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Abstract. We analyze the evolution of an infectious disease if infectious indi-
viduals are treated or isolated. The analysis of the model shows catastrophic
scenarios for the population in which bringing R0 below 1 is not enough to de-
crease the number of infectious individuals. Finally, we show three scenarios
for the behavior of the model solutions in which multiple endemic equilibria
exist.
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1. Introduction

The mathematical perspective helps us to know the impact that public health strategies
have on communities through the construction of mathematical models. Public health
strategies are designed either to control or to eradicate an infectious disease, and these
strategies are applied to certain groups. For example, treatment and isolation strategies
target infectious individuals, and the vaccination strategy is applied to susceptible indi-
viduals. In other cases, public health strategies target certain core groups, for example,
sexually active individuals can receive sexual education. It is known that each one of
these strategies has a different impact upon the dynamics of the infectious disease when
these are applied into the population. There are mathematical epidemiological models
which analyze the behavior of the population if a public health strategy is being applied.
For example, using differential equations, it has been analyzed how a disease treatment
impacts a population whose individuals have gotten an infectious disease as measles,
tuberculosis, or flu [6, 10, 17, 16, 18, 19]; also, Gumel et al. [7] and Eastwood et al. [5]
analyzed the dynamics of SARS and H1N1 when infectious individuals are isolated or
quarantined, respectively. In the same direction, Arino et al. [1] analyzed how apply-
ing a vaccine to a susceptible population affects the dynamics of infectious disease, and
Hadeler and Castillo-Chávez [8] analyzed the influence of educational programs in the
dynamics of an infectious disease.

In all cases mentioned above, a unique public health strategy was applied to control
the spread of infectious diseases however, the study of combinations of public health
strategies has been left sidestepped, even though, sometimes, two public health strategies
are simultaneously applied to control a disease. For example, the only way to prevent
measles is to get the measles, mumps, and rubella (MMR) vaccine, and infected patients
should be isolated for 4 days in an airborne infection isolation room (AIIR). Sometimes,
when a public health strategy is being applied by the State, for example, isolation of
infectious individuals, susceptible individuals use the strategy of social distancing because
they believe that the risk of infection will decrease with this control intervention.

Isolation of infectious individuals is a good procedure to smother the epidemic curve
because the number of possible encounters of susceptible individuals with infectious in-
dividuals is reduced. That is, with this intervention control, the transmission rate of the
disease is reduced. This public health strategy has been applied to control the outbreak
of infectious diseases as cholera, diphtheria, ebola, Lassa fever, leprosy, measles, mumps,
plague, smallpox, tuberculosis, typhus, and yellow fever [9]. On the other hand, speaking
about the treatment of a curable infectious disease, it is common to assume that all the
cases can be treated. So, when a treatment is applied into a population, the transmission
rate of the disease is reduced because the infectious period is reduced, and the number
of infectious individuals circulating decreases.

It was mentioned above that the application of a public health strategy may change the
evolution of an infectious disease, but these changes are very difficult to quantify. In this
sense, mathematical epidemiology is very useful if one wants to know how public health
strategies may affect some epidemiological parameters. The most famous epidemiology
parameter is the basic reproduction number, which is denoted by R0. The definition of
R0 is as follows: R0 is the average number of secondary infections produced by a single
infectious individual during its infectious period when it is introduced into a completely
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susceptible population [2].
It is known that mathematical epidemiological models with isolation may show not only
the existence of a forward bifurcation in R0 = 1 but also the existence of a Hopf bifur-
cation if some conditions over the parameters are satisfied [9]. Meanwhile, mathematical
epidemiological models with treatment show the existence of a backward bifurcation in
R0 = 1. In some cases, the model shows a bistability phenomenon if some conditions over
the values of the parameters are satisfied see [3, 13, 16, 17, 18]; however, the existence
of both phenomena have been little studied when they exist simultaneously. Figure 1
shows the cases mentioned above.

