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Abstract. In this work, we considered models with periodic radiation can-
cer treatment which describe the dynamics of cell populations in a tumor.
This may also be used to consider dynamics of healthy tissue under peri-
odic radiation exposure. We establish the existence of periodic orbits, by
using theory of cooperative systems. We give sufficient conditions for the
uniqueness of the periodic solution which then becomes a global attractor.
Numerical simulations are performed using specific radiation functions to il-
lustrate our analytical findings.
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Soluciones periódicas para un modelo de población celular
sujeto a una radiación periódica general

Resumen. En este trabajo consideramos modelos con tratamiento de radiación
periódico contra el cáncer que describen la dinámica de las poblaciones celula-
res en un tumor. Establecemos la existencia de órbitas periódicas, utilizando
la teoría de los sistemas cooperativos. Damos condiciones suficientes para
la unicidad de la solución periódica, también para que esta sea un atractor
global. Realizamos simulaciones numéricas utilizando funciones de radiación
específicas para ilustrar nuestros resultados analíticos.
Palabras clave: Modelos de tratamiento contra el cáncer, sistemas coopera-
tivos, órbitas periódicas, radiación.
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1. Introduction

Successful mathematical models for tumor growth consider two main stages of develop-
ment, the stage of free development as an isolated mass of cells, and the vascularized
stage, where cells interact with blood an immune cells giving rise to the metastasis pro-
cess. In the first stage (see for instance [9]) an heterogeneous population of cells is also
required for properly model the tumor development. The simplest models consider two
kinds of cells within the tumor: on one hand there are quiescent cells that have almost
lost their capacity to reproduce and can produce necrosis depending on nutrients, oxy-
gen availability and necrosis substances; on the other hand we consider proliferative cells,
which evolve in time increasing their number. The interchange between these two sub-
populations can occur by two processes: the recruitment of quiescent tumor cells into
proliferative (see [5]) which is supposed to occur at a constant rate; and the inverse pro-
cess, i.e. the cessation of reproduction for a proliferative cells that changes into quiescent
cells at a constant rate.

We consider models for radiation treatment where these tumor cell subpopulations are
affected in different ways. Thus proliferative cells may be considered as healthy and
quiescent as radiated that is as a sub-product of radiation, as in the terminology of [3],
[4]. The passage from healthy into radiated cells occurs at a rate that may be regulated by
the radiation treatment. The importance of understanding this models for radiation dosis
that evolve in time motivates our work, which may be considered as an extension of the
results of [3]. We consider a time, t > 0, dependent T -periodic radiation dosis, D(t) ≥ 0;
nevertheless, we consider any continuous function rather than just few representative
examples of periodic functions. We conclude the existence of a T -periodic evolution of
subpopulations for radiation treatments in Theorem 2.2; we also give sufficient conditions
for uniqueness of a stable attracting T -periodic solution in Theorem 2.3.

The tools we use to prove our result arise directly from the Theory of Cooperative systems
(see [6, 8]).

The model consists of the following system of differential equations:

u̇ = ru(1− u/K)−D(t)u+ pv, (1a)
v̇ = D(t)u− pv − δv, (1b)

where (u, v) consists of the pair of healthy (proliferating) and radiated (quiescent) cell
subpopulations of the tumor, δ > 0 stands for the constant death rate of radiated cells,
0 < p < 1 stands for the rate of radiated cells that become healthy spontaneously by
the process called recruitment of quiescent cells. We consider the logistic growth law for
the healthy cells ru(1− u/K) with r > 0 as the initial grow rate, and K > 0 as the cell
capacity (maximal healthy population) which under the supposition of no vascularization
remains constant.

2. Results

For the readers convenience we first recall some basic facts about cooperative systems
that will be used for proving our results.
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For two points ξ, η ∈ Rn denote the partial order ξ ≤ η if ξi ≤ ηi for each i, also denote
ξ < η if ξ ≤ η and ξ ̸= v. Consider a system

ẋ = f(t, x(t), y(t)),

ẏ = g(t, x(t), y(t)),
(2)

where f, g are C1 in an open D ⊂ R2 and continuous T -periodic functions on t. System
(2) is said a cooperative system in R×D if

fy(t, x, y) ≥ 0, and gx(t, x, y) ≥ 0, ∀ t ∈ R, (x, y) ∈ D. (3)

Cooperative systems have very important properties; for a brief introduction to the
subject see [8].

