\oint

Revista Integración

Escuela de Matemáticas Universidad Industrial de Santander Vol. 40, N° 2, 2022, pág. 159–168

Properties of the (n,m)-**fold hyperspace** suspension of continua

GERARDO HERNÁNDEZ-VALDEZ, DAVID HERRERA-CARRASCO,

MARÍA DE J. LÓPEZ , FERNANDO MACÍAS-ROMERO Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico Matemáticas, Puebla, Mexico.

Abstract. Let $n, m \in \mathbb{N}$ with $m \leq n$ and X be a metric continuum. We consider the hyperspaces $C_n(X)$ (respectively, $F_n(X)$) of all nonempty closed subsets of X with at most n components (respectively, n points). The (n,m)-fold hyperspace suspension on X was introduced in 2018 by Anaya, Maya, and Vázquez-Juárez, to be the quotient space $C_n(X)/F_m(X)$ which is obtained from $C_n(X)$ by identifying $F_m(X)$ into a one-point set. In this paper we prove that $C_n(X)/F_m(X)$ contains an n-cell; $C_n(X)/F_m(X)$ has property (b); $C_n(X)/F_m(X)$ is unicoherent; $C_n(X)/F_m(X)$ is colocally connected; $C_n(X)/F_m(X)$ is aposyndetic; and $C_n(X)/F_m(X)$ is finitely aposyndetic.

Keywords: Aposyndesis, Cantor manifold, Continuum, Colocal connectedness, (n,m)-fold hyperspace suspension, Property (b), Unicoherent.

MSC2010: 54B20, 54F15.

Propiedades del (n,m)-ésimo hiperespacio suspensión de continuos

Resumen. Sean $n,m \in \mathbb{N}$ con $m \leq n$ y X un continuo métrico. Consideramos el hiperespacio de todos los subconjuntos cerrados, no vacíos de X con a lo más n componentes (respectivamente, n puntos) $C_n(X)$ (respectivamente, $F_n(X)$). El (n,m)-ésimo hiperespacio suspensión de X lo introdujeron, en 2018, Anaya, Maya y Vázquez-Juárez, como el espacio cociente $C_n(X)/F_m(X)$ que se obtiene de $C_n(X)$ al identificar $F_m(X)$ a un conjunto de un punto. En este artículo demostramos que $C_n(X)/F_m(X)$ contiene una n-celda; $C_n(X)/F_m(X)$ tiene la propiedad (b); $C_n(X)/F_m(X)$ es unicoherente; $C_n(X)/F_m(X)$ es colocalmente conexo; $C_n(X)/F_m(X)$ es aposindético y $C_n(X)/F_m(X)$ es finitamente aposindético.

Palabras clave: Aposindesis, Continuo, Colocalmente conexo, (n, m)—ésimo hiperespacio suspensión, Propiedad (b), Variedad de Cantor, Unicoherente.

 $E-mail: gerardo.hernandezval@alumnos.buap.mx, dherrera@fcfm.buap.mx, mjlopez@fcfm.buap.mx ^ \boxtimes, fmacias@fcfm.buap.mx. \\$

Received: 8 April 2022, Accepted: 22 August 2022.

To cite this article: G. Hernández-Valdez, D. Herrera-Carrasco, M.J. López, & F. Macías-Romero, Properties of the (n,m)-fold hyperspace suspension of continua, $Rev.\ Integr.\ Temas\ Mat.$, 40 (2022), No. 2, 159-168. doi: 10.18273/revint.v40n2-2022002

1. Introduction

Recently, the study of the (n, m)-fold hyperspace suspension of continua has been addressed in [1], [5], [6], [8]-[10], [14], [15], [17]-[19], [21], [22], [24].

A continuum is a nondegenerate compact connected metric space. A subcontinuum is a continuum contained in a continuum X. The set of positive integers is denoted by \mathbb{N} .

Given a continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X:

$$2^X = \{A \subset X : A \text{ is a nonempty closed subset of } X\},$$

$$C_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ components}\}, \text{ and }$$

$$F_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}.$$

All these hyperspaces are metrized by the Hausdorff metric H [11, Theorem 2.2]. The hyperspaces $F_n(X)$ and $C_n(X)$ are called the n-fold symmetric product of X and the n-fold hyperspace of X, respectively, we will write C(X) instead of $C_1(X)$. It is important to note that whenever X is a continuum, all these hyperspaces are continua (see [19, 1.8.8, 1.8.9, 1.8.12]).

