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La ecuación logística de múltiples sitios con migración
asimétrica

Resumen. Este artículo es un seguimiento de un trabajo anterior, donde con-
sideramos un modelo de múltiples parches, cada parche siguiendo una ley
logística, los sitios estando relacionados por términos de migración simétrica.
En este artículo eliminamos la hipótesis de simetría. Primero, en el caso de
una mezcla perfecta, es decir, cuando la tasa de migración tiende al infinito,
la población total sigue una ley logística con una capacidad de carga que en
general es diferente de la suma de las capacidades de carga de los sitios, y
depende de los términos de migración. En segundo lugar, determinamos, en
algunos casos particulares, las condiciones bajo las cuales la fragmentación
y la migración asimétrica pueden llevar a una población total de equilibrio
mayor o menor que la suma de las capacidades de carga. Finalmente, para
el modelo de tres sitios, mostramos numéricamente la existencia de al menos
tres valores críticos de la tasa de migración para los cuales la población total
de equilibrio es igual a la suma de las capacidades de carga.

Palabras clave: Dinámica de población, migración asimétrica, ecuación logís-
tica, sistemas lentos y rápidos, mezcla perfecta.

1. Introduction

The study of the dynamics of a fragmented population is fundamental in theoretical
ecology, with potentially very important applied aspects: what is the effect of migration
on the general population dynamics? What are the consequences of fragmentation on
the persistence or extinction of the population? When is a single large refuge better or
worse than several small ones (this is known as the SLOSS debate; see Hanski [19])?

The theoretical paradigm that has been used to treat these questions is that of a single
population fragmented into patches coupled by migration, and the sub-population in
each patch follows a local logistic law. This system is modeled by a non-linear system of
differential equations of the following form:

dx

dt
= f(x) + βΓx, (1)

where x = (x1, . . . , xn)
T , n is the number of patches in the system, xi represents the

population density in the i-th patch, f(x) = (f1(x1), . . . , fn(xn))
T , and

fi(xi) = rixi(1− xi/Ki), i = 1, . . . n. (2)

The parameters ri and Ki are respectively the intrinsic growth rate and the carrying
capacity of patch i.

The term βΓx on the right hand side of the system (1) describes the effect of the mi-
gration between the patches, where β is the migration rate and Γ = (γij) is the matrix
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The multi-patch logistic equation with asymmetric migration 27

representing the migrations between the patches. For i ̸= j, γij > 0 denotes the incoming
flux from patch j to patch i. If γij = 0, there is no migration. The diagonal entries of Γ
satisfy the following equation

γii = −
n∑

j=1,j ̸=i

γji, i = 1, · · · , n, (3)

which means that what comes out of a patch is distributed between the other n − 1
patches.

In the absence of migration, (β = 0), the system (1) admits (K1, . . . ,Kn) as a non-trivial
equilibrium point. This equilibrium is globally asymptotically stable (GAS) and the total
population at equilibrium is equal to the sum of the carrying capacities. The problem
is whether or not the equilibrium continues to be positive and GAS, for any β > 0, and
whether or not the total population at equilibrium can be greater than the sum of the
carrying capacities. The case n = 2 and Γ symmetric

Γ =

[
−1 1
1 −1

]
,

where γ12 = γ21 is normalized to 1 has been considered by Freedman and Waltman [14]
and Holt [18]. They analyzed the model in the case of perfect mixing (β → +∞) and
showed that the total equilibrium population can be greater than the sum of the carrying
capacities K1 + K2, so that patchiness has a beneficial effect on the total equilibrium
population. More recently, Arditi et al. [1] analyzed the behaviour of the system for
all values of β. They showed that only three situations occur: either for any β > 0,
patchiness has a beneficial effect, or this effect is always detrimental, or the effect is
beneficial for lower values of the migration coefficient β and detrimental for higher values.
Arditi et al. [2] extended these results to the case of two patches coupled by asymmetric
migration, corresponding to the matrix

Γ =

[
−γ21 γ12
γ21 −γ12

]
.

See also Poggiale et al. [25] who considered two patches coupled by asymmetric migration,
in the particular case of perfect mixing. DeAngelis et al. [8, 11] considered the case of
n > 2 patches in a circle, with symmetric migration between any patch and its two
neighbours :

dxi

dt
= rixi

(
1− xi

Ki

)
+ β(xi−1 − 2xi + xi+1), i = 1, . . . , n, (4)

where we denote x0 = xn and xn+1 = x1, so that the same relationships hold between xi,
xi−1 and xi+1 for all values of i. This model corresponds to the matrix Γ whose non-zero
off-diagonal elements are given by

γ1n = γn1 = 1 and γi,i−1 = γi−1,i = 1, for 2 ≤ i ≤ n.

The system (4) is a one-dimensional discrete-patch version of the standard reaction-
diffusion model. In [8, 11] the perfect mixing case is described.
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In [12] we considered the general symmetric migration. We studied the system:

dxi

dt
= rixi

(
1− xi

Ki

)
+ β

n∑

j=1,j ̸=i

γij(xj − xi), i = 1, . . . , n, (5)

where βγij is the rate of migration between patches i and j. This system can be written
in the form of System (1) with Γ = (γij), the symmetric matrix whose diagonal entries
are defined by (3). We studied the total population at equilibrium, as a function of
the migration rate β. We gave conditions on the system parameters that ensure that
migration is beneficial or detrimental, and extended several results of [1, 8, 11].

The aim of this work is to consider the case of n patches connected by asymmetric
migration. Thus, we extend [2] by considering the case n ≥ 2, and we extend [12] by
considering the case where Γ is non-symmetric.

An important extension of (1) is the so called source-sink model, where the patches are of
two types: the source patches, 1 ≤ i ≤ m, with logistic dynamics, and the sink patches,
m+ 1 ≤ i ≤ n, with exponential decay

{
fi(xi) = rixi(1− xi/Ki), i = 1, . . . ,m,
fi(xi) = −rixi, i = m+ 1, . . . , n.

(6)

The main problem is the number of source patches required for population persistence.
For a recent study and bibliographical references the reader can consult Arino et al. [3]
and Wu et al. [30].

There is another important extension of (1,2), where the dynamics on patch i is of the
form

fi(xi) = rixi(1− xi/Ki)− γixi, i = 1, . . . , n, (7)

with γi > 0. This model is the limit system (when t → +∞) of a susceptible-infected-
susceptible (SIS) model in n patches connected by human migration. For details and
further reading, see Section 5. Note that, when ri < γi for some patches, system (1,7) is
a source-sink model. Countrary to (6), the mortality in sink patch is density-dependent.
For more details and bibliographical references the reader is referred to [15].

Another example of source-sink model is the system considered by Nagahara et al. [24],
called the “island chain” model, which is of the form:

dxi

dt
= xi (mi − xi) + β(xi−1 − 2xi + xi+1), i = 1, . . . , n, (8)

where we denote x0 = x1 and xn+1 = xn. This model is of the form (1), Γ being the
matrix which verifies (3), and whose non-zero off-diagonal elements are given by

γi,i−1 = γi−1,i = 1, for 2 ≤ i ≤ n.

In the model (8) the ratios αi = ri/Ki in (2) are equal and are normalized to 1. The
constant mi represents both the intrinsic growth rate of the species in patch i and the
carrying capacity of the patch. If mi > 0, then patch i is favorable to the species. It is
a source. The case mi = 0 is permitted and corresponds to a sink. The main purpose
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The multi-patch logistic equation with asymmetric migration 29

is to find the resource allocation (m1, ...,mn) that maximizes the total population at
equilibrium, under the constraint that

∑
i mi = m > 0 is fixed. For more details and

information on the maximization of the total population with logistic growth in a patchy
environment, the reader is referred to [24] and the references therein.

For general information of the effects of patchiness and migration in both continuous and
discrete cases, and the results beyond the logistic model, the reader is referred to the
work of Levin [20, 21], DeAngelis et al. [8, 9, 10, 11], Freedman et al. [13], Zaker et al.
[33].

It is worth noting that System (1) appears in metapopulation dynamics, involving explicit
movements of the individuals between distinct locations. For the graph theoretic and
dynamical system context in which metapopulation models are formulated, the reader is
referred to Arino [4, Section 2].

The paper is organized as follows. In Section 2, the mathematical model of n patches,
and some preliminaries results, are introduced. In Section 3, the behavior of the model
is studied when the migration rate tends to infinity. In Section 4, we compare the
total equilibrium population with the sum of the carrying capacities in some particular
cases. In Section 5, the SIS patch model is considered, and the links with the logistic
patch model are investigated. In Section 6 the three-patch model is considered, and by
numerical simulations we show the existence of a new behavior for the dynamics of the
total equilibrium population as a function of the migration rate. In Appendix A, we
recall some results for the two-patch model with asymmetrical migration. In Appendix
B, we prove some useful auxiliary results.