We say that a pair of T -periodic differentiable functions (a(t), b(t)) is a sub-solution pair
of (2) if

ȧ ≤ f(t, a(t), b(t)),

ḃ ≤ g(t, a(t), b(t)), for all t;
(4)

analogously, a pair of T -periodic differentiable functions (A(t), B(t)) is a super-solution
pair if

Ȧ ≥ f(t, A(t), B(t)),

Ḃ ≥ g(t, A(t), B(t)), for all t.
(5)

We say that sub- and super-solution pairs are ordered if for all t we have a(t) < A(t) and
b(t) < B(t).

An important feature for cooperative system (2) related to periodic orbits was established
in [6], Theorem 2.1. Explicitly the following result holds.

Theorem 2.1 (Korman (2016)). Assume that the system (2) is cooperative and has ordered
sub- and super-solution pairs (a(t), b(t)) and (A(t), B(t)). Then the system has a T -
periodic solution (x(t), y(t)), satisfying a(t) < x(t) < A(t), b(t) < y(t) < B(t), for all t.
Furthermore, any solution of (2), with initial condition (x(0), y(0)) satisfying a(0) <
x(0) < A(0) and b(0) < y(0) < B(0), converges to the product of the strips

(x̌(t), x̂(t))× (y̌(t), ŷ(t)) ,

where (x̌(t), y̌(t)), (x̂(t), ŷ(t)) are the minimal, maximal T -periodic solution, respectively.

We complement the previous assertion by saying that there is an implicit assumption,
namely that nor x0 ∈ [a(0), A(0)] neither y0 ∈ [b(0), B(0)] exist such that either one or
both of the following inequalities hold:

x̌(t) = x0 = x̂(t), y̌(t) = y0 = ŷ(t), ∀t ∈ R. (6)

Indeed, if one or both of the equalities (6) hold, then for any initial condition a(0) <
x(0) < A(0) and b(0) < y(0) < B(0), the corresponding components of the solution, x(t)
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or y(t), may converge towards x0 or y0 as t → ∞. Hence, there would exist a solution,
(x(t), y(t)), such that ẋ(t) ≡ 0 or ẏ(t) ≡ 0. Depending on the nature of the system, we
could have a locally attractive fixed-point (x0, y0) with a(t) ≤ x0 ≤ A(t) × b(t) ≤ y0 ≤
B(t), instead of a genuine periodic orbit with a(t) < x(t) < A(0), b(0) < y(t) < B(0),
∀t ∈ R.
In our situation, the origin is a sub-solution but also a fixed-point solution of system
(1). Thus, under certain condition such as (8) in Theorem (2.2) below, there exist a
sub-solution super-solution pair (a, b), (A,B) such that a ≡ A ≡ 0 and (0, 0) = (a, b).
Therefore, by property (6),

ǔ(t) ≡ u0 = 0 ≡ û(t),

and by substitution we also have v̌(t) ≡ v0 = 0 ≡ v̂(t). Therefore, the origin is a local
attractive fixed point. Notice that there are no other fixed points for (1).
For the T -periodic continuous function D(t) we set

D∗ := max
t∈[0,T ]

D(t) and D∗ := min
t∈[0,T ]

D(t). (7)

Now we state our first result.

Theorem 2.2 (Existence). Assume r, p, δ,K > 0 and D(t) is a non negative, non constant
continuous T -periodic function. Then the following mutually exclusive assertions hold.
If

D∗ > r +
p

δ + p
D∗, (8)

then the origin is a local attractor for every initial condition in a suitable rectangle
(u(0), v(0)) ∈ [0, ϵ]× [0, ϵ].
If

r +
p

p+ δ
D∗ > D∗, (9)

then there exists at least one T -periodic solution (u(t), v(t)) of (1) whose components are
positive.

Proof. By a straightforward computation the system (1) is cooperative. We construct
sub- and super-solution pairs.
For a sub-solution pair; we consider

(a(t), b(t)) ≡ (0, 0).

These functions satisfy the inequalities in (4). Therefore they constitute a sub-solution
pair. For constructing a super-solution pair (A(t), B(t)) first we take

A0 := (l + 1)K, (10)

with l a positive constant to be chosen.