Let X be a continuum and let $n, m \in \mathbb{N}$ be such that $m \leq n$. In 1979 Sam B. Nadler, Jr. introduced the hyperspace suspension of a continuum X as the quotient space $C(X)/F_1(X)$ obtained from C(X) by shrinking $F_1(X)$ to a one-point set with the quotient topology, denoted by HS(X), see [24]. Later, in 2004 Sergio Macías introduced the n-fold hyperspace suspension of a continuum X as the quotient space $C_n(X)/F_n(X)$, denoted by $HS_n(X)$, see [17]. Afterward in 2008, Juan Carlos Macías introduced the n-fold pseudo-hyperspace suspension of a continuum X as the quotient space $C_n(X)/F_1(X)$, denoted by $PHS_n(X)$, see [15]. Recently, in 2018 José G. Anaya, David Maya, and Francisco Vázquez-Juárez introduced the (n,m)-fold hyperspace suspension of X as the quotient space $C_n(X)/F_m(X)$ obtained from $C_n(X)$ by shrinking $F_m(X)$ to a one-point set with the quotient topology, denoted by $HS_m^n(X)$, see [1]. The fact that $HS_m^n(X)$ is a continuum follows from [25, Theorem 3.10]. The study of (n,m)-fold hyperspace suspension is, therefore, a generalization of the latter research.

The main topics of this paper are summed up in the following general problem.

Problem 1. Given a continuum X and $n, m \in \mathbb{N}$ satisfying that $m \leq n$, is there a topological property \mathcal{P} that holds on $HS_m^n(X)$?

Related to Problem 1, the aim of this paper is to prove that:

- (a) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ contains an n-cell (see Theorem 3.1).
- (b) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ has property (b) (see Theorem 3.4).
- (c) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ is unicoherent (see Theorem 3.5).

- (d) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ is colocally connected (see Theorem 3.6).
- (e) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ is a posyndetic (see Corollary 3.7).
- (f) If X is a continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ is finitely aposyndetic (see Theorem 3.8).

It is important to notice that those results that give a solution to Problem 1 are indeed generalizing Theorems 3.7, 4.1, and 4.2 as well as Corollary 4.3 and 4.4 proved by S. Macías in [17], respectively.

On the other hand, we present two results related to finite-dimensional Cantor manifolds, see Theorem 3.9 and Theorem 3.10.

2. Definitions and preliminary results

In this section, we present several results (with their references) that will be useful through this paper.

Given a subset A in a metric space X, $int_X(A)$ denotes the interior of A in X. If d is the metric of a continuum X, $\varepsilon > 0$, $A \subset X$, and $a \in X$, then the set $\{x \in X : d(a,x) < \varepsilon\}$ is denoted by $B_d(a,\varepsilon)$, or $B(a,\varepsilon)$ when there is no possibility of confusion. Let $N(\varepsilon,A) = \bigcup \{B(a,\varepsilon) : a \in A\}$. Given subsets U_1, \ldots, U_r of X, with $r, n \in \mathbb{N}$, let

$$\langle U_1, \dots, U_r \rangle_n = \{ A \in C_n(X) \colon A \subset U_1 \cup \dots \cup U_r \text{ and } A \cap U_i \neq \emptyset, \text{ for each } i \in \{1, \dots, r\} \}.$$

It is known by [11, Theorem 1.2] that the family of all sets of the form $\langle U_1, \ldots, U_r \rangle_n$, where $r \in \mathbb{N}$ and each U_i is an open subset of X, is a basis for the topology in $C_n(X)$, known as *Vietoris topology*.

Recall that a useful tool in the theory of hyperspaces is the existence of order arcs. Given a continuum X, an order arc in 2^X is a continuous function $\alpha:[0,1]\to 2^X$ such that $\alpha(s) \subseteq \alpha(t)$, for each $s,t \in [0,1]$ with s < t. If $A,B \in 2^X$ satisfy that $\alpha(0) = A$ and $\alpha(1) = B$, then we say that α is an order arc from A to B.

Lemma 2.1. [23, (1.8)] Let $A, B \in 2^X$ be such that $A \neq B$. Then, the following two statements are equivalent:

- (a) there exists an order arc in 2^X from A to B,
- (b) $A \subset B$ and each component of B intersects A.