Figure 1. Case A) shows a forward bifurcation in R0 = 1 and a Hopf bifurcation when R0 > 1 while
case B) shows a backward bifurcation in R0 = 1 and a bistability phenomenon for values of R0 < 1.

Figure 2. Case A) shows a forward bifurcation in R0 = 1 and a Hopf bifurcation when R0 > 1. Case
B) shows a backward bifurcation in R0 = 1 and a Hopf bifurcation for values of R0 > 1. Finally, case
C) shows a backward bifurcation in R0 = 1 and a Hopf bifurcation for values of R0 < 1. Observe that,
in the last case, a bistability phenomenon appears when R0 < 1.

The principal purpose of this paper is to show that both a periodic solution and a
backward bifurcation can simultaneously occur for values of R0 less than 1. For this, two
public health strategies will be simultaneously applied into a population. In particular,
isolation and treatment of infected individuals.
In Section 2, an SIQR model with treatment is constructed, and the existence of the
equilibrium points is analyzed. In Section 3, the direction of the bifurcation in R0 = 1
for the proposed model is determined. We give conditions over the parameters of the
model for which the model shows a Hopf bifurcation. In Section 4, numerical simulations
of the solutions of the model are provided. Finally, in Section 5, we discuss the main
results of the model analysis.
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2. The model, equilibrium points, and R0

Let N(t) be the total population, which is divided into: susceptible, infectious, isolated,
and recovered individuals. Each class is denoted by S(t), I(t), Q(t) and R(t) respec-
tively. Then N(t) = S(t)+ I(t)+Q(t)+R(t). In epidemiological models, new infectious
individuals are commonly modeled by β I

N S, which is called standard incidence; Because
we assume that some proportion of infectious individuals is isolated, this term must be
replaced by the term β I

N−QS. Notice that the fraction I
N−Q = I

S+I+R describes the
infectious fraction of the circulating population. Also, we assume that some proportion
of infectious individuals is treated to recover them. That is, a second public health
strategy is simultaneously applied to the population. In epidemiological models, treated
individuals are commonly modeled by the term aI. This term describes a scenario when
the number of treated individuals may be so big as the number of infectious individuals,
which is an unrealistic scenario. In this work, the treatment term is going to be replaced
by the term aI

b+I , which is a bounded function. This term describes a treatment regime
that is constrained either by the available budget or by the amount of human or material
resources.
The epidemiological model with quarantine and treatment is

Ṡ = Λ− βSI

S + I +R
− dS, (1)

İ =
βSI

S + I +R
− (d+ δ + r)I − aI

b+ I
,

Q̇ = δI − (d+ ϵ)Q,

Ṙ = rI + ϵQ− dR+
aI

b+ I
,

where the parameters of the model are defined as follows: β is the infectious rate of the
disease, Λ is the recruitment rate of susceptible individuals, d is the per capita death rate,
δ is the isolation rate, r is the natural recovery rate of the disease, ϵ is the removal rate
of Q class, and a

b+I is the treatment rate, which is a decreasing function of the infectious
individuals. a

b+I describes how the public health system loses attention capacity as a
function of the infectious individuals. Observe that, a is the maximum value of the
recovery rate.
The disease-free equilibrium for model (1), which exists for all values of the parameters,
is given by

E0 =

(
Λ

d
, 0, 0, 0

)
.

The Jacobian matrix associated to model (1) is shown here

J(E∗) =


− βI(I+R)

(S+I+R)2 − d − βS(S+R)
(S+I+R)2 0 βSI

(S+I+R)2

βI(I+R)
(S+I+R)2

βS(S+R)
(S+I+R)2 − ι− ab

(b+I)2 0 − βSI
(S+I+R)2

0 δ −θ 0
0 r + ab

(b+I)2 ϵ −d

 , (2)
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where ι = d+ δ + r and θ = d+ ϵ.