Ȧ =0, A(0) = A0, (11a)
Ḃ =D(t)A− (δ + p)B, B(0) = B0. (11b)
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Replacing in (5), we get
Ȧ = 0 ≥ f(l), (12)

where

f(l) := rK(l + 1)

(
1− (l + 1)K

K

)
−D(t)(l + 1)K + pB(t)

= −rK(l + 1)l −D(t)(l + 1)K + pB(t) (13)

and
Ḃ = D(t)K(l + 1)− (δ + p)B(t). (14)

We choose B(t) to be the unique positive T -periodic solution of (14); by direct compu-
tation we have

B(t) = B0e
−(δ+p)t + e−(δ+p)t

∫ t

0

e(δ+p)sD(s)K(l + 1)ds,

with
B0 =

(l + 1)K

e(δ+p)T − 1

∫ T

0

e(δ+p)sD(s)ds. (15)

A short computation shows that

0 ≤ B0 ≤ (l + 1)KD∗

δ + p
, 0 ≤ B(t) ≤ (l + 1)KD∗

δ + p
e(δ+p)T . (16)

Using (16) and taking into account that D(t) ≥ 0, we have that f ′(l) is bounded above
by a quadratic polynomial in l with negative leading term; therefore, there exists l > 0
large enough such that

0 ≥ f(l). (17)

Thus, considering (17), (12) and (14), we satisfy both inequalities in (5). Consequently,
(A(t), B(t)) form a super-solution pair.
Let l0 ≥ −1 be the infimum of the set of values l > −1 such that (17) holds.
When (9) holds, then f ′(−1) > 0. Moreover, f(−1) = 0 and l0 > −1. For the correspond-
ing supersolution, (A,B), for l > l0, we apply Theorem2.1. Therefore, there exists at
least one T -periodic solution for system (1). This proves the second part of the Theorem.
When (8) holds, then f ′(−1) < 0; hence there exists ϵ > 0 such that (17) holds for every
l ∈ [−1,−1 + ϵ]. Theorem 2.1 implies that for every l ∈ [−1,−1 + ϵ] and every initial
condition (u(0), v(0)) ∈ [0, ϵ]× [0, ϵ1] with

ϵ1 :=
ϵK

e(p+δ)T − 1

∫ T

0

e(δ+p)TsDds,

there exists convergence to a periodic orbit or a fixed point (uϵ(t), vϵ(t)) with a(t) ≤
uϵ(t) ≤ A(t) and b(t) ≤ vϵ(t) ≤ B(t). As ϵ → 0, we have limϵ→0(A,B) = (0, 0); hence,
uϵ(t) ≡ 0 ≡ vϵ(t), t ≥ 0. Moreover, l0 = −1 and the origin, (A,B) = (0, 0), is also a
super-solution.
This proves the first claim of Theorem 2.2, which proves the result. □✓✓✓
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Freedman and Pinho in [3] recently investigated the case with perturbed periodic dosage;
thus our result presents an alternate proof to its result and extends it. Our existence
result Theorem 2.2 naturally raises the questions if the periodic solution is unique and
globally attracting.
Recall that a solution (u(t), v(t)) of (2) is globally attracting on a positively invariant
set R ⊆ R2 if all solutions (x(t), y(t)) with (x(0), y(0)) ∈ R satisfy

(x(t), y(t))− (u(t), v(t)) → 0, t → ∞.

We now establish conditions over the uniqueness and global stability of the periodic
solutions.

Theorem 2.3 (Uniqueness). Under condition (9) as in Theorem 2.2, if in addition the
following inequality holds,

δ

δ + p
D > rT, (18)

then there exists a unique T -periodic solution of (1) in R2
+ which attracts all other positive

solutions as t → ∞. Here D =
∫ T

0
D(s) ds.

Under condition (8) as in Theorem 2.2, if (18) holds, then every solution of (1) in R2
+

is attracted to the origin as t → ∞.