An arc is any space homeomorphic to [0,1]. Given $n \in \mathbb{N}$, an n-cell is a space which is homeomorphic to $[0,1]^n$. A continuum is said to be decomposable provided it can be written as the union of two of its proper subcontinua.

Lemma 2.2. [16, Theorem 3.4] Let X be a continuum and $n \in \mathbb{N}$. Then, $C_n(X)$ contains an n-cell.

Lemma 2.3. [16, Theorem 3.5] Let X be a continuum and $n \in \mathbb{N}$. If X contains n pairwise disjoint decomposable subcontinua, then $C_n(X)$ contains a 2n-cell.

Lemma 2.4. [7, Proposition 1(a), p. 798] Let X be a continuum and $n \in \mathbb{N}$. If $V \subset X$ is an n-cell and U is an open set in X such that $U \cap V \neq \emptyset$, then there is an n-cell $\mathcal{T} \subset U \cap V$.

Recall that, as in [4, p. 16], let A, B be two sets with equivalence relations R and S, respectively. A function $f: A \to B$ is said to be relation-preserving provided that aRa' implies f(a)Sf(a').

Lemma 2.5. [4, Theorem 4.3, p. 126] Let X, Y be spaces with equivalence relations R and S, respectively, and let $f: X \to Y$ be a relation-preserving, continuous function. Then, passing to the quotient, the function $f_*: X/R \to Y/S$ is also continuous.

A continuum X has the property (b) provided that each continuous function from X into the unit circle S^1 is homotopic to a constant function.

We say that a continuum X is *unicoherent* provided that for each pair A and B of subcontinua of X such that $X = A \cup B$, $A \cap B$ is connected.

Lemma 2.6. [16, Theorem 4.7] Let X be a connected metric space. If X has the property (b), then X is unicoherent.

Lemma 2.7. [16, Theorem 4.8] Let X be a continuum and $n \in \mathbb{N}$. Then, $C_n(X)$ has the property (b). In particular, we have that $C_n(X)$ is unicoherent.

Lemma 2.8. [11, Theorem 19.7] If a continuum is contractible with respect to S^1 , then the continuum is unicoherent.

A continuum is said to be *colocally connected* when each one of its points has a local base of open sets whose complement is connected.

The continuum X is a posyndetic if for each pair of points x and y of X, there exists a subcontinuum W of X such that $x \in int_X(W) \subset W \subset X - \{y\}$. A continuum X is finitely a posyndetic provided that for each finite subset F of X and each point $x \in X - F$, there exists a subcontinuum W of X such that $x \in int_X(W) \subset W \subset X - F$.

Lemma 2.9. [2, Corollary 1] If X is an unicoherent and aposyndetic continuum, then X is finitely aposyndetic.

We use the following notations: $\dim[X]$ stands for the dimension of X, $\dim_p[X]$ stands for the dimension of X at the point $p \in X$, as in [26, p. 5].

Lemma 2.10. [6, Theorem 3.1] If X is a finite-dimensional continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $\dim[C_n(X)]$ is finite if and only if $\dim[HS_m^n(X)]$ is finite. Moreover, if either $\dim[C_n(X)]$ is finite or $\dim[HS_m^n(X)]$ is finite, then $\dim[C_n(X)] = \dim[HS_m^n(X)]$.

Lemma 2.11. [13, Theorem 2.1] If X is a continuum such that $\dim[X] = 2$, then $\dim[C(X)]$ is infinite.

Lemma 2.12. [11, Theorem 72.5] If X is a continuum such that $\dim[X] \geq 3$, then $\dim[C(X)]$ is infinite.

Lemma 2.13. [3, Lemma 3.1] If X is a finite-dimensional continuum and $n \in \mathbb{N}$, then $\dim[F_n(X)] \leq n \cdot \dim[X]$.

Lemma 2.14. [26, 7.3] Let X, Y, Z be separable metric spaces such that $X = Y \cup Z$, where $\dim[Y] \leq n$ and $\dim[Z] \leq n$. If at least one of Y and Z is closed in X, then $\dim[X] \leq n$.

A finite–dimensional continuum X is a Cantor manifold if for any subset A of X such that $\dim[A] \leq \dim[X] - 2$, then X - A is connected.