2. The mathematical model and preliminaries results

We consider the model of multi-patch logistic growth, coupled by asymmetric migration
terms

dxi

dt
= rixi

(
1− xi

Ki

)
+ β

n∑

j=1,j ̸=i

(γijxj − γjixi) , i = 1, · · · , n, (9)

where γij ≥ 0 denotes the incoming flux from patch j to patch i, for i ̸= j. The system
(9) can be written in the form (1), where f is given by:

f(x) = (r1x1(1− x1/K1), · · · , rnxn(1− xn/Kn))
T
, (10)

and Γ := (γij)n×n is the matrix whose diagonal entries are given by (3). The matrix

Γ0 := Γ− diag(γ11, · · · , γnn),

which is the same as Γ, except that the diagonal elements are 0, is called the connectivity
matrix. It is the adjacency matrix of the weighted directed graph G, which has exactly
n vertices (the patches), and has an arrow from patch j to patch i, with weight γij ,
precisely when γij > 0.

As to the non-negativity of the solution, we have the following proposition:

Proposition 2.1. The domain Rn
+ = {(x1, . . . , xn) ∈ Rn/xi ≥ 0, i = 1, . . . , n} is positively

invariant for the system (9).
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Proof. The proof is the same as in the symmetrical case [12, Proposition 2.1]. □✓✓✓

When the connectivity matrix Γ0 is irreducible, System (9) admits a unique positive
equilibrium (x∗

1(β), . . . , x
∗
n(β)), which is GAS, see [4, Theorem 2.2], [3, Theorem 1] or

[12, Theorem 6.1]. In all of this work, we denote by E∗(β) the positive equilibrium and
by X∗

T (β) the total population at equilibrium:

E∗(β) = (x∗
1(β), . . . , x

∗
n(β)), X∗

T (β) =

n∑

i=1

x∗
i (β). (11)

Remark 2.2. The matrix Γ0 being irreducible means that the weighted directed graph G
is strongly connected, which means that every patch is reachable from every other patch,
either directly or through other patches. The matrix Γ is assumed to be irreducible
throughout the rest of the paper.

3. Perfect mixing

In this section our aim is to study the behavior of E∗(β) and X∗
T (β), defined by (11), for

large migration rate, i.e when β → ∞.

3.1. The fast dispersal limit

The following lemma was proved in [3, Lemma 2]; we include a proof for the ease of the
reader.

Lemma 3.1. Let Γ be the migration matrix. Then, 0 is a simple eigenvalue of Γ and all
non-zero eigenvalues of Γ have negative real part. Moreover, the kernel of the matrix Γ
is generated by a positive vector. If the matrix Γ is symmetric, then ker Γ is generated
by u = (1, ..., 1)T .

Proof. Let s = maxi=1,...,n(−γii) and let B be the matrix defined by

B = Γ + sI.

First, we note that since the matrix Γ verifies the property (3), then Γ is a singular
matrix and the vector u = (1, ..., 1)T is an eigenvector of ΓT associated to the eigenvalue
0. Thus u is an eigenvector of BT , with eigenvalue s.

The matrix BT is non-negative and irreducible, so by the Perron-Frobenius Theorem the
spectral radius

ρ(BT ) = max
{
|λ| : λ is an eigenvalue of BT

}
,

is a simple eigenvalue of the matrix BT and it is the only eigenvalue of BT which admits
a positive eigenvector, so s = ρ(BT ) = ρ(B). Therefore, Γ = B−ρ(B)I and dim(ker Γ) =
dim(ker ΓT ) = 1.

All other eigenvalues of B have modulus < ρ(B), so their real parts are < ρ(B). Since
each eigenvalue of Γ is λ − ρ(B), for some eigenvalue λ of B, all eigenvalues of Γ have
negative real part.
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Furthermore, according to the Perron-Frobenius theorem, there exists a positive vector
δ such that Bδ = ρ(B)δ, that is, Γδ = (B − ρ(B)I)δ = 0. In particular, if the matrix Γ
is symmetric then we may take δ = u, that is, δi = 1, for all i. □✓✓✓

In all of this paper, we denote by δ = (δ1, . . . , δn)
T a positive vector which generates the

vector space ker Γ.

Remark 3.2. The existence, uniqueness (mod. multiplicative factor), and positivity of δ
were also proved in Lemma 1 of Cosner et al. [5]. On the other hand, it is shown in Guo et
al. [17, Lemma 2.1] and Gao and Dong [16, Lemma 3.1] that the vector (Γ∗

11, . . . ,Γ
∗
nn)

T

is a right eigenvector of Γ associated with the zero eigenvalue. Here, Γ∗
ii is the cofactor

of the i-th diagonal entry of Γ. Therefore, we have explicit formulae for the components
of the vector δ, as functions of the coefficients of Γ, at our disposal. For two patches we
have δ = (γ12, γ21)

T , and for three patches we have δ = (δ1, δ2, δ3)
T , where





δ1 = γ12γ13 + γ12γ23 + γ32γ13,
δ2 = γ21γ13 + γ21γ23 + γ31γ23,
δ3 = γ21γ32 + γ31γ12 + γ31γ32.

(12)

The following result asserts that when β → ∞, the equilibrium E∗(β) converges to an
element of ker Γ.

Theorem 3.3. For the system (9), we have

lim
β→+∞

E∗(β) =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

(δ1, . . . , δn) ,

where αi = ri/Ki.

Proof. Denote

E∗(∞) =

(
δ1

∑n
i=1 δiri∑n
i=1 δ

2
i αi

, . . . , δn

∑n
i=1 δiri∑n
i=1 δ

2
i αi

)
.

Dividing Equation 1 at the equilibrium E∗(β) by β, for β > 0, yields

for all β > 0,
1

β
f(E∗(β)) + ΓE∗(β) = 0.

Thus any limit point, when β → ∞, of the set {E∗(β) : β > 0} lies in the kernel of Γ.
Now, taking the sum of all equations in

rixi

(
1− xi

Ki

)
+ β

n∑

j=1,j ̸=i

(γijxj − γjixi) = 0, i = 1, · · · , n,

we see that E∗(β) lies in the ellipsoid

En−1 =

{
x ∈ Rn : Θ(x) :=

n∑

i=1

rixi

(
1− xi

Ki

)
= 0

}
.
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The ellipsoid En−1 is compact, so the equilibrium E∗(β) has at least one limit point in
En−1, when β goes to infinity. Since the kernel of Γ has dimension 1, and En−1 is the
boundary of a convex set, En−1 ∩ ker Γ consists of at most two points. Since the origin
and E∗(∞) both lie in En−1 ∩ ker Γ, we get that

En−1 ∩ ker Γ = {0, E∗(∞)} .

Therefore, to prove the convergence of E∗(β) to E∗(∞), it suffices to prove that the
origin cannot be a limit point of E∗(β). We claim that for any β, there exists i such that
x∗
i (β) ≥ Ki, which entails that E∗(β) is bounded away from the origin. The coordinates

of the vector ΓE∗(β) sum to zero, hence at least one of them, say, the i-th, is non-negative.
Then

rix
∗
i (β)

(
1− x∗

i (β)

Ki

)
≤ 0,

and since x∗
i (β) cannot be negative or 0, we have x∗

i (β) ≥ Ki. □✓✓✓

As a corollary of the previous theorem, we obtain the following result, which describes
the total equilibrium population for perfect mixing:

Proposition 3.4. We have

X∗
T (+∞) = lim

β→+∞

n∑

i=1

x∗
i (β) =

(
n∑

i=1

δi

) ∑n
i=1 δiri∑n
i=1 δ

2
i αi

. (13)

Denote K = (K1, . . . ,Kn)
T . If K = λδ with λ > 0, that is to say K ∈ ker Γ, then

X∗
T (+∞) = λ

∑n
i=1 δi =

∑n
i=1 Ki.

Proof. For the proof of (13), it suffices to sum the n components of the point E∗(∞).
For the case K ∈ ker Γ, it suffices to replace Ki by λδi in (13). □✓✓✓

Actually, when K ∈ ker Γ, we have X∗
T (β) =

∑
i Ki for all β > 0, see Proposition 4.5.

In the case n = 2, one has δ1 = γ12 and δ2 = γ21, as shown in Remark 3.2. Therefore,
(13) becomes

X∗
T (+∞) = (γ12 + γ21)

γ12r1 + γ21r2
γ2
12α1 + γ2

21α2
,

which is the formula given by Arditi et al. [2, Equation 7] and by Poggiale et al. [25,
page 362].

If the matrix Γ is symmetric, one has δi = 1, for all i, as shown in Lemma 3.1. Therefore,
(13) specializes to the formula given in [12, Equation (24)]:

X∗
T (+∞) = n

∑n
i=1 ri∑n

i=1 ri/Ki
.
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3.2. Two time scale dynamics

In [12] we also obtained the formula (13), in the symmetrical n-patch case (i.e the matrix
Γ is symmetric), by using singular perturbation theory, see [12, Theorem 4.6].