Proof. Given any periodic T -solution we can chose l > 0 and a solution of (11) with
A0 > 0, B0 > 0 large enough, so that we can consider the periodic solution as dominated
by this super-solution. According to Theorem 2.1, the set of periodic solutions of (1)
is ordered, i.e., we can take the maximal periodic solution, (û(t), v̂(t)), as well as the
minimal periodic solution, (ǔ(t), v̌(t)), so that for any other periodic solution, (u(t), v(t)),
we have ǔ(t) ≤ u(t) ≤ û(t) and v̌(t) ≤ v(t) ≤ v̂(t). Our strategy is to prove that under
condition (18) we actually have (û(t), v̂(t)) = (ǔ(t), v̌(t)).
Substitute (û(t), v̂(t)) and (ǔ(t), v̌(t)) in (1), then integrate the first equation in (1) over
[0, T ]. Hence by subtraction we get∫ T

0

r (û− ǔ)− r

K

(
û2 − ǔ2

)
dt+ p

∫ T

0

(v̂ − v̌)dt =

∫ T

0

D(t)(û− ǔ)dt;

integrating the second equation in (1) over [0, T ], we obtain∫ T

0

D(t)(û− ǔ)dt = (p+ δ)

∫ T

0

(v̂ − v̌)dt.

Adding both equations in system (1) and integrating we get∫ T

0

r (û− ǔ)− r

K

(
û2 − ǔ2

)
dt = δ

∫ T

0

(v̂ − v̌)dt. (19)

Hence,∫ T

0

r (û− ǔ) dt− r

K

(
û2 − ǔ2

)
dt = δ

∫ T

0

(v̂ − v̌)d =
δ

δ + p

∫ T

0

(û− ǔ)Ddt.
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Recall that û(t)− ǔ(t) ≥ 0; then,

0 ≥ M

(
rT − δ

δ + p
D

)
≥

∫ T

0

(
r − δ

δ + p
D

)
(û− ǔ)dt ≥ r

K

∫ T

0

(
û2 − ǔ2

)
dt,

where M ≥ 0 is the supremum of û− ǔ. Therefore û(t) = ǔ(t) and by (19) we also have
v̂(t) = v̌(t).
We finally use Theorem 2.1 to complete the proof. Indeed, observe that with our con-
struction, by choosing l sufficiently large, we can make the supersolutions arbitrarily
large see ((10) and (15)). By the Theorem 2.1, the unique T -periodic solution is then a
global attractor for all positive solutions. □✓✓✓

3. Examples and applications

In the previous section we established analytically the existence of periodic solutions for
system (1) with periodic radiation cancer treatment. The object of this section is to show
numerical evidence of the existence of periodic solutions. We numerically solved these
equations using Mathematica. The graphs correspond to numerical approximations of the
periodic analytic solution. The choice of the parameters arises from empirical data and of
actual models and practices from radiotherapy. They should not be taken too seriously if
they only show simple plausible applications of our model. The experimental validation
of the model and further applications to more subtle model needs to be explored.
For the logistic grow model we take r = 0.502 /day, K = 1297mm3, corresponding to
the fit of parameters for cells in Lewis lung carcinomas in mice described in [1], with an
initial population u(0) + v(0) = 1 units corresponding to 1mm3 ≈ 106 cells.
For the other parameters we refer to the textbook [2]. Here it is explained that the
advantages of a multifraction treatment are to spare early reactions on tissues like skin,
mucosa, intestinal epitellium in comparison with those that are late responding such
as spinal cord. Thus it is important to establish optimal radiation protocols mediating
between non-desired effects. We consider an adaptation of the linear-quadratic model
(LQ) we have the dose given by D = αd+ βd2, where d is the individual dose. Here the
biological effective dose (BED) equals

D/α = (Total dose)× (Relative effectiveness),

with α ≈ 0.3 the logarithm of cells ‘killed’ per Gy; here we interprete killed as quiescent
(see also [10] for this interpretation). Thus, for a Conventional Treatment of 30 fractions
α/β = 10/Gy, d = 2Gy per day. Hence, the periodic discrete dose is specified by
D = α · 60 ·

(
1 + d

10

)
. If we adapt a continuous dose function, we get

D(t) = α · 60 ·
(
1 +

d(sin(2πt) + 1)

10

)
.