Lemma 2.15. [20, Theorem 4.6] The hyperspaces $C_n([0,1])$ and $C_n(S^1)$ are 2n-dimensional Cantor manifolds, for each $n \in \mathbb{N}$.

A continuous function between continua X and Y is said to be *monotone* provided that point inverses are connected (equivalently if the inverse image of each subcontinuum of Y is connected).

For a continuum X and $n, m \in \mathbb{N}$ satisfying that $m \leq n$, the symbol $q_X^{(n,m)}$ denotes the natural projection $q_X^{(n,m)} \colon C_n(X) \to HS_m^n(X)$, and F_X^m denotes the element of $q_X^{(n,m)}(F_m(X))$. Notice that

$$q_X^{(n,m)}|_{C_n(X)-F_m(X)}: C_n(X) - F_m(X) \to HS_m^n(X) - \{F_X^m\}$$
 (1)

is a homeomorphism.

We shall make use of other concepts not defined here, which will be taken as in [19].

3. Main Results

The following result extends [17, Theorem 3.7].

Theorem 3.1. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ contains an n-cell.

Proof. By Lemma 2.2, $C_n(X)$ contains an n-cell \mathcal{M} . Moreover, since $C_n(X) - F_m(X)$ is a dense open subset of $C_n(X)$, we have that $((C_n(X) - F_m(X)) \cap \mathcal{M} \neq \emptyset)$. By Lemma 2.4, there exists an n-cell \mathcal{N} such that $\mathcal{N} \subset C_n(X) - F_m(X)$. Thus, by (1), $HS_m^n(X)$ contains an n-cell.

The next result extends [17, Theorem 3.8].

Theorem 3.2. If $n, m \in \mathbb{N}$ with $m \leq n$ and X is a continuum that contains n pairwise disjoint decomposable subcontinua, then $HS_m^n(X)$ contains a 2n-cell.

Proof. By Lemma 2.3, $C_n(X)$ contains a 2n-cell \mathcal{M} . Moreover, since $C_n(X) - F_m(X)$ is a dense open subset of $C_n(X)$, we have that $((C_n(X) - F_m(X)) \cap \mathcal{M} \neq \emptyset)$. By Lemma 2.4, there exists a 2n-cell \mathcal{N} such that $\mathcal{N} \subset C_n(X) - F_m(X)$. Thus, by (1), $HS_m^n(X)$ contains a 2n-cell.

The following result extends [18, Theorem 4.1].

Theorem 3.3. Let X be a continuum and $n, m, s \in \mathbb{N}$ with $m \leq s < n$. Then, $HS_m^s(X)$ can be embedded in $HS_m^n(X)$.

Proof. Let $i_{s,n}:C_s(X)\to C_n(X)$ be the inclusion function, $q_X^{(s,m)}:C_s(X)\to HS_m^s(X)$ and $q_X^{(n,m)}:C_n(X)\to HS_m^n(X)$ be quotient functions. We denote $q_X^{(s,m)}(F_m(X))=F_X^{(s,m)}$ and $q_X^{(n,m)}(F_m(X))=F_X^{(n,m)}$. Since

$$\{\{A\}: A \in C_n(X) - F_m(X)\} \cup \{F_m(X)\} \text{ and } \{\{B\}: B \in C_s(X) - F_m(X)\} \cup \{F_m(X)\}$$

are partitions of $C_n(X)$ and $C_s(X)$, respectively; then $i_{s,n}$ is a relation-preserving and continuous. Now, let $h_{s,n}: HS_m^n(X) \to HS_m^n(X)$ be given by

$$h_{s,n}(\mathcal{A}) = \begin{cases} F_X^{(n,m)}, & \text{if } \mathcal{A} = F_X^{(s,m)}; \\ q_X^{(n,m)}(i_{s,m}((q_X^{(s,m)})^{-1}(\mathcal{A}))), & \text{if } \mathcal{A} \neq F_X^{(s,m)}. \end{cases}$$

Notice that $h_{s,n}$ is a continuous function by Lemma 2.5. Moreover, as $h_{s,n}$ is defined, it is clear that $h_{s,n}$ is a one-to-one function. Since the spaces are compact, $h_{s,n}$ is an embedding.

The next result extends [17, Theorem 4.1].

Theorem 3.4. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ has property (b).