We showed that, if (x1(t, β), . . . , xn(t, β)) is the solution of (5), with initial condition
(x0

1, . . . , x
0
n), then, when β → ∞, the total population

∑
xi(t, β) is approximated by

X(t), the solution of the logistic equation

dX

dt
= rX

(
1− X

nK

)
, where r =

∑n
i=1 ri
n

, K =

∑n
i=1 ri∑n
i=1 αi

and αi =
ri
Ki

, (14)

with initial condition X0 =
∑

x0
i . Therefore, the total population behaves like the

solution of the logistic equation given by (14). In addition, one obtains the following
property: with the exception of a small initial interval, the population densities xi(t, β)
are approximated by X(t)/n, see [12, Formula (37)]. Therefore, this approximation shows
that, when t and β tend to ∞, the population density xi(t, β) tends toward

∑
ri∑
αi

, and
in addition, xi(t, β) quickly jumps from its initial condition x0

i to the average X0/n and
then is very close to X(t)/n. Our aim is to generalize this result for the asymmetrical
n-patch model (9) (i.e the matrix Γ is non-symmetric). To avoid any confusion with
X(t), which is the total population, we denote Y (t) the solution of the logistic equation
(15), and we prove that X(t) is asymptotically equivalent, when β goes to infinity, to
Y (t). We have the following result

Theorem 3.5. Let (x1(t, β), . . . , xn(t, β)) be the solution of the system (9) with initial
condition (x0

1, · · · , x0
n) satisfying x0

i ≥ 0 for i = 1 · · ·n. Let Y (t) be the solution of the
logistic equation

dX

dt
= rX

(
1− X

[
∑n

i=1 δi]K

)
, (15)

where

r =

∑n
i=1 δiri∑n
i=1 δi

,K =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

and αi =
ri
Ki

, (16)

with initial condition X0 =
∑n

i=1 x
0
i . Then, when β → ∞, we have

n∑

i=1

xi(t, β) = Y (t) + o(1), uniformly for t ∈ [0,+∞) (17)

and, for any t0 > 0, we have

xi(t, β) =
δi∑n
i=1 δi

Y (t) + o(1), i = 1, . . . , n, uniformly for t ∈ [t0,+∞). (18)

Proof. Let X(t, β) =
∑n

i=1 xi(t, β). We rewrite the system (9) using the variables
(X,x1, · · · , xn−1), and get:





dX

dt
=

n∑

i=1

rixi

(
1− xi

Ki

)
,

dxi

dt
= rixi

(
1− xi

Ki

)
+ β

n∑

j=1,j ̸=i

(γijxj − γjixi), i = 1, · · · , n− 1.

(19)
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This system is actually a system in the variables (X,x1, · · · , xn−1), since, whenever xn

appears in the right hand side of (19), it should be replaced by

xn = X −
n−1∑

i=1

xi. (20)

When β → ∞, (19) is a slow-fast system, with one slow variable, X, and n − 1 fast
variables, xi for i = 1 · · ·n − 1. As suggested by Tikhonov’s Theorem [22, 28, 31], we
consider the dynamics of the fast variables in the time scale τ = βt. We get

dxi

dτ
=

1

β
rixi

(
1− xi

Ki

)
+

n∑

j=1,j ̸=i

(γijxj − γjixi), i = 1, · · · , n− 1.

where xn is given by (20). In the limit β → ∞, we find the fast dynamics

dxi

dτ
=

n∑

j=1,j ̸=i

(γijxj − γjixi), i = 1, · · · , n− 1.

This is an (n − 1)-dimensional linear differential system in the variable Z :=
(x1, · · · , xn−1), which can be rewritten in matricial form:

Ż = LZ +XV, with L := L− U, (21)

where L := (γij)n−1×n−1 is the sub matrix of the matrix Γ, obtained by dropping the
last row and the last column of Γ, V is the vector defined by V := (γin)n−1×1 and
U = (V ; . . . ;V ).

By Lemma B.1, the matrix L is stable, that is, all of its eigenvalues have negative real
part. Therefore, it is invertible and the equilibrium of the system (21) is GAS. This
equilibrium is given by (

δ1∑n
i=1 δi

X, . . . ,
δn−1∑n
i=1 δi

X

)T

.

Indeed, we denote by L(i), U (i) and V (i) the i-th row of the matrix L,U and the vector
V respectively. We have:

δn∑n
i=1 δi

(
L(i) − U (i)

)( δ1
δn

X . . .
δn−1

δn
X

)T

= − δn∑n
i=1 δi

Xγin −
∑n−1

i=1 δi∑n
i=1 δi

Xγin

= −Xγin = −XV (i).

Thus, the slow manifold of System (19) is given by

xi =
δi∑n
i=1 δi

X, i = 1, . . . , n− 1. (22)

As this manifold is GAS, Tikhonov’s Theorem ensures that after a fast transition toward
the slow manifold, the solutions of (19) are approximated by the solutions of the reduced
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model, which is obtained by replacing (22) into the dynamics of the slow variable, that
is:

dX

dt
=

n∑

i=1

ri
X∑n
i=1 δi

δi

(
1− X

(
∑n

i=1 δi)Ki
δi

)
= rX

(
1− X

(
∑n

i=1 δi)K

)
,

where r and K are defined in (16). Therefore, the reduced model is (15). Since (15)
admits

X∗ =

(
n∑

i=1

δi

)
K =

(
n∑

i=1

δi

) ∑n
i=1 δiri∑n
i=1 δ

2
i αi

as a positive equilibrium point, which is GAS in the positive axis, the approximation given
by Tikhonov’s Theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for
the fast variables, where t0 is as small as we want. Therefore, letting Y (t) be the solution
of the reduced model (15) with initial condition Y (0) = X(0, β) =

∑n
i=1 x

0
i , then, when

β → ∞, we have the approximations (17) and (18). □✓✓✓

In the case of perfect mixing, the approximation (17) shows that the total population
behaves like the solution of the single logistic equation (16) and then, when t and β tend
to ∞, the total population

∑
xi(t, β) tends toward (

∑n
i=1 δi)K = (

∑n
i=1 δi)

∑
δiri∑
δ2iαi

as
stated in Proposition 3.4. The approximation (18) shows that, with the exception of a
thin initial boundary layer, where the population density xi(t, β) quickly jumps from its
initial condition x0

i to δiX0/
∑n

i=1 δi, each patch of the n-patch model behaves like the
logistic equation

du

dt
= ru

(
1− u

δiK

)
where r =

∑n
i=1 δiri∑n
i=1 δi

, K =

∑n
i=1 δiri∑n
i=1 δ

2
i αi

, αi =
ri
Ki

. (23)

Hence, when t and β tend to ∞, the population density xi(t, β) tends toward δi
∑

δiri∑
δ2iαi

,
as stated in Theorem 3.3.

Remark 3.6. The single logistic equation (23) gives an approximation of the population
density in each patch in the case of perfect mixing. The intrinsic growth rate r in (23) is
the arithmetic mean of the r1, . . . , rn, weighted by δ1, . . . , δn, and the carrying capacity K
is the harmonic mean of Ki/δi, weighted by δiri, i = 1, . . . , n. We point out the similarity
between our expression for the carrying capacity in the limit β → ∞, and the expression
obtained in spatial homogenization, see e.g [32, Formula 81] and also [33, Formula 28].

3.3. Comparison of X∗
T (+∞) with

∑
i Ki.

According to Formula (13), it is clear that the total equilibrium population at β = 0 and
at β = +∞ are different in general.

In the remainder of this section, we give some conditions, in the space of parameters
ri,Ki, αi and δi, for limit of the total equilibrium population when β → ∞ to be greater
or smaller than the sum of the carrying capacities. We show that all three cases are
possible, i.e X∗

T (+∞) can be greater than, smaller than, or equal to X∗
T (0). First, we

start by giving some particular values of the parameters for which equality holds.
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Proposition 3.7. Consider the system (9). If the vector
(

1
α1

, . . . , 1
αn

)T
lies in ker Γ, then

X∗
T (+∞) =

∑
i Ki.

Proof. It is a direct consequence of the Equation (13). □✓✓✓

Note that, if the matrix Γ is symmetric, then by Lemma 3.1, Proposition 3.7 says that
if all αi are equal, then X∗

T (∞) =
∑

i Ki, which is [12, Proposition 4.4].

In the next proposition, we give two cases which ensure that X∗
T (0) can be greater or

smaller than X∗
T (+∞). This result can be stated as the following proposition:

Proposition 3.8. Consider the system (9).

1. If
K1

δ1
≤ . . . ≤ Kn

δn
and δ1α1 ≤ . . . ≤ δnαn, or if

K1

δ1
≥ . . . ≥ Kn

δn
and δ1α1 ≥ . . . ≥

δnαn, then X∗
T (+∞) ≥ X∗

T (0).

2. If
K1

δ1
≥ . . . ≥ Kn

δn
and δ1α1 ≤ . . . ≤ δnαn, or if

K1

δ1
≤ . . . ≤ Kn

δn
and δ1α1 ≥ . . . ≥

δnαn, then X∗
T (+∞) ≤ X∗

T (0).