Notice that D∗ = 18. For δ > 0.002 condition (18) holds.
For the estimation of the parameter p we consider a constant dose per day whose total
dose is the proliferation correction of the dose [2]. For the protocol of the conventional
treatment this yields p = α(8.3Gy/30 days) = 0.083.
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Example 3.1. For the two initial subpopulations we consider the growth fraction (GF)
estimated as 0.5; which is the midpoint of the experimental range 0.3 ∼ 0.7 in certain
mice carcinoma. Thus for a GF value of 0.5 we have u(0) = 0.5, v(0) = 0.5; δ may
be estimated from an experimental rate denominated ‘cell-loss factor’ (ϕ) described in
textbook [2]. Thus take δ = 0.7 as the cell-killing factor arising only by necrosis in
quiescent cells in mouse carcinome. Thus the system (1) becomes

u̇ = 0.502u(1− u/1297)− (18 + 0.9(sin(2πt) + 1))u+ 0.084v, (20a)
v̇ = (18 + 0.9(sin(2πt) + 1))u− 0.084v − 0.7v (20b)

(see Fig. 1).

Numerical evidence, using Mathematica, supports the claim that the tumor vanishes for
sufficiently long time (see Fig. 2). Actually (8) holds, therefore the origin is a local
attractor as stated in the first claim in Theorem 2.2. Here condition (18) also holds,
therefore the origin is a global attractor.

Figure 1. Time plots for sub-population u(t)
for δ = 0.7. We observe that the solutions
for several initial conditions: (u(0), v(0)) ∈
{(0.5, 0.5), (5, 0), (0, 0.5)} vanish.

Figure 2. Phase space plots for u(t), v(t) with
δ = 0.7 and initial conditions (u(0), v(0)) ∈
{(0.5, 0.5), (5, 0), (0, 0.5)}. There is a scaling
factor of 10−2 for the u component.

The following examples are motivated by natural questions about the conditions for
existence and stability. The choice for the parameters do not arise from experimental
data. Related results and models can be seen in [7], where periodic function coefficients
are considered and other criteria are described. It would be interesting to find the full
picture, with a precise description of all different dynamics that may appear in this
model.

Example 3.2. Take δ0 = rp/(D∗ − r) = 0.0024098. Neither condition (8) nor condition
(9) hold, therefore we can not claim that certain initial conditions converge either to the
origin or to a periodic orbit. Actually orbits seem to converge towards different ω−limit
sets. This lack of uniqueness of the periodic orbit is supported by numerical evidence (see
Fig. 3), and is consistent with the fact that condition (18) does not hold.
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Figure 3. Time plots for sub-population u(t) for critical value δ = 0.0024098. We observe that the
solutions for several initial conditions: (u(0), v(0)) ∈ {(0.5, 0.5), (5, 0), (0, 0.5)} converge to the corre-
sponding numerical approximation of apparently different periodic orbits or even to the origin.

Example 3.3. In Fig. 4 we change D(t) = 0.18 + 0.009(sin(2πt) + 1) in (20). Condition
(9) remains true, therefore Theorem 2.2 implies the existence of at least one periodic
orbit. Numerical evidence supports the claim that the periodic orbit is not unique. Indeed,
condition (18) does not hold, therefore there is not necessarily a unique global periodic
orbit.

Figure 4. Time plots in phase space. We observe that solutions for different initial conditions,
(u(0), v(0)) ∈ {(1, 1), (10, 1), (1, 10)}, converge to different periodic orbits. The vertical and horizon-
tal lines do not correspond to the coordinate axis. They were translated onto the point (400, 120) in
order to have a clear view of the region in the first quadrant where periodic orbits appear.

Example 3.4. We consider the following system:

u̇ = 0.5u(1− u)− (1.1 + 0.1 sin(2πt))u+ 3v,
v̇ = (1.1 + 0.1 sin(2πt))u− 3v − v,

where condition (9) is true. Theorem 2.2 implies the existence of at least one periodic
orbit. Here condition (18) does hold therefore the periodic orbit is unique. Numerical
evidence supports this claim (see Fig, 5).

Vol. 38, No. 2, 2020]



90 H.G. Díaz-Marín & O. Osuna

Figure 5. Time plots in phase space. We observe that solutions for different initial conditions,
(u(0), v(0)) ∈ {(0.01, 0.1), (2, 0.1), (0.2, 1)}, converge to a unique periodic orbit. The vertical and hori-
zontal lines do not correspond to the coordinate axis. They were translated onto the point (0.42, 0.1) in
order to have a clear view of the region in the first quadrant where the periodic orbit appears.
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