Proof. Let $\mathcal{A} \in HS_m^n(X)$. If $\mathcal{A} = F_X^m$, then $(q_X^{(n,m)})^{-1}(\mathcal{A}) = F_m(X)$ which is a connected subset of $C_n(X)$. On the other hand, if $\mathcal{A} \neq F_X^m$, using relation (1), then $(q_X^{(n,m)})^{-1}(\mathcal{A})$ is a one-point set. Hence, $(q_X^{(n,m)})^{-1}(\mathcal{A})$ is a connected subset of $C_n(X)$. Therefore, $q_X^{(n,m)}$ is a monotone function. By Lemma 2.7, $C_n(X)$ has property (b). Since $q_X^{(n,m)}(C_n(X)) = HS_m^n(X)$ and [12, Theorem 2, p.434], we conclude that $HS_m^n(X)$ has the property (b).

Theorem 3.5. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ is unicoherent.

Proof. Applying Theorem 3.4 and Lemma 2.6, the result follows.

The following result extends [17, Theorem 4.2].

Theorem 3.6. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ is colocally connected.

 \checkmark

Proof. Case n = m = 1 is already proved in [5, Theorem 4.1].

Suppose $n \geq 2$ and let $A \in HS_m^n(X)$. We are going to consider three cases:

Case 1. $A = F_X^m$.

For any $\varepsilon > 0$, let $\mathcal{U}_{\varepsilon} = B_H(F_m(X), \varepsilon)$. Notice that $\{q_X^{(n,m)}(\mathcal{U}_{\varepsilon}) : \varepsilon > 0\}$ forms a base of open sets about F_X^m . Fix $\varepsilon > 0$. Let $\mathcal{B} \in HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$. Thus, $(q_X^{(n,m)})^{-1}(\mathcal{B}) \in C_n(X) - \mathcal{U}_{\varepsilon}$. By Lemma 2.1, there exists an order arc $\alpha : [0,1] \to C_n(X)$ such that $\alpha(0) = (q_X^{(n,m)})^{-1}(\mathcal{B})$ and $\alpha(1) = X$ and $\alpha([0,1]) \subset C_n(X) - \mathcal{U}_{\varepsilon}$. Notice that $q_X^{(n,m)} \circ \alpha : [0,1] \to HS_m^n(X)$ is an arc from \mathcal{B} to $q_X^{(n,m)}(X)$ satisfying $(q_X^{(n,m)} \circ \alpha)([0,1]) \subset HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$, which implies that this space is arcwise connected.

Case 2.
$$A = q_X^{(n,m)}(X)$$
.

For any $\varepsilon > 0$, let $\mathcal{U}_{\varepsilon} = B_H(X, \varepsilon)$. Observe that $\{q_X^{(n,m)}(\mathcal{U}_{\varepsilon}) : \varepsilon > 0\}$ forms a base of open sets about $q_X^{(n,m)}(X)$. Fix $\varepsilon > 0$. Let $\mathcal{B} \in HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$. Thus, $(q_X^{(n,m)})^{-1}(\mathcal{B}) \in C_n(X) - \mathcal{U}_{\varepsilon}$. Let $D \in F_m((q_X^{(n,m)})^{-1}(\mathcal{B}))$. By Lemma 2.1, there exists an order arc $\alpha : [0,1] \to C_n(X)$ such that $\alpha(0) = D$ and $\alpha(1) = (q_X^{(n,m)})^{-1}(\mathcal{B})$. Moreover, $\alpha([0,1]) \subset C_n(X) - \mathcal{U}_{\varepsilon}$. Hence, $q_X^{(n,m)} \circ \alpha : [0,1] \to C_n(X)$ is an arc such that $(q_X^{(n,m)} \circ \alpha)(0) = F_X^m$, $(q_X^{(n,m)} \circ \alpha)(1) = D$ and $(q_X^{(n,m)} \circ \alpha)([0,1]) \subset HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$. Therefore, $HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$ is an arcwise connected space.