In both items, if at least one of the inequalities in
K1

δ1
≤ . . . ≤ Kn

δn
or

K1

δ1
≥ . . . ≥ Kn

δn
is strict, then the inequality is strict in the conclusion.

Proof. Apply Lemma B.2 with the following choice: wi = δi, ui =
Ki

δi
, and vi = δiαi,

for all i = 1, . . . , n. □✓✓✓

If the matrix Γ is symmetric, one has δi = 1, for all i, as shown in Lemma 3.1. Therefore
Proposition 3.8 becomes

Corollary 3.9. Consider the system (9). Assume that Γ is symmetric.

1. If K1 ≤ . . . ≤ Kn and α1 ≤ . . . ≤ αn, or if K1 ≥ . . . ≥ Kn and α1 ≥ . . . ≥ αn,
then X∗

T (+∞) ≥ X∗
T (0).

2. If K1 ≥ . . . ≥ Kn and α1 ≤ . . . ≤ αn, or if K1 ≤ . . . ≤ Kn and α1 ≥ . . . ≥ αn,
then X∗

T (+∞) ≤ X∗
T (0).

This result implies Items 1 and 2 of [10, Theorem B.1], which were obtained for the
model (4) in the particular case ri = Ki.

4. Influence of asymmetric dispersal on total population size

In this section, we will compare, in some particular cases of the System (9), the total
equilibrium population X∗

T (β) = x∗
1(β)+ . . .+x∗

n(β), with the sum of carrying capacities
denoted by X∗

T (0) = K1 + . . . + Kn, when the rate of migration β varies from zero to
infinity. We show that the total equilibrium population, X∗

T (β), is generally different
from the sum of the carrying capacities X∗

T (0). Depending on the local parameters of
the patches and the kernel of the matrix Γ, X∗

T (β) can either be greater than, smaller
than, or equal to the sum of the carrying capacities.
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4.1. Asymmetric dispersal may be unfavorable to the total equilibrium population

When Γ is symmetric, we have already proved that if all the growth rates are equal then
dispersal is always unfavorable to the total equilibrium population, see [12, Proposition
3.1]. We also noticed that the result still holds in the general case when Γ is not necessarily
symmetric, see [12, Proposition 6.2]. Hence we have the following

Proposition 4.1. If r1 = . . . = rn then

X∗
T (β) =

n∑

i=1

x∗
i (β) ≤

n∑

i=1

Ki, for all β ≥ 0.

For a two-patch logistic model, this result has been proved by Arditi et al. [1, Proposition
2, item 3] for symmetric dispersal and for asymmetric dispersal [2, Proposition 1, item
3].

4.2. Asymmetric dispersal may be favorable to the total equilibrium population

In this section, we give a situation where the dispersal is favorable to the total equilibrium
population. Mathematically speaking:

Proposition 4.2. Assume that for all j < i, αiγij = αjγji. Then

X∗
T (β) ≥

n∑

i=1

Ki for all β ≥ 0.

Moreover, if there exist i0 and j0 ̸= i0 such that ri0 ̸= rj0 , then X∗
T (β) >

∑n
i=1 Ki, for

all β > 0.

Proof. The equilibrium point E∗(β) satisfies the system

0 = αix
∗
i (β) (Ki − x∗

i (β)) + β

n∑

j=1,j ̸=i

(γijx
∗
j (β)− γjix

∗
i (β)), i = 1 · · ·n. (24)

Dividing (24) by αix
∗
i , one obtains

x∗
i (β) = Ki + β

n∑

j=1,j ̸=i

γijx
∗
j (β)− γjix

∗
i (β)

αix∗
i (β)

.

Taking the sum of these expressions shows that the total equilibrium population X∗
T

satisfies the following relation:

X∗
T (β) =

n∑

i=1

Ki + β

n∑

i=1

n∑

j=1,j ̸=i

γijx
∗
j (β)− γjix

∗
i (β)

αix∗
i (β)

=

n∑

i=1

Ki + β
∑

j<i

(
γijx

∗
j (β)− γjix

∗
i (β)

αix∗
i (β)

+
γjix

∗
i (β)− γijx

∗
j (β)

αjx∗
j (β)

)

=

n∑

i=1

Ki + β
∑

j<i

(
γijx

∗
j (β)− γjix

∗
i (β)

) (
αjx

∗
j (β)− αix

∗
i (β)

)

αjαix∗
j (β)x

∗
i (β)

. (25)
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The conditions αiγij = αjγji can be written κij := αi/γji = αj/γij for all j < i, such
that γij ̸= 0 and γji ̸= 0. Therefore, there exists κij > 0 such that

αj = κijγij and αi = κijγji for all i, j with γij ̸= 0 and γji ̸= 0.

Replacing αi and αj in (25), one obtains

X∗
T (β) =

n∑

i=1

Ki + β
∑

j<i

κij

(
γijx

∗
j (β)− γjix

∗
i (β)

)2

αjαix∗
j (β)x

∗
i (β)

≥
n∑

i=1

Ki. (26)

Equality holds if and only if β = 0 or γijx
∗
j (β) − γjix

∗
i (β) = 0, for all i and j. Let us

prove that if at least two patches have different growth rates, then equality cannot hold
for β > 0. Suppose that there exists β∗ > 0 such that the positive equilibrium satisfies

∀i, j, γijx
∗
j (β

∗) = γjix
∗
i (β

∗). (27)

Replacing the Equation (27) in the system (24), we get that x∗
i (β

∗) = Ki, for all i.
Therefore, from (27), it is seen that, for all i and j, Kjγij = Kiγji. From these equations
and the conditions αiγij = αjγji, we get ri = rj , for all i and j. This is a contradiction
with the hypothesis that there exist two patches with different growth rates. Hence the
equality in (26) holds if and only if β = 0. □✓✓✓

When the matrix Γ is irreducible and symmetric, the hypothesis of Proposition 4.2 implies
that αi = αj for all i and j. Indeed if two patches i and j are connected (i.e γij = γji ̸= 0),
then we have αi = αj . As the matrix Γ is irreducible, for two arbitrary patches, there
exists a finite sequence (i, . . . , j) which begins in i and ends in j, such that γab ̸= 0 for
all successive patches a and b in (i, . . . , j). Hence αa = αb for all a and b in (i, . . . , j).
Hence, αi = αj . So, when the matrix Γ is symmetric, Proposition 4.2 says that if all αi

are equal, dispersal enhances population growth, which is [12, Proposition 3.3].

Note that, when n = 2, Proposition 4.2 asserts that if α2/α1 = γ12/γ21, then X∗
T (β) >

K1+K2, which is a result of Arditi et al. [2, Proposition 2, item b]. See also Proposition
A.1, and note that the condition α2/α1 = γ12/γ21 implies that (γ12, γ21) ∈ J0.

For three patches or more, if the matrix Γ does not verify the condition (∀i, j, γij = 0 ⇐⇒
γji = 0), then the hypothesis of Proposition 4.2, that for all j < i, αiγij = αjγji cannot
be satisfied. Note that the hypothesis αiγij = αjγji implies that, for all i = 1, . . . , n, one
has

n∑

j=1

γij
αj

=

n∑

j=1,j ̸=i

γij
αj

−
n∑

j=1,j ̸=i

γji
αi

=

n∑

j=1,j ̸=i

αiγij − αjγji
αiαj

= 0.

Therefore we can make the following remark:

Remark 4.3. The hypothesis of Proposition 4.2 implies that ( 1
α1

, . . . , 1
αn

)T ∈ ker Γ.

We make the following conjecture:

Conjecture. If ( 1
α1

, . . . , 1
αn

)T ∈ ker Γ then

X∗
T (β) ≥

n∑

i=1

Ki, for all β ≥ 0.
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This conjecture is true for the particular case of Proposition 4.2. It is also true for
two-patch models and for n-patch models with symmetric dispersal. It agrees with
Proposition 3.7.

Proposition 4.4. The derivative of the total equilibrium population X∗
T (β) at β = 0 is

given by:

dX∗
T

dβ
(0) =

n∑

i=1


 1

ri

n∑

j=1

γijKj


 . (28)

In particular, if K ∈ ker Γ, where K = (K1, . . . ,Kn)
T , then dX∗

T

dβ (0) = 0.

Proof. By differentiating the Equation (25) at β = 0, we get:

dX∗
T

dβ
(0) =

n∑

i=1

n∑

j=1,j ̸=i

γijx
∗
j (0)− γjix

∗
i (0)

αix∗
i (0)

,

which gives (28), since x∗
i (0) = Ki for all i = 1, . . . , n.

If K ∈ ker Γ, then
∑n

j=1 γijKj = 0 for all i, so that dX∗
T

dβ (0) = 0. □✓✓✓

Actually, when K ∈ ker Γ, we prove that X∗
T (β) is constant, so that dX∗

T

dβ (β) = 0 for all
β ≥ 0, not only for β = 0, see Proposition 4.5.