A first result about the behavior of the model solutions of (1), at the beginning of the
epidemic outbreak, is showed as follows.

Theorem 2.1. Let R0 = bβ
b(δ+d+r)+a . The disease-free equilibrium of model (1) is locally

asymptotically stable if, and only if, R0 < 1.

Proof. The eigenvalues associated to the Jacobian matrix (2) evaluated in E0 are

λ1 = −(d+ ϵ), λ2 =
(b(δ + d+ r) + a)

b
(R0 − 1), λ3,4 = −d.

Then, all the eigenvalues are negative real numbers if, and only if, R0 is less than 1.
Therefore, the result is proved. □✓✓✓

Endemic equilibrium points for model (1) can be obtained by setting the left-hand side
of each differential equation equal to zero. Then, solving the third one, the equilibrium
value for the quarantined individual is obtained, and it is given by

Q∗ =
δI∗

d+ ϵ
. (3)

Substituting Q∗ into the fourth equation of model (1), the equilibrium value for the
recovered individuals R∗ is given by

R∗ =
rI∗ + ϵδI∗

d+ϵ + aI∗

b+I∗

d
. (4)

The number of susceptible individuals in the equilibrium is

S∗ =
(βI

∗

Rδ
+ βb

R0
)(I∗ +

rI∗+ ϵδI∗
d+ϵ + aI∗

b+I∗

d )

β(Rδ−1)I∗

Rδ
+ βb(R0−1)

R0

, (5)

which is obtained when the expression for Q∗ and R∗ are replaced in the first equilibrium
condition of model (1). Notice that, Rδ

0 = β
(δ+d+r) is the basic reproductive number for

the SIQR model without treatment [9].

When analyzing R0, we note that ϵ does not affect R0 and Rδ
0 because ϵ is not related

to the infectious process. Also, dR0

da = − β b
(db+δ b+rb+a)2

and dR0

dδ = − β b2

(db+δ b+rb+a)2
; in

contrast, dR0

db = β a
(db+δ b+rb+a)2

. Then, by increasing either the parameter δ or a, R0

decreases. That is, the number of secondary infections decreases as a function of a number
of isolated or treated individuals. On the other hand, by increasing b, R0 increases since
by increasing b the velocity in which infectious individuals are treated at the beginning
of the epidemic is decreasing as a function of the parameter b. In other words, d

db (
a

a+I ) =
− a

(b+i)2
.
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Finally, substituting the equilibrium coordinates S∗, Q∗, and R∗ into the second equi-
librium equation and simplifying the expression, the equilibrium equation, for I∗, is
obtained. This is a cubic equation which is given by I∗f(I∗) = 0, where

f(I∗) = A1(I
∗)2 +BI∗ + C, (6)

and the coefficients of the quadratic function, f(I∗), are given by;

A1 = dδ(δ + d+ r)(RA1
− 1),

B = A1b+ (d+ ϵ)(δ + d+ r)(1−Rδ)Λ + adδ(RA1
− 1),

C = (d+ ϵ)Λ(b(δ + d+ r) + a)(1−R0),
(7)

where RA1 = β(d+ϵ)
dδ .

Analyzing the coefficients, it is observed that A1 > 0 ⇐⇒ RA1
> 1, and C < 0 ⇐⇒

R0 > 1.

By examining the quadratic function f(I∗), the following result is achieved.

Theorem 2.2. For model (1) with R0 = bβ
b(δ+d+r)+a and RA1

= β(d+ϵ)
dδ .

1. When R0 > 1 and RA1
> 1 or R0 < 1 and RA1

< 1, there is exactly one endemic
equilibrium.

2. When R0 < 1 and RA1
> 1, there are exactly two endemic equilibria if B < 0 and

B2 − 4A1C > 0.

3. When R0 < 1 and RA1
> 1, there is one endemic equilibrium if B < 0 and

B2 − 4A1C = 0. Otherwise there are none.