Case 3.
$$A \in HS_m^n(X) - \{F_X^m, q_X^{(n,m)}(X)\}.$$

For any $\varepsilon > 0$, let $\mathcal{U}_{\varepsilon} = B_H((q_X^{(n,m)})^{-1}(\mathcal{A}), \varepsilon)$. Thus, $\{q_X^{(n,m)}(\mathcal{U}_{\varepsilon}) : \varepsilon > 0\}$ forms a base of open sets about \mathcal{A} . Fix $\varepsilon > 0$ such that $q_X^{(n,m)}(\mathcal{U}_{\varepsilon}) \cap \{F_X^m, q_X^{(n,m)}(X)\} = \emptyset$. Let $\mathcal{B} \in HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$. If $(q_X^{(n,m)})^{-1}(\mathcal{B}) \nsubseteq (q_X^{(n,m)})^{-1}(\mathcal{A})$, by Lemma 2.1 there exists an order arc $\alpha : [0,1] \to C_n(X)$ such that $\alpha(0) = (q_X^{(n,m)})^{-1}(\mathcal{B})$ and $\alpha(1) = X$. Thus, $\alpha([0,1]) \subset C_n(X) - B_H((q_X^{(n,m)})^{-1}(\mathcal{A}), \varepsilon)$. Hence, $q_X^{(n,m)} \circ \alpha$ is an arc from \mathcal{B} to $q_X^{(n,m)}(X)$ such that $q_X^{(n,m)} \circ \alpha \subset HS_m^n(X) - \mathcal{U}_{\varepsilon}$, as desired.

On the other hand, suppose that $(q_X^{(n,m)})^{-1}(\mathcal{B}) \subset (q_X^{(n,m)})^{-1}(\mathcal{A})$. Let $D \in F_m((q_X^{(n,m)})^{-1}(\mathcal{B}))$. By Lemma 2.1, there exists an order arc $\beta:[0,1] \to C_n(X)$ such that $\beta(0) = D$ and $\beta(1) = (q_X^{(n,m)})^{-1}(\mathcal{B})$. Thus, $\beta([0,1])$ is contained in $C_n(X) - B_H((q_X^{(n,m)})^{-1}(\mathcal{A}), \varepsilon)$. Hence, $q_X^{(n,m)} \circ \beta:[0,1] \to HS_m^n(X)$ is an arc from F_X^m to \mathcal{B} and $(q_X^{(n,m)} \circ \beta)([0,1]) \subset HS_m^n(X) - q_X^{(n,m)}(\mathcal{U}_{\varepsilon})$. Therefore, the last space is arcwise connected.

Since colocal connectedness implies aposyndesis, we have the next result which extends [17, Corollary 4.3].

Corollary 3.7. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ is a posyndetic.

From this, we can prove the following result which extends [17, Corollary 4.4].

Theorem 3.8. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. Then, $HS_m^n(X)$ is finitely aposyndetic.

Proof. By Theorem 3.5, $HS_m^n(X)$ is unicoherent. By Corollary 3.7, $HS_m^n(X)$ is aposyndetic. Finally, by Lemma 2.9, any aposyndetic unicoherent continuum is finitely aposyndetic.

The following result extends [17, Theorem 3.9].

Theorem 3.9. Let X be a continuum and $n, m \in \mathbb{N}$ with $m \leq n$. If $C_n(X)$ is a finite-dimensional Cantor manifold such that $\dim[C_n(X)] \geq n+2$, then $HS_m^n(X)$ is a finite-dimensional Cantor manifold.

Proof. Let $k = \dim[C_n(X)]$. According to Lemma 2.10, $\dim[HS^n_m(X)] = k$. Suppose $HS^n_m(X)$ is not a Cantor manifold. Hence, there exists a subset \mathcal{A} of $HS^n_m(X)$ such that $\dim[\mathcal{A}] \leq k-2$ and $HS^n_m(X)-\mathcal{A}$ is not connected. Hence, there exist a separation $\mathcal{A}_1, \mathcal{A}_2$ of $HS^n_m(X)-\mathcal{A}$. Furthermore, by [27, (1.4), p. 43], there exist a closed subset \mathcal{A}' of \mathcal{A} and nonempty open subsets \mathcal{D}, \mathcal{E} of $HS^n_m(X)$ such that $HS^n_m(X)-\mathcal{A}'=\mathcal{D}\cup\mathcal{E}$ where $\mathcal{D}\subset\mathcal{A}_1$ and $\mathcal{E}\subset\mathcal{A}_2$. Hence, $C_n(X)-(q_X^{(n,m)})^{-1}(\mathcal{A}')=(q_X^{(n,m)})^{-1}(\mathcal{D})\cup(q_X^{(n,m)})^{-1}(\mathcal{E})$, where $(q_X^{(n,m)})^{-1}(\mathcal{D})$ and $(q_X^{(n,m)})^{-1}(\mathcal{E})$ are disjoint open subsets of $C_n(X)$. In order to reach a contradiction, we will see that $\dim[(q_X^{(n,m)})^{-1}(\mathcal{A}')] \leq k-2$ so that, $C_n(X)$ is not a Cantor manifold. Consider two cases.