4.3. Independence of the total equilibrium population with respect to asymmetric
dispersal

In the next proposition we give sufficient and necessary conditions for the total equilib-
rium population not to depend on the migration rate.

Proposition 4.5. The equilibrium E∗(β) does not depend on β if and only if
(K1, . . . ,Kn)

T ∈ ker Γ. In this case, we have E∗(β) = (K1, . . . ,Kn) for all β > 0.

Proof. The equilibrium E∗(β) is the unique positive solution of the equation

f(x) + βΓx = 0, (29)

where f is given by (10). Suppose that the equilibrium E∗(β) does not depend on β,
then we replace in Equation (29):

f(E∗(β)) + βΓE∗(β) = 0. (30)

The derivative of (30) with respect to β gives

ΓE∗(β) = 0. (31)

Replacing the Equation (31) in the Equation (30), we get f(E∗(β)) = 0, so E∗(β) =
(K1, . . . ,Kn). From the Equation (31), we conclude that (K1, . . . ,Kn)

T ∈ ker Γ.

Now, suppose that (K1, . . . ,Kn)
T ∈ ker Γ, then (K1, . . . ,Kn) satisfies the Equation (29),

for all β ≥ 0. So, E∗(β) = (K1, . . . ,Kn), for all β ≥ 0, which proves that the total
equilibrium population is independent of the migration rate β. □✓✓✓
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If the matrix Γ is symmetric, the previous proposition asserts that the Ki, for i = 1, . . . , n,
are equal if and only if E∗ = (K, . . . ,K), where K is the common value of the Ki. This
is [12, Proposition 3.2]. For n = 2 , Proposition 4.5 asserts that if K1/K2 = γ12/γ21 then
X∗

T (β) = K1 +K2 for all β, which is [2, Proposition 2, item c ]. See also the last item of
Proposition A.1.

4.4. Two blocks of identical patches

We consider the model (9) and we assume that there are two blocks, denoted I and J ,
of identical patches, such that I ∪ J = {1, · · · , n}. Let p be the number of patches in I
and q = n − p be the number of patches in J . Without loss of generality we can take
I = {1, · · · , p} and J = {p + 1, · · · , n}. The patches being identical means that they
have the same specific growth rate ri and carrying capacity Ki. Therefore we have

r1 = · · · = rp, K1 = · · · = Kp,
rp+1 = · · · = rn, Kp+1 = · · · = Kn.

(32)

For each patch i ∈ I we denote by γiJ the flux from block J to patch i, and for each
patch j ∈ J we denote by γjI the flux from block I to patch j, as defined in Table 1. For
each patch i we denote by Ti the sum of all migration rates γji from patch i to another
patch j ̸= i (i.e. the outgoing flux of patch i) minus the sum of the migration rates γik
from patch k to patch i, where k belongs to the same block as i. Hence, we have:





If i ∈ I, then Ti =
∑

j∈J

γji +
∑

k∈I\{i}

(γki − γik).

If j ∈ J, then Tj =
∑

i∈I

γij +
∑

k∈J\{j}

(γkj − γjk).
(33)

We make the following assumption on the migration rates:

γ1J = · · · = γpJ , γ(p+1)I = · · · = γnI
T1 = · · · = Tp, Tp+1 = · · · = Tn

(34)

where γiJ , for i ∈ I and γjI , for j ∈ J are defined in Table 1 and Ti are given by (33).

We have the following result:

Lemma 4.6. Assume that the conditions (34) are satisfied, then for all i ∈ I and j ∈ I
one has

γiJ = γIJ/p, γjI = γJI/q, Ti = γJI/p, Tj = γIJ/q. (35)

where γIJ and γJI are defined in Table 1.

Proof. The result follows from
∑

i∈I γiJ = γIJ ,
∑

i∈J γjI = γJI ,
∑

i∈I Ti = γJI and∑
i∈J Tj = γIJ . □✓✓✓

In the next theorem, we will show that, at the equilibrium, and under certain conditions
relating to the migration rates, we can consider the n-patch model as a 2-patch model
coupled by migration terms, which are not symmetric in general. Mathematically, we
can state our main result as follows:
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Table 1. Definitions and notations of fluxes.

Flux Definition

γiJ =
∑

j∈J

γij
For i ∈ I, γiJ is the flux from block J to patch i, i.e. the sum
of the migration rates γij from patch j ∈ J to patch i.

γjI =
∑

i∈I

γji
For j ∈ J , γjI is the flux from block I to patch j, i.e. the sum
of the migration rates γji from patch i ∈ I to patch j.

γIJ =
∑

i∈I,j∈J

γij
γIJ is the flux from block J to block I, i.e. the sum
of the migration rates γij from patch j ∈ J , to patch i ∈ I.

γJI =
∑

i∈I,j∈J

γji
γJI is the flux from block I to block J , i.e. the sum
of the migration rates γji from patch i ∈ I, to patch j ∈ J .

Theorem 4.7. Assume that the conditions (32) and (34) are satisfied. Then the equilib-
rium of (9) is of the form

x1 = x∗
1, . . . , xp = x∗

1, xp+1 = x∗
n, . . . , xn = x∗

n

where (x∗
1, x

∗
n) is the solution of the equations





pr1x1

(
1− x1

K1

)
+ β (γIJxn − γJIx1) = 0,

qrnxn

(
1− xn

Kn

)
+ β (γJIx1 − γIJxn) = 0,

(36)

that is to say, (x∗
1, x

∗
n) is the equilibrium of a 2-patch model, with specific growth rates

pr1 and qrn, carrying capacities K1 and Kn and migration rates γJI from patch 1 to
patch 2 and γIJ from patch 2 to patch 1.

Proof. Assume that the conditions (32) are satisfied. Then the equilibrium of (9) is the
unique positive solution of the set of algebraic equations





r1xi

(
1− xi

K1

)
+ β

n∑

k=1,k ̸=i

(γikxk − γkixi) = 0, i = 1, · · · , p,

rnxj

(
1− xj

Kn

)
+ β

n∑

k=1,k ̸=j

(γjkxk − γkjxj) = 0, j = p+ 1, · · · , n.
(37)

We consider the following set of algebraic equations obtained from (37) by replacing
xi = x1 for i = 1 · · · p and xi = xn for i = p+ 1 · · ·n:





r1x1

(
1− x1

K1

)
+ β (γiJxn − Tix1) = 0, i = 1, · · · , p,

rnxn

(
1− xn

Kn

)
+ β (γjIx1 − Tjxn) = 0, j = p+ 1, · · · , n.

(38)
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Now, using the assumptions (34), together with the relations (35), we see that the system
(38) is equivalent to the set of two algebraic equations:





r1x1

(
1− x1

K1

)
+ β

(
γIJ
p

xn − γJI
p

x1

)
= 0,

rnxn

(
1− xn

Kn

)
+ β

(
γJI
q

x1 −
γIJ
q

xn

)
= 0.

(39)

We first notice that if x1 = x∗
1, xn = x∗

n is a positive solution of (39) then xi = x∗
1 for

i = 1, · · · , p and xj = x∗
n for j = 1, · · · , n is a positive solution of (37). Let us prove that

(39) has a unique solution (x∗
1, x

∗
n). Indeed, by multiplying the first equation by p and

the second one by q, we deduce that (39) can be written in the form (36). □✓✓✓

As a corollary of the previous theorem we obtain the following result which describes the
total equilibrium population in the two blocks:

Corollary 4.8. Assume that the conditions (32) and (34) are satisfied. Then the total
equilibrium population X∗

T (β) = px∗
1(β)+ qx∗

n(β) of (9) behaves like the total equilibrium
population of the 2-patch model





dy1
dt

= r1y1

(
1− y1

pK1

)
+ β (γ12yn − γ21y1) ,

dyn
dt

= rnyn

(
1− yn

qKn

)
+ β (γ21y1 − γ12yn) ,

(40)

with specific growth rates r1 and rn, carrying capacities pK1 and qKn, and migration
rates γ21 = γJI

p , γ12 = γIJ

q .

Proof. From Theorem 4.7, we see that (x∗
1, x

∗
n) is the positive solution of (36). Hence,

(y∗1 = px∗
1, y

∗
n = qx∗

n) is the solution of the set of equations





r1y1

(
1− y1

pK1

)
+ β

(
γIJ
q

yn − γJI
p

y1

)
= 0,

rnyn

(
1− yn

qKn

)
+ β

(
γJI
p

y1 −
γIJ
q

yn

)
= 0,

(41)

obtained from (36) by changing variables to y1 = px1, yn = qxn. The system (41) has a
unique positive solution which is the equilibrium point of the 2-patch model (40). □✓✓✓

We can describe when, under the conditions (32) and (34), the migration pattern is
beneficial or detrimental in Model (9).