Each scenario shown above is important, but there is a relevant case where there is an
equilibrium point that bifurcates into two equilibrium points. Such equilibrium solution
satisfies that B2 − 4A1C = 0 when R0 = 1 − B2

4A1((d+ϵ)Λ(b(δ+d+r)+a)) . This particular
value of R0 is denoted by R∗

0, and it is going to be fundamental in the bifurcation analysis
of the equilibria solutions.

Notice that, Rδ
0 > R0 for all a > 0. Analyzing the expression (5), if Rδ

0 < 1, then S∗ < 0.

3. Stability analysis

The centre manifolds theory allows a reduction of the dimension space where the system
can be analyzed, and the theory of the normal forms grants to associate more simple
differential equations to the system. The resulting differential equations are analyzed in
a neighborhood of the equilibrium points and their dynamical behaviors are useful to
understand the dynamics of the original system. For this purpose, for model (1), the
direction of the bifurcation in R0 = 1 will be analyzed [4, 12].

First, system (1) is translated to the origin using the changes of variables x = S − Λ
d ,

y = I, z = Q, and w = R. Because the non-linearities of model (1) make it difficult to
analyze the stability of the trivial solution of the model, the vector field associated to
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system (1) is analyzed using Taylor’s series for each equation of the translated model. It
allows to separate the linear and non-linear terms of the series as follows:

Ẋ = MX + F (X),
ρ̇ = 0,

(8)

where

X =


y(t)
x(t)
z(t)
w(t)
ρ

 , M =


0 0 0 0
−d −β 0 0
0 δ −(d+ ϵ) 0
0 r + a

b ϵ −d

 , (9)

F =


β
R0

ρy + ( a
b2 − βd

Λ )y2 + (− a
b3 + βd2

Λ2 )y3 +O(y2x, yxw, y2w, ...)
βd2y4

Λ3 − βd2(Λ−2dx−3dw)
Λ3 y3 +O(y2x, yxw, y2w, ...)

0
a
b2 y

2 + a
b3 y

3 − a
b4 y

4

 , (10)

and ρ = R0 − 1.
By using the eigenvectors associated with the linearization of model (1) in a neighborhood
of R0 = 1, the matrix T is constructed.

T =



1 0 0 0

− d
β

0 d
β

0

− dδ
(d+ϵ)β

0 dδ
β (d+ϵ−β)

− dδ
d2+2 dϵ+ϵ2−β d−β ϵ

− rbd+ad+rbϵ+aϵ+ϵ δ b
(d+ϵ)bβ

− rb+a+δ b
b(−β+d)

(rbd+ad−aβ+rbϵ+aϵ+ϵ δ b−rbβ)d
(−β+d)β (d+ϵ−β)b

dδ
d2+2 dϵ+ϵ2−β d−β ϵ

 .

The matrix T transforms the Jacobian matrix M given by (3) into the (real) Jordan
canonical form.

We calculate T−1 to transform system (1) into one simplified system

T−1 =


1 0 0 0

1 1 b(β−d)
rb+a+δb

b(β−d)
rb+a+δb

1 β
d 0 0

1 d+ϵ
d

(β−(d+ϵ))(d+ϵ)
δd 0

 . (11)

By using T−1, an adequate variable change, and algebraic simplifications, we obtain the
next differential equation on the centre manifold at the bifurcation point.

İ =
β

R0
ρI +

(
a

b2
+

(rbd+ ad+ rbϵ+ aϵ+ ϵδb)d

(d+ ϵ)bΛ
− βd

Λ

)
I2 +O(I2ρ, . . . ). (12)

The dynamics of the model is analyzed only in the last equation because the centre
manifolds acts as an attractor.
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Notice that, equation (12) is associated with the normal form

ẋ = ρx− x2 +O(x3),

which is the normal form by a transcritical bifurcation.

