a})^{2} \sum_{i=1}^{n} p_{i} x_{i} y_{i} \sum_{i=1}^{n} p_{i} x_{i}^{2}
$$

Vol. 38, No. 2, 2020]
that holds for x, y satisfying the condition (47) with $A, a>0$, then by (46) we get

$$
\begin{align*}
& \left|\mathcal{D}_{n}(x, y, z, u ; p)\right| \tag{50}\\
& \quad \leq(\sqrt{A}-\sqrt{a})(\sqrt{B}-\sqrt{b}) \\
& \quad \times\left(\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i} z_{i} u_{i}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i} z_{i}^{2}\right)^{1 / 2}
\end{align*}
$$

provided (x, y, z, u) satisfy (47) with $a, A, b, B>0$.
Now, assume that

$$
\begin{equation*}
0<a_{1} \leq x_{i} \leq A_{1}<\infty, \quad 0<a_{2} \leq y_{i} \leq A_{2}<\infty \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
0<b_{1} \leq x_{i} \leq B_{1}<\infty, \quad 0<b_{2} \leq u_{i} \leq B_{2}<\infty \tag{52}
\end{equation*}
$$

for any $i \in\{1, \ldots, n\}$; then by (29) we get

$$
\begin{equation*}
\left|\mathcal{D}_{n}(x, y, z, u ; p)\right| \leq \frac{1}{3}\left(A_{1} A_{2}-a_{1} a_{2}\right)\left(B_{1} B_{2}-b_{1} b_{2}\right) \tag{53}
\end{equation*}
$$

for any probability distribution $p=\left(p_{1}, \ldots, p_{n}\right)$.
Acknowledgement. The author would like to thank the anonymous referees for valuable suggestions that have been implemented in the final version of the paper.

References

[1] Cerone P. and Dragomir S.S., "A refinement of the Grüss inequality and applications", Tamkang J. Math. 38 (2007), No. 1, 37-49. doi: 10.5556/j.tkjm.38.2007.92.
[2] Dragomir S.S., "A counterpart of Schwarz's inequality in inner product spaces". arXiv: math/0305373.
[3] Dragomir S.S., "A generalization of the Cassels and Greub-Reinboldt inequalities in inner product spaces". arXiv: math/0306352.
[4] Dragomir S.S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005.
[5] Dragomir S.S., "Reverses of Schwarz inequality in inner product spaces with applications", Math. Nachr. 288 (2015), No. 7, 730-742. doi: 10.1002/mana. 201300100.
[6] Izumino S., Mori H. and Seo Y., "On Ozeki's inequality", J. Inequal. Appl. 2 (1998), No. 3, 235-253. doi: 10.1155/S1025583498000149.

[^0]: Corresponding author. \triangle
 Received: 23 April 2020, Accepted: 23 June 2020.
 To cite this article: S. S. Dragomir, Inequalities for $D-$ Synchronous Functions and Related
 Functionals, Rev. Integr. temas mat. 38 (2020), No. 2, 119-132. doi: 10.18273/revint.v38n2-2020005