We consider the regions in the set of parameters γIJ and γJI , denoted J0, J1 and J2,
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Case rn > r1 (i.e. αn

α1
> K1

Kn
)

0

J1

J0

J2

γJI

γIJ
γIJ

γJI
= K1

Kn

γIJ

γJI
= αn

α1

Case rn < r1 (i.e. αn

α1
< K1

Kn
)

0

J2

J0

J1

γJI

γIJ
γIJ

γJI
= K1

Kn

γIJ

γJI
= αn

α1

Figure 1. Qualitative properties of Model (9) under the conditions (32) and (34). In J0, fragmentation
benefits the total equilibrium population. This effect is detrimental in J2. In J1, the effect is beneficial
for β < β0 and detrimental for β > β0.

depicted in Figure 1 and defined by:

If rn > r1 then





J1 =
{
(γJI , γIJ) :

γIJ

γJI
> αn

α1

}

J0 =
{
(γJI , γIJ) :

αn

α1
≥ γIJ

γJI
> K1

Kn

}

J2 =
{
(γJI , γIJ) :

K1

Kn
> γIJ

γJI

}

If rn < r1 then





J1 =
{
(γJI , γIJ) :

γIJ

γJI
< αn

α1

}

J0 =
{
(γJI , γIJ) :

αn

α1
≤ γIJ

γJI
< K1

Kn

}

J2 =
{
(γJI , γIJ) :

K1

Kn
< γIJ

γJI

}

(42)

where α1 = r1/K1 and αn = rn/Kn.

Proposition 4.9. Assume that the conditions (32) and (34) are satisfied. Then the total
equilibrium population X∗

T (β) = px∗
1(β) + qx∗

n(β) of (9) satisfies the following properties

1. If r1 = rn then X∗
T (β) < pK1 + qKn for all β > 0.

2. If rn ̸= r1, let J0, J1 and J2, be defined by (42). Then we have:

if (γJI , γIJ) ∈ J0 then X∗
T (β) > pK1 + qKn for any β > 0,

if (γJI , γIJ) ∈ J1 then X∗
T (β) > pK1 + qKn for 0 < β < β0 and X∗

T (β) <
pK1 + qKn for β > β0, where

β0 =
rn − r1

γIJ
αn

− γJI
α1

1
α1

p
+

αn

q

.

If (γJI , γIJ) ∈ J2 then X∗
T (β) < pK1 + qKn for any β > 0.

If γIJ

γJI
= K1

Kn
, then X∗

T (β) = pK1 + qKn for all β ≥ 0.
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Proof. This is a consequence of Proposition A.1 and Corollary 4.8. □✓✓✓

Let us explain the result of Proposition 4.9 in the particular case where p = n − 1. In
this case, the condition (34) becomes

γ1n = . . . = γn−1,n and T1 = . . . = Tn−1, (43)

where Ti = γni +
∑
k ̸=i

(γki − γik). Therefore, if the matrix Γ is symmetric, the conditions

(43) are equivalent to the conditions γn1 = . . . = γn,n−1, which mean that the fluxes
of migration between the n-th patch and all n − 1 identical patches are equal. Hence,
Proposition 4.9, showing that the n-patch model behaves like a 2-patch model, is the
same as [12, Proposition 3.4], where the model (9) was considered with Γ symmetric,
n − 1 patches are identical and the fluxes of migration between the n-th patch and all
these n − 1 identical patches are equal. Thus Proposition 4.9 generalizes Proposition
3.4 of [12], to asymmetric dispersal and for any two identical blocks, provided that the
conditions (34) are satisfied.

5. Links between SIS and logistic patch models

5.1. The SIS patch model

In [15], Gao studied the following SIS patch model in an environment of n patches
connected by human migration:





dSi

dt
= −βi

SiIi
Ni

+ γiIi + ε

n∑

j=1

γijSj , i = 1, . . . , n,

dIi
dt

= βi
SiIi
Ni

− γiIi + ε

n∑

j=1

γijIj , i = 1, . . . , n,

(44)

where Si and Ii are the number of susceptible and infected, in patch i, respectively;
Ni = Si + Ii denotes the total population in patch i. The parameters βi and γi are
positive transmission and recovery rates, respectively. The matrix Γ = (γij) satisfies (3)
and describes the movement between patches. The coefficient ε quantifies the diffusion,
as our β in (9).

Using the variables Ni, Ii, i = 1, . . . , n, the system (44) has a cascade structure

dNi

dt
= ε

n∑

j=1

γijNi, i = 1, . . . , n, (45)

dIi
dt

= βi
(Ni − Ii)Ii

Ni
− γiIi + ε

n∑

j=1

γijIj , i = 1, . . . , n, (46)

Therefore the infected populations Ii are the solutions of the non-autonomous system of
differential equations

dIi
dt

= βiIi

(
1− Ii

Ni(t)

)
− γiIi + ε

n∑

j=1

γijIj , i = 1, . . . , n, (47)
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where the total populations Ni(t) are the solutions of the system (45). Hence, the
autonomous 2n-dimensional system (44), is equivalent to the family of n-dimensional
non-autonomous systems (47), indexed by the solutions Ni(t) of (45). Note that since
the γij verify the property (3), the total population is constant:

∑n
i=1 Ni(t) = N , where

N :=
∑n

i=1 (Si(0) + Ii(0)). If the matrix Γ = (γij) is irreducible, then Ni(t), the total
population in patch i, converges towards the limit

lim
t→+∞

Ni(t) = N∗
i where N∗

i :=
N∑
i δi

δi, i = 1, . . . , n, (48)

where δ = (δ1, . . . , δn)
T is a positive vector which generates the vector space ker Γ.

Therefore, (47) is an asymptotically autonomous system, whose limit system is obtained
by replacing Ni(t) in (47), by their limits N∗

i , given by (48):

dIi
dt

= βiIi

(
1− Ii

N∗
i

)
− γiIi + ε

n∑

j=1

γijIj , i = 1, . . . , n. (49)

The main problem for (44) is to determine the condition under which the disease free
equilibrium, corresponding to the equilibrium I = 0 of (49), is GAS, or the endemic
equilibrium, corresponding to the positive equilibrium of (49), is GAS. It is known, see
[15, Theorem 2.1], that the disease free equilibrium is GAS if R0 ≤ 1, and there exists a
unique endemic equilibrium, which is GAS, if R0 > 1. Here R0 is the basic reproduction
number of the model (44), defined as:

R0 = ρ
(
FV −1

)
where F = diag(β1, · · · , βn) and V = diag(γ1, · · · , γn)− εΓ.

A reference work on the basic reproduction number for metapopulations is Arino [3],
whereas Castillo-Garsow and Castillo-Chavez [7] and van den Driessche and Watmough
[29] give a more general account of the subject.

5.2. Comparisons between the results on (9) and the results on (49)

Gao [15] gave many interesting results on the effect of population dispersal on total
infection size. Our aim is to discuss some of the links between his results and the results of
the present paper. We focus on two results on the total infection size Tn(ε) =

∑n
i=1 I

∗
i (ε),

where (I∗1 (ε), . . . , I
∗
n(ε)) is the positive equilibrium of (49). We consider the results of

Gao [15] on Tn(+∞) and T ′
n(0).

Proposition 5.1 ([15, Theorem 3.3], [15, Theorem 3.5]). If R0(+∞) > 1, then

Tn(+∞) =

(
1− 1

R0(+∞)

)
N, with R0(+∞) =

∑
i βiδi∑
i γiδi

. (50)

If βi ̸= γi for all i, then

T ′
n(0) =

∑

i


 1

|βi − γi|
∑

j

γijI
∗
j (0)


 . (51)
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It is worth noting that the formulas (50) and (51) involve the system (49). An important
property of this system is given in the following remark.

Remark 5.2. Let N∗ = (N∗
1 , . . . , N

∗
n)

T be the vector of the carrying capacities in the
system (49). One has N∗ ∈ ker Γ, as shown by (48).

Our aim is to compare the results given by the formulas (50) and (51) when γi → 0, to
our results, for the system

dxi

dt
= βixi

(
1− xi

N∗
i

)
+ ε

n∑

j=1

γijxj , i = 1, . . . , n. (52)

Note that the system (49) reduces to (52) when γi = 0 for all i. More precisely we show
that, as γi → 0, the formulas (50) and (51) are the same as the results predicted by
Proposition 3.4 and Proposition 4.4.

Proposition 5.3. Let Tn(ε) be the total infection size of (49). Let X∗
T (ε) be the total

population size of (52). One has

lim
maxi{γi}→0

Tn(+∞) = X∗
T (+∞) = N, lim

maxi{γi}→0
T ′
n(0) =

dX∗
T

dϵ
(0) = 0. (53)

Proof. When γi → 0 for all i, one has R0(+∞) → +∞ and I∗i (0) → N∗
i . Therefore,

from (50) and (51) it is deduced that

Tn(+∞) → N, T ′
n(0) →

∑

i

1

βi

∑

j

γijN
∗
j = 0. (54)

Using the property N∗ ∈ ker Γ, from Proposition 3.4 and Proposition 4.4, it is deduced
that:

X∗
T (+∞) = N,

dX∗
T

dϵ
(0) = 0. (55)

From (54) and (55) we deduce (53). □✓✓✓

Actually as shown in Proposition 4.5, we have the stronger result X∗
T (β) = N for all

β ≥ 0. But our aim here was only the comparison between (54) and (55).