For the analysis, we consider the second order coefficient of the equation (12), which is
given by

h =

(
a

b2
+

(rbd+ ad+ rbϵ+ aϵ+ ϵδb)d

(d+ ϵ)bΛ
− βd

Λ

)
̸= 0. (13)

Then, a backward bifurcation is presented in model (1) when R0 = 1 if, and only if,
β > r + a

b + Λa
db2 + ϵδ

d+ϵ . Therefore, if a backward bifurcation appears, the branch of
the equilibrium point for model (1) that is emerging from R0 = 1 is given by unstable
endemic equilibrium points.

The dynamical behavior of the equilibrium points that are far from the disease-free
equilibrium is unknown because we make a local analysis around R0 = 1. To complete
the dynamical portrait of the model solutions, the next theorem will be used to describe
the stability of an endemic equilibrium that belongs to the branch of equilibrium points
associated with the backward bifurcation, which is denoted by E∗. We show that a Hopf
bifurcation may occur around E∗. In this case, both backward and Hopf bifurcation will
be occurring simultaneously.

It is known that a Hopf bifurcation arises from an equilibrium point whose stability
changes because of the crossing of a pair of complex conjugate eigenvalues over the
imaginary axis. In other words, a Hopf bifurcation in E∗ exists if: first, the characteristic
polynomial, which is associated to E0, has a pair of complex conjugate roots,

λ(µ) = λ1(µ)± λ2(µ)i, (14)

second, µ0 is a critical value such that

λ1(µ0) = 0, λ2(µ0) ̸= 0 and dλ1(µ)

dθ

∣∣∣
µ0

̸= 0, (15)

third, the remaining eigenvalues of the Jacobian matrix have non-zero real parts.

The first two Hopf conditions are very precise; however, calculating the eigenvalues asso-
ciated with the differential equation system can be very difficult. Jing and Lin [11] and
Sheng and Lin [15] provided criteria for the existence of a Hopf bifurcation. They proved
that conditions (14) and (15) can be written in terms of the coefficients ci for i = 1, .., n
of the characteristic equation

P (λ) = λn + c1(µ)λ
n−1 + · · ·+ cn(µ) = 0, (16)

which is associated with a differential equation system.

To do this, they used the so-called Hurwitz matrix of which there are n and they are
shown in the following.
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Hj =


c1 c3 c5 · · · c2j−1

1 c2 c4 · · · c2j−2

0 c1 c3 · · · c2j−3

...
...

... · · ·
...

0 0 0 · · · cj

 , j = 1, 2, ..., n. (17)

Now, we enunciate the Theorem 3 proved in [15].

Theorem 3. For (16), if the following conditions are satisfied

(i) µ = µ0is a zero of the Hurwitz determinantHn−1(µ) = 0,

(ii) Hn−2 ̸= 0,Hn−3(µ0) ̸= 0, cj(µ0) > 0, j = 1, ..., n,

(iii) dHn−1

dµ (µ0) ̸= 0.

Then the conditions (14) and (15) of the existence of the Hopf bifurcation are
satisfied.

The third condition is related to bifurcation points. So, we analyze where the equilibrium
point E∗ changes its stability.

Theorem 3.1. Let E∗ be an endemic equilibrium point for system (1). For some condi-
tions over the model parameters, a Hopf bifurcation occurs in E∗. That is, a family of
periodic solutions bifurcates from E∗.

Proof. The Routh−Hurwitz criteria mention that the endemic equilibrium point E∗ is
locally asymptotically stable if, and only if, both the coefficients ci of the characteristic
polynomial and the Hurwitz determinants Hi that are associated with the model are
positive, see [14].