Case 1. $F_X^m \notin \mathcal{A}'$.

Since $(q_X^{(n,m)})^{-1}(\mathcal{A}')$ is homeomorphic to \mathcal{A}' , it follows that $\dim[(q_X^{(n,m)})^{-1}(\mathcal{A}')] \leq k-2$.

Case 2. $F_X^m \in \mathcal{A}'$.

By Lemma 2.11 and Lemma 2.12, $\dim[X] = 1$. Observe that $(q_X^{(n,m)})^{-1}(\mathcal{A}') = (q_X^{(n,m)})^{-1}(\mathcal{A}' - \{F_X^m\}) \cup (q_X^{(n,m)})^{-1}(\{F_X^m\}) = (q_X^{(n,m)})^{-1}(\mathcal{A}' - \{F_X^m\}) \cup F_m(X)$. By Lemma 2.13, $\dim[F_m(X)] \leq m$. Since $m \leq n \leq k-2$ and $\dim[(q_X^{(n,m)})^{-1}(\mathcal{A}' - \{F_X^m\})] \leq \dim[\mathcal{A}'] \leq k-2$, by Lemma 2.14, we conclude that $\dim[(q_X^{(n,m)})^{-1}(\mathcal{A}')] \leq k-2$.

The following result extends [17, Corollary 3.10].

Theorem 3.10. Let $n, m \in \mathbb{N}$ be such that $m \leq n$. The hyperspaces $HS_m^n([0,1])$ and $HS_m^n(S^1)$ are 2n-dimensional Cantor manifolds.

Proof. Case n = m is already proved in [17, Corollary 3.10].

Suppose that n > m. By Lemma 2.15 we have that $C_n([0,1])$ and $C_n(S^1)$ are 2n-dimensional Cantor manifolds. Since $n \geq 2$ and $2n \geq n + 2$, the result follows from Theorem 3.9.

Question 3.11. For what continua X does the natural embedding in the proof of Theorem 3.3 embed $HS_m^s(X)$ as a retract of $HS_m^n(X)$? In particular, what about the case when X is S^1 ?

Question 3.12. For what continua X, can $HS_m^s(X)$ be embedded in $HS_m^n(X)$ as a retract $(m \le s < n)$?

According to [6, Theorem 4.4] which states that if X is a contractible continuum and $n, m \in \mathbb{N}$ with $m \leq n$, then $HS_m^n(X)$ is contractible, the following question arises:

Question 3.13. What continua X have the property that $HS_m^n(X)$ is contractible for each $n, m \in \mathbb{N}$ with $m \leq n$?

Question 3.14. [6, Question 7.5] If X is decomposable and $n, m \in \mathbb{N}$ with m < n, is $HS_m^n(X)$ locally arcwise connected at F_X^m ?

Question 3.15. What continua X have the property that $HS_m^n(X)$ is pseudo-contractible for each $n, m \in \mathbb{N}$ with $m \leq n$?

Acknowledgements

The authors wish to thank the referees for their valuable observations and comments, which helped to greatly improve this paper.