As shown in Proposition 5.2, the results of Gao [15] on the logistic patch model (49) yield
results on the logistic patch model (52) by taking the limit γi → 0. However, the scope
of this approach is weakened by the fact that it only applies to the logistic model (52),
for which the vector of carrying capacities satisfies N∗ ∈ ker Γ, see Remark 5.2. But this
property is not true in general for our system (9), where the condition K ∈ ker Γ does
not hold in general.

Our aim in this section is to show that any logistic patch model (9), without the condition
K ∈ ker Γ, can be written in the form (49), with the condition N∗ ∈ ker Γ. Indeed we
have the following result:
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Lemma 5.4. Consider ri > 0, Ki > 0 and Γ as in the system (9). Let δi > 0 be such that
(δ1, ..., δn)

T ∈ ker Γ. Let N be such that N >
∑

i δi
δi

Ki for i = 1, . . . , n. Let N∗
i defined

by (48). Let βi =
ri
Ki

N∗
i and γi = βi − ri. Then one has

rixi (1− xi/Ki) = βixi (1− xi/N
∗
i )− γixi, for i = 1, . . . n (56)

Proof. The conditions (56) are satisfied if and only if ri = βi − γi and ri/Ki = βi/N
∗
i .

Therefore {
βi = N∗

i
ri
Ki

= N∗
i αi,

γi = βi − ri = (N∗
i −Ki)αi.

(57)

To ensure that γi > 0 for all i, just choose N in (48) such that N∗
i > Ki for i = 1, . . . , n,

that is to say, N >
∑

i δi
δi

Ki. □✓✓✓

Remark 5.5. According to the change of parameters (57), the logistic patch model (9)
can be written in the form of Gao (49), i.e. with the property that N∗ ∈ ker Γ. For
the perfect mixing case, the formula (50) and our formula (13) are the same. Indeed
replacing βi and γi by (57) in (50), and using (48), we get:

(
1− 1

R0(+∞)

)
N =

(
1−

∑
i(N

∗
i −Ki)αi∑
i N

∗
i αi

)
N =

∑

i

δi

∑
i riδi∑
i αiδ2i

.

For the derivative, the formula (51) and our formula (28) are the same. Indeed, if we
replace βi and γi by (57), in (51), we get:

I∗j (0) =
βj − γj

βj
N∗

j =
rj

N∗
j αj

N∗
j = Kj .

Therefore
∑

i


 1

|βi − γi|
∑

j

γijI
∗
j (0)


 =

∑

i


 1

ri

∑

j

γijKj


 .

The theory of asymptotically autonomous systems answers the question “under which
conditions do the solutions of the original 2n-dimensional system (44) have the same
asymptotic behavior as those of the n-dimensional limit system (49) ?”. For details
and further reading on the theory of asymptotically autonomous systems, the reader is
referred to Markus [23] and Thieme [26, 27]. For applications of this theory to epidemic
models, see Castillo-Chavez and Thieme [6].

Hence, it is important to know whether or not some of the results of Gao [15] on the SIS
model (44) can be deduced from our results on the logistic model (9). It is worth noting
that the discussion in this section shows that our results on the logistic patch model
imply results on the model (49) and hence, results on the original model 2n-dimensional
system (44). However, it is needed that βi > γi for i = 1, . . . , n. Indeed, according to
(57), one has ri = βi − γi > 0. On the other hand, the condition βi > γi is not required
in all patches of the system (44). Another challenging problem is the study of the model
(49), in the general case where N∗ = (N∗

1 , . . . , N
∗
n)

T is not necessarily in the kernel of Γ.
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6. Three-patch model

In this section, we consider the model of three patches coupled by asymmetrical terms of
migrations. Under the irreducibility hypothesis on the matrix Γ, there are five possible
cases, modulo permutation of the three patches, see Figures 2 and 3.

1

2 3

1

2 3

G1 G2

Figure 2. The two graphs G1 and G2 for which the migration matrix may be symmetric, if γij = γji.

The connectivity matrices associated to the graphs G1 and G2 are given by

Γ
(1)
0 =




0 γ12 γ13
γ21 0 γ23
γ31 γ32 0


 , and Γ

(2)
0 =




0 γ12 γ13
γ21 0 0
γ31 0 0


 .

For the remaining cases, the graphs G3,G4 and G5, cannot be symmetrical:

1

2 3

1

2 3

1

2 3

G3 G4 G5

Figure 3. The three graphs G3,G4 and G5 for which the migration matrix cannot be symmetric.

The associated connectivity matrices are given by

Γ
(3)
0 =




0 γ12 γ13
γ21 0 0
γ31 γ32 0


 ,Γ

(4)
0 =




0 0 γ13
γ21 0 γ23
0 γ32 0


 ,Γ

(5)
0 =




0 0 γ13
γ21 0 0
0 γ32 0


 .

In Table 2, we give the formula of perfect mixing X∗
T (+∞) for each of the five cases.

In the numerical simulations, we show that we can have new behaviors of X∗
T (β). In

the case n = 2, it was shown in [1, 2] that there exists at most one positive value of β
such that X∗

T (β) = K1 + K2. In [12], in the case n = 3 and Γ is symmetric, we gave
numerical values for the parameters such that there exists two positive values of β such
that X∗

T (β) = K1 +K2 +K3, and we were not able to find more than two values. The
novelty when Γ is not symmetric is that we can find examples with three positive values.
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Table 2. The generator δ of ker Γ, for the five cases. The perfect mixing abundance X∗
T (+∞) is

computed with Eq. (13).

Graphs The formula of perfect mixing X∗
T (+∞)

G1 The coefficients δi are given by the Equation (12)

G2 δ1 = γ12γ13, δ2 = γ21γ13, δ3 = γ12γ31,

G3 δ1 = γ12γ13 + γ32γ13, δ2 = γ21γ13, δ3 = γ21γ32 + γ31γ12 + γ31γ32,

G4 δ1 = γ32γ13, δ2 = γ21γ13 + γ21γ23 + γ31γ23, δ3 = γ21γ32.

G5 δ1 = γ32γ13, δ2 = γ21γ13, δ3 = γ21γ32.

Indeed, we may have the following situation : dX∗
T

dβ (0) > 0 and X∗
T (+∞) < K1+K2+K3,

and there exist three values 0 < β1 < β2 < β3 for which we have

X∗
T (β)





> K1 +K2 +K3 for β ∈ ]0, β1[ ∪ ]β2, β3[ ,

< K1 +K2 +K3 for β ∈ ]β1, β2[ ∪ ]β3,+∞[ .

(58)

The same situation holds for each of the five graphs G1, G2,G3,G4 and G5, i.e, there exist
three values 0 < β1 < β2 < β3 for which (58) hold. See Figures 4, (for the graph G1),
5, (for the graph G2), 6-a, (for the graph G3), 6-b, (for the graph G4), and 6-c, (for the
graph G5).

Table 3. The numerical values of the parameters for the logistic growth function and migration coeffi-
cients of the model (9), with n = 3, used in Figures 4,5,6-a,6-b and Figure 6-c. For all figures we have
(r1, r2, r3,K1,K2,K3) = (4, 0.7, 0.6, 5, 1, 4). The perfect mixing abundance X∗

T (+∞) is computed with
Eq. (13) and the derivative of the total equilibrium population at β = 0 is computed with Eq. (28).

Figure γ21 γ12 γ31 γ13 γ32 γ23
dX∗

T

dβ (0) X∗
T (+∞)

4 0.15 3 0.2 0.04 11 0.1 1.06 9.21

5 14.9 10 0.2 0.04 0 0 77.20 9.86

6-a 1.44 0.01 0.2 0.04 1 0 3.11 8.93

6-b 1.52 0 0 1 1 0.002 3.52 8.72

6-c 1.51 0 0 1 1 0 3.46 8.75
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ββ

K1 +K2 +K3

K1 +K2 +K3

X∗
T X∗

T

Figure 4. Total equilibrium population X∗
T of the system (9) (n = 3) as a function of the migration

rate β. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values
are given in Table 3.

ββ

K1 +K2 +K3

X∗
T X∗

T

Figure 5. Total equilibrium population X∗
T of the system (9) (n = 3) as a function of the migration

rate β. The figure on the right is a zoom, near the origin, of the figure on the left. The parameter values
are given in Table 3.

7. Conclusion

The aim of this paper is to generalize, to a multi-patch model with asymmetric dispersal,
the results obtained in [12] for a multi-patch model with symmetric dispersal.