By calculating the characteristic polynomial associated to the linearization of system (1)
in E∗, we obtain

P4(g) = g4 + c1g
3 + c2g

2 + c3g + c4 = 0, (18)

where

c1 = Z + T + E +G+ 2d− Y,

c2 = Ar + 2Zd− 2Y d+ 2Td+ 2Ed+ dG+ d2 − ZY + ZT +

+ ZE + ZG+Ad+ TG+Ad+ TG+ EG− EA,

c3 = ((E + T +D)G+ (r + d− E)A+ (d+ 2T + 2E − 2Y )d)Z + (19)
+ (rd+ d2 + ϵδ − Ed)A+ (T + E − Y )d2 + (T + E)Gd,

c4 = (ϵδd+ rdZ + Zd2 − dZE)A+ (dTG+ dEG+ Td2 + Ed2 − Y d2)Z,

and G = βI∗

S∗+I∗+R∗ , Y = βS∗

S∗+I∗+R∗ , A = βS∗I∗

(S∗+I∗+R∗)2 , T = ab
(b+I∗)2 , E = δ + d + r,

Z = d+ ϵ.
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For the characteristic polynomial (18), the Hurwitz determinants are given by H1 = c1,
H2 = c1c2 − c3, H3 = c1c2c3 − c21c4 − c23, and H4 = c4H3. Notice that, any of the
coefficients ci or the Hurwitz determinants Hi may be negative. Then, in this case, the
criteria are not satisfied, and the endemic equilibrium E∗ is unstable.
We will analyze numerically the Hopf conditions because the resulting expressions are al-
gebraically intractable. Notice that, the determinants Hi are functions of the parameters
of model (1). We will use the Hurwitz determinants to seek a solution of the equation
Hn−1(µ0) = 0 which is the first condition of Theorem 3. This solution will be substituted
into the other conditions of Theorem 3, and finally, we will verify that all conditions of the
Theorem 3 are satisfied. In particular, with d = 0.000039, r = 0.07, δ = 0.4, ϵ = 0.025,
Λ = 2, a = 0.001249473466, b = 0.026 and β = 0.51 the three conditions are satisfied. In
summary, there is a Hopf bifurcation for these values of the model parameters. □✓✓✓

In the next section, numerical simulations will illustrate different scenarios for the model
solutions. In particular, we show the existence of stable periodic orbits for values of the
parameters inside the Hopf curve.

4. Numerical Simulations

Numerical simulations of the solutions of the model will be shown. For this, XPPAUT
7.0 is used. In particular, the bistability phenomenon is displayed when R0 < 1. This
bistability phenomenon is given either by a periodic orbit and the disease-free equilibrium
or by an endemic equilibrium and the disease-free equilibrium.
The values of the parameters used in the last section correspond to the average life
time 1

d = 70.25 years, the average infectious period of approximately 1
r = 1

0.07 , that is
equivalent to 2 weeks, the period of 1

δ = 1
0.4 = 2.5 days before an infectious the individual

is isolated and the isolation period of 1
ϵ = 40 days.

First, we show a scenario, for model (1), with a backward bifurcation in R0 = 1 without
the bistability phenomenon. For this, scenario, Λ = 2, a = 0.001249473466, b = 0.026
and β = 0.51. With these values of the parameters R0 = 0.9843741757 and
Rδ

0 = 1.085016350. Figure 3 shows this scenario. Observe that, the typical behavior of
the solutions when R0 belongs to the region I of Figure 2 B) is that solutions go to the
disease-free equilibrium.

In the second place, we show a scenario where a stable limit cycle exists for R0 > 1 (see
Figure 2 B), region II). In this case, the equilibrium point E∗ belongs to the branch of the
endemic equilibrium points that arises from a backward bifurcation in R0 = 1. Figure
4 shows the behavior of the infectious class for different values of the infection rate. In
this case, we only vary β. β = 4, 5, 6.9, 10, for which R0 is 7.72, 9.65, 13.32, 19.30 and Rδ

is 8.5, 10.64, 14.68, 21.27, respectively.
Once that a stable limit cycle exists, it can be destroyed when R0 increases (see Figure
2 Region III). Figure 5 shows the stabilizing effect of the rate a over the oscillations of
the solutions of model (1). In this example, β = 6.9 and a = 0.001, 0.0012, 0.00125. For
these parameters values, R0 = 13.57, 13.37, 13.33, respectively. The value of the other
model parameters is the same as the above case.
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Figure 3. The behavior of the solutions of model (1) with different initial conditions and R∗
0 < R0 < 1.