References

- [1] Anaya J.G., Maya D., and Vázquez-Juárez F., "The hyperspace $HS_m^n(X)$ for a finite graph X is unique", $Topology\ Appl.$, 234 (2018), 428-439. doi: 10.1016/j.topol.2017.11.039
- [2] Bennett D.E., "Aposyndetic properties of unicoherent continua", Pacific J. Math., 37 (1971), No. 3, 585-589. doi: 10.2140/pjm.1971.37.585
- [3] Curtis D.W., and Nhu N.T., "Hyperspaces of finite subsets which are homeomorphic to \aleph_0 -dimensional linear metric spaces", Topology Appl., 19 (1985), No. 3, 251-260. doi: 10.1016/0166-8641(85)90005-7
- [4] Dugundji J., Topology, 2nd ed., BCS Associates, Moscow, Idaho, USA, 1978.
- [5] Escobedo R., López M. de J., and Macías S., "On the hyperspace suspension of a continuum", Topology Appl., 138 (2004), No. 1-3, 109–124. doi: 10.1016/j.topol.2003.08.024
- [6] Herrera D.C., López M. de J., and Macías F.R., "Uniqueness of the (n,m)-fold hyperspace suspension for continua", *Topol. Appl.*, 196 (2015), 652-667. doi: 10.1016/j.topol.2015.05.026
- [7] Herrera D.C., "Dendrites with unique hyperspace", Houston J. Math., 33 (2007), No. 3, 795–805. doi: 10.1016/j.topol.2008.08.007
- [8] Herrera D.C., Illanes A., Macías F.R., and Vázquez F.J., "Finite graphs have unique hyperspace $HS_n(X)$ ", Top. Proc. , 44 (2014), 75–95. doi: 10.1016/j.topol.2005.04.006
- [9] Herrera D.C., López M. de J., and Macías F.R., "Framed continua have unique n-fold hyperspace suspension", $Topology\ Appl.$, 196 (2015), 652–667. doi: 10.1016/j.topol.2015.05.026

- [10] Herrera D.C., López M. de J., and Macías F.R., "Almost meshed locally connected continua without unique n-fold hyperspace suspension", *Houston J. Math.*, 44 (2018), No. 4, 1335–1365. doi: 10.1016/j.topol.2016.05.013
- [11] Illanes A., and Nadler S.B., Hyperspaces Fundamentals and Recent Advances, Taylor & Francis, vol. 216, New York, 1999.
- [12] Kuratowski K., Topology, Academic Press, vol. 2, New York, 1968.
- [13] Levin M., and Sternfeld Y., "The space of subcontinua of a 2-dimensional continuum is infinitely dimensional", Proc. Amer. Math. Soc., 125 (1997), No. 9, 2771–2775. doi: 10.1090/S0002-9939-97-04172-5
- [14] Libreros-López A., Macías F.R., and Herrera D.C., "On the uniqueness of n-fold pseudo-hyperspace suspension for locally connected continua", Topology Appl., 312 (2022). 1-22, doi: 10.1016/j.topol.2022.108053
- [15] Macías J.C., "On the n-fold pseudo-hyperspace suspensions of continua", Glas. Mat. Ser. III, 43 (2008), No. 2, 439–449. doi: 10.3336/gm.43.2.14
- [16] Macías S., "On the hyperspaces $C_n(X)$ of a continuum X", Topology Appl., 109 (2001), No. 2, 237–256. doi: 10.1016/S0166-8641(99)00151-0
- [17] Macías S., "On the n-fold hyperspace suspension of continua", Topology Appl., 138 (2004), No. 1, 125–138. doi: 10.1016/j.topol.2003.08.023
- [18] Macías S., "On the *n*-fold hyperspace suspension of continua, II", *Glas. Mat. Ser. III*, 41 (2006), No. 2, 335–343. doi: 10.3336/gm.41.2.16
- [19] Macías S., Topics on continua, Springer Cham, 2nd ed., 2018.
- [20] Macías S., and Nadler Jr. S.B., "n-fold hyperspace, cones, and products", Topology Proc., 26 (2001), 255–270. doi: 10.3336/gm.44.2.13
- [21] Montero G.R., Herrera D.C., López M. de J., and Macías F.R., "Finite graphs have unique n-fold symmetric product suspension", 34th Summer Conference on Topology and its Applications, Johannesburg, South Africa, 47, 1–20, julio, 2019.
- [22] Morales U.F., "Finite graphs have unique n-fold pseudo-hyperspace suspension", 30th Summer Topology Conference, Galway, Ireland, 52, 219–233, junio, 2015.
- [23] Nadler Jr. S.B., Hyperspaces of Sets: A Text with Research Questions, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, New York, Basel, 1978.
- [24] Nadler Jr. S.B., "A fixed point theorem for hyperspace suspensions", Houston J. Math., 5 (1979), 125–132.
- [25] Nadler Jr. S.B., Continuum Theory: An Introduction, CRC Press, 1st ed., Taylor & Francis, vol. 158, 1992.
- [26] Nadler Jr. S.B., Dimension Theory: An introduction with exercises, Sociedad Matemática Mexicana, vol. 18, 2002.
- [27] Whyburn G.T., Analytic Topology, Amer. Math. Soc. Colloq. Publ., vol. 28, American Mathematical Society, Providence, RI, 1942.