In Section 3 we considered the particular case of perfect mixing, when the migration rate
goes to infinity, that is, individuals may travel freely between patches. As in [12], we
compute the total equilibrium population in that case, and, by perturbation arguments,
we proved that the dynamics in this ideal case provides a good approximation to the
case when the migration rate is large. Our results generalize those of [2] (asymmetric
migration matrix, only two patches), [10] (arbitrarily many patches, but the migration
matrix is symmetric and zero outside the corners and the three main diagonals), and [12]
(arbitrarily many patches; arbitrary, but symmetric, migration).
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ββ

K1 +K2 +K3

K1 +K2 +K3

X∗
T X∗

T(a) (b)

β

K1 +K2 +K3

X∗
T

(c)

Figure 6. Total equilibrium population X∗
T of the system (9) (n = 3) as a function of the migration

rate β. The parameter values are given in Table 3.

In Section 4 we considered the equation

total equilibrium population = sum of the carrying capacities of the patches. (59)

We gave a complete solution in the case when the n patches are partitioned into two
blocks of identical patches. Our results mirror those of [2], which deals with the two-
patch case. Specifically, Equation (59) admits at most one non-trivial solution.

In Section 5, we consider a SIS patch model and we give the links with the logistic model.

In Section 6 we give numerical values for the dispersion parameters such that Equation
(59) has at least three non-trivial solutions. In [12] we proved that for three patches
and symmetric dispersal, there may be at least two solutions. A mathematical proof
that, when n=3, Equation (59) has at most three solutions, would certainly be desirable,
and could spur further work. Upper bounds for arbitrarily many patches would also be
interesting.
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Appendix

A. The 2-patch asymmetric model

We consider the 2-patch logistic equation with asymmetric migrations. We denote by
γ12 the migration rate from patch 2 to patch 1, and γ21 from patch 1 to patch 2. The
model is written:





dx1

dt
= r1x1

(
1− x1

L1

)
+ β (γ12x2 − γ21x1) ,

dx2

dt
= r2x2

(
1− x2

L2

)
+ β (γ21x1 − γ12x2) .

(60)

Note that the system (60) is studied in [1, 8, 13, 14, 18] in the case where the migration
rates satisfy γ21 = γ12, and in [2] for general migration rates. This system admits a
unique equilibrium which is GAS. We denote by E∗(β) = (x∗

1(β), x
∗
2(β)) this equilibrium

and by X∗
T (β) the sum of x∗

i (β).

Case r2 > r1 (i.e. α2

α1
> L1

L2
)

0

J1

J0

J2

γ21

γ12
γ12

γ21
= L1

L2

γ12

γ21
= α2

α1

Case r2 < r1 (i.e. α2

α1
< L1

L2
)

0

J2

J0

J1

γ21

γ12
γ12

γ21
= L1

L2

γ12

γ21
= α2

α1

Figure 7. Qualitative properties of model (60). In J0, patchiness has a beneficial effect on total
equilibrium population. This effect is detrimental in J2. In J1, the effect is beneficial for β < β0 and
detrimental for β > β0. In the figure α1 = r1/L1 and α2 = r2/L2.

We consider the regions in the set of the parameters γ21 and γ12, denoted J0, J1 and
J2, depicted in Fig. 7 and defined by:





If r2 > r1 then





J1 =
{
(γ21, γ12) :

γ12

γ21
> α2

α1

}

J0 =
{
(γ21, γ12) :

α2

α1
≥ γ12

γ21
> L1

L2

}

J2 =
{
(γ21, γ12) :

L1

L2
> γ12

γ21

}

If r2 < r1 then





J1 =
{
(γ21, γ12) :

γ12

γ21
< α2

α1

}

J0 =
{
(γ21, γ12) :

α2

α1
≤ γ12

γ21
< L1

L2

}

J2 =
{
(γ21, γ12) :

L1

L2
< γ12

γ21

}

(61)
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We have the following result which gives the conditions for which patchiness is beneficial
or detrimental in model (60).

Proposition A.1. The total equilibrium population of (60) satisfies the following proper-
ties

1. If r1 = r2 then X∗
T (β) ≤ L1 + L2 for all β ≥ 0.

2. If r2 ̸= r1, let J0, J1 and J2, be defined by (61). Then we have:

If (γ21, γ12) ∈ J0 then X∗
T (β) > L1 + L2 for any β > 0.

If (γ21, γ12) ∈ J1 then X∗
T (β) > L1+L2 for 0 < β < β0 and X∗

T (β) < L1+L2

for β > β0, where

β0 =
r2 − r1

γ12
α2

− γ21
α1

1

α1 + α2
.

If (γ21, γ12) ∈ J2 then X∗
T (β) < L1 + L2 for any β > 0.

If γ12

γ21
= L1

L2
, then x∗

1(β) = L1 and x∗
2(β) = L2 for all β ≥ 0. Therefore

X∗
T (β) = L1 + L2 for all β ≥ 0.

Proof. This result was established by Arditi et al. [2]. Part (1) is Proposition 1 of [2].
The first three items of part (2) are Proposition 2 of [2]. For the last item of part (2),
see the last paragraph in page 12 of [2]. The explicit expression of β0 was not given in
[2], however, it is easy to deduce it from the formulas given in [2]. □✓✓✓

B. Some useful results

We begin with a

Lemma B.1. The matrix L defined by (21) is stable, that is to say, all its eigenvalues
have negative real part.

Proof. We consider the two matrices

G :=

[
L− U V

0 . . . 0 0

]
, P :=

[
I 0

1 . . . 1 1

]
,

where L, V , and U are defined right after (21). We prove that the two matrices Γ and
G are conjugate by the matrix P , that is to say P−1GP = Γ.

The inverse of matrix P is given by

P−1 =

[
I 0

−1 . . . −1 1

]
.

We have
P−1GP =

[
L V

γn1 . . . γnn−1 −
∑n

j=1,j ̸=1 γjn

]
= Γ.

Two conjugate matrices have the same eigenvalues. As the matrix G is block-triangular,
its eigenvalues are zero and the eigenvalues of the matrix L− U . Therefore, since 0 is a
simple eigenvalue of the matrix Γ, the eigenvalues of the matrix L−U are the eigenvalues
of the matrix Γ except 0. By Lemma 3.1 all non-zero eigenvalues of Γ have negative real
part. □✓✓✓
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Lemma B.2. Let (un)n≥1, (vn)n≥1 and (wn)n≥1 be three real and non-negative sequences.
Then,

1. if (un)n≥1 and (vn)n≥1 are both non-increasing, or both non-decreasing, then we
have, for all N ≥ 1,

(
N∑

n=1

wn

)(
N∑

n=1

wnunvn

)
≥

(
N∑

n=1

wnun

)(
N∑

n=1

wnvn

)
, (62)

2. if (un)n≥1 is non-decreasing and (vn)n≥1 is non-increasing, or if (un)n≥1 is non-
increasing and (vn)n≥1 is non-decreasing, then, we have, for all N ≥ 1,

(
N∑

n=1

wn

)(
N∑

n=1

wnunvn

)
≤

(
N∑

n=1

wnun

)(
N∑

n=1

wnvn

)
. (63)

In both items, if (un)n≥1 is not constant, then the inequality in the conclusion is strict.

Proof. We prove Item 1 by induction on N , in the case when (un)n≥1 and (vn)n≥1 are
both non-decreasing, the other case being identical. Obviously, Equation (62) holds for
N = 1. Now, assume that (62) holds for N , then we proceed to show that (62) holds for
N + 1. Since

un+1 [w1(vn+1 − v1) + . . .+ wn(vn+1 − vn)] ≥ u1w1(vn+1 − v1) + . . .+ unwn(vn+1 − vn),

the inequality being strict if (un)n≥1 is not constant, we observe that

N∑

n=1

wnunvn +

(
N∑

n=1

wn

)
uN+1vN+1 ≥

(
N∑

n=1

wnvn

)
uN+1 +

(
N∑

n=1

wnun

)
vN+1. (64)

From the induction hypothesis and the Equation (64), it follows that(
N+1∑
n=1

wn

)(
N+1∑
n=1

wnunvn

)
=

(
N∑

n=1

wn

)(
N∑

n=1

wnunvn

)
+ wN+1

(
N∑

n=1

wnunvn

)

+ w2
N+1uN+1vN+1 +

(
N∑

n=1

wn

)
wN+1uN+1vN+1

≥

(
N∑

n=1

wn

)(
N∑

n=1

wnunvn

)
+ w2

N+1uN+1vN+1

+

(
N∑

n=1

wnvn

)
uN+1wN+1 +

(
N∑

n=1

wnun

)
vN+1wN+1

≥

(
N∑

n=1

wnun

)(
N∑

n=1

wnvn

)
+ w2

N+1uN+1vN+1

+

(
N∑

n=1

wnvn

)
uN+1wN+1 +

(
N∑

n=1

wnun

)
vN+1wN+1

=

(
N+1∑
n=1

wnun

)(
N+1∑
n=1

wnvn

)
.
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This completes the proof of item 1. Equation (63) can then be proved by reversing all
the inequalities in the proof of (62) above. □✓✓✓

This result is proved by DeAngelis et al. [9, Lemma 2.6] for Part (2) and in [10, Propo-
sition A.3] for part (1), where wn = 1 for all n ≥ 1. Here we generalize this result to any
positive sequence.
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