In this case, two unstable endemic equilibria exist, which are saddle node points. Also, the disease-free
equilibrium is locally asymptotically stable.

Figure 4. Existence of a limit cycle for model (1). The size of the period and the amplitude of the
solution are reduced when β is increasing.

Figure 5. The amplitude of the limit cycle is decreasing as a function of the cure rate a.
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188 Osuna Osvaldo & Geiser Villavicencio-Pulido

Figure 6. Backward bifurcation in R0 = 1 and Hopf bifurcation when R0 < 1. Case A) shows that the
non-trivial equilibria solutions are unstable. In this case, the bistability phenomenon does not appear.
In this case, the solutions go to the disease-free equilibrium. Case B) shows that the infectious disease
persists in a periodic orbit. In this case, the bistability phenomenon appears. Case C) R0 < 1 shows the
classical backward bifurcation. In this case, the endemic equilibrium is locally asymptotically stable.

Finally, we show a scenario with both a backward bifurcation in R0 = 1 and a stable
limit cycle when R0 < 1; see Figure 6 B). In this scenario, the bistability phenomenon
occurs. For this example, the values of the parameters are given by β = 17, b = 0.026, δ =
6, ϵ = 0.025, d = 0.8, r = 0.04,Λ = 2, a = 0.4528. For these values of the parameters
R0 = 0.70087 and Rδ

0 = 2.485380117. In particular, Figure 6 shows how the values
of a affects the stability of the endemic equilibrium in E∗. In this case, we only vary
a = 0.4535, 0.4528, 0.4510. For these values of a, R0 = 0.700098, 0.70087, 0.7028.
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5. Discussion

Knowing the impact that public health strategies have on a population is a paramount
objective in mathematical epidemiology. There are so many epidemic models that explore
the behavior of the solutions when a unique public health strategy is used a control
intervention; in contrast, in the mathematical epidemiology literature, there are very
few epidemic models that explore the effect due to two different public health strategies
acting simultaneously in a community.

The model analysis shows that the simultaneous application of two control interventions
has a great impact on the evolution of the disease. In particular, it is easier to bring R0

below 1 using both control strategies because R0 decreases as a function of the number
of isolated or treated individuals. However, the application of two strategies to decrease
the number of infectious individuals does not preclude the possibility there exist multiple
endemic equilibriums for R0 < 1 and sustained oscillations in the number of infectious
individuals for R0 > 1. In contrast, both phenomena can coexist for some values of the
parameters of the model.

In particular, the simultaneous application of treatment and isolation of infectious indi-
viduals can show three plausible scenarios if a backward bifurcation exists. In the former
case, the number of infectious individuals goes to the disease-free equilibrium for all ini-
tial conditions. This is the result expected by decision-makers. In the second case, the
number of infectious individuals goes to the disease-free equilibrium or to the endemic
equilibrium. This scenario is the classical bistability phenomenon. In this case, if the
solutions of the model go to zero or nontrivial equilibrium depends on the initial condi-
tions. Finally, depending on the initial conditions, the number of infectious individuals
goes to the disease-free equilibrium or goes to one stable periodic solution. In particular,
sustained oscillations can appear even though R0 > 1. In this scenario, the Hopf bifur-
cation appears in the upper branch of the backward bifurcation. This periodic orbit can
be destroyed for some values of the parameters.

In summary, the simultaneous application of treatment and isolation of infectious indi-
viduals can lead to catastrophic scenarios even though, intuitively, we think that applying
two strategies are better than applying just one.

Acknowledgment: The authors would like to thank the anonymous referees for their
helpful comments.
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