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1. Introduction

The symplectic structures and Lagrangian submanifolds of coadjoint orbits were stud-
ied and developed by renowned mathematicians such as Kirillov, Arnold, Kostant, and
Souriau from the early to the mid-1960s, although they had its roots in the work of Lie,
Borel, and Weyl. Alternatively, there are several theories and applications to physics
using general reduction theory, as in [2], [9], [10], and [11], among others. We study some
applications of the semisimple Lie theory to symplectic geometry, in particular to find
Lagrangian submanifolds on adjoint orbits. In this paper, we follow the next construc-
tion: let g be a non-compact semisimple Lie algebra with Cartan decomposition g = k⊕s
and Iwasawa decomposition g = k ⊕ a ⊕ n with a ⊂ s maximal Abelian. In the under-
lying vector space g, there is another Lie algebra structure kad = k ×ad s given by the
semi-direct product defined by the adjoint representation of k in s, which is viewed as an
Abelian Lie algebra. Let G = Aut0g be the adjoint group of g (identity component of the
automorphism group) and put K = exp k ⊂ G. The semi-direct product Kad = K ×ad s
obtained by the adjoint representation of K in s has Lie algebra kad = k ×ad s, that
orbit was studied in [1]. Then, we consider coadjoint orbits for both Lie algebras g and
kad. These orbits are submanifolds of g∗ that we identify with g via the Cartan–Killing
form of g, so that the orbits are seen as submanifolds of g. These are just the adjoint
orbits for the Lie algebra g while for kad they are the orbits in g of the representation of
Kad obtained by transposing its coadjoint representation. The orbits through H ∈ g are
denoted by ad (G) ·H and Kad ·H, respectively.
In Section 2, our goal is to generalize that construction, to get a wider variety of La-
grangian submanifolds of any adjoint semisimple orbit. For this, we are going to change
the usual structure of semisimple Lie algebras, i.e., with a new Lie bracket given by a
convenient semi-direct product. This construction was inspired by [8], where the author
defines a semi-direct product using a closed subgroup of a semi-simple Lie group and
the vector space g (seeing g = Lie(G) as a vector space), but focused on solving some
applications of control theory. In this way, the first part of this chapter is focused on
the general construction of coadjoint orbits of this semi-direct structure. After that,
we adapt those general results to the mentioned semi-direct product given by a Cartan
decomposition.

In Section 3, we build some families of Lagrangian submanifolds on ad(G) · H with
respect to the Hermitian symplectic form Ωτ , characterized by Cartan involutions on g.
The idea and future goal of this result is: Classify the families of Lagrangian submanifolds
determined by Cartan involutions.

2. General construction

The construction presented in this section is a more general version of the one given in
[1], some proofs will have a lot of similarities, but here we will not be able to use some
special structure such as compactness. In Section 2.1, we will see under what conditions
the construction is identical to the one cited above.

Let G be a connected Lie group with Lie algebra g and take a representation ρ : G →
Gl (V ) on a vector space V (with dimV < ∞). The infinitesimal representation of g on
gl(V ) is also going to be denoted by ρ. The vector space V can be seen as an Abelian Lie
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Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form 29

group (or Abelian Lie algebra). In this way, we can take the semi-direct product G×ρ V
which is a Lie group whose underlying manifold is the cartesian product G × V . This
group is going to be denoted by Gρ and its Lie algebra gρ is the semi-direct product

gρ = g×ρ V.

Our first purpose is to describe the coadjoint orbit on the dual g∗ρ of gρ. To begin with,
let’s see how to determine the ρ-adjoint representation adρ (X, v), where (X, v) ∈ g×ρ V .
Thus, take a basis of g × V denoted by B = Bg ∪ BV with Bg = {X1, . . . , Xn} and
BV = {v1, . . . , vd} basis of g and V , respectively. On this basis, the matrix of adρ (X, v)
is given by

[adρ (X, v)]B =

(
ad (X) 0
A (v) ρ (X)

)
, (1)

where ad (X) is the adjoint representation of g while for each v ∈ V , A (v) is the linear
map g → V defined by

A (v) (X) = ρ (X) (v) .

The dual space g∗ρ can be identified with g∗ ⊕ V ∗, where g∗ is immersed on (g× V )
∗ by

extensions of linear functionals on g to g×V by the zero functional on V (in the same way,
V ∗ is immersed on (g× V )

∗). Therefore, the dual basis of B is B∗ = B∗
g ∪ B∗

V , where B∗
g

and B∗
V are the dual basis of Bg and BV , respectively. Then, the coadjoint representation

ad∗ρ(X, v), for (X, v) ∈ gρ, with respect to B∗, is transposed with a negative sign on the
off-diagonal term of (1), that is

[
ad∗ρ (X, v)

]
B∗ =

(
ad∗ (X) −A (v)

∗

0 ρ∗ (X)

)
. (2)

In this matrix, ad∗ is the coadjoint representation of g, ρ∗ is the dual representation of
ρ, that is

ρ∗ (X)α = −α ◦ ρ (X) , α ∈ V ∗, X ∈ g,

and A(v)∗ : V ∗ → g∗ is the transpose of A(v) for v ∈ V , which by the above equation
can be seen as follows:

A (v)
∗
(α) (X) = α (A (v) (X)) = α (ρ (X) (v)) = −ρ∗ (X) (α) (v) .

The adjoint representation adρ and coadjoint representation ad∗ρ of Gρ are obtained by
exponentials of representations in gρ. In particular, the following matrices are obtained
(on the basis B and B∗):[

etadρ(0,v)
]
B
=

(
1 0

tA (v) 1

)
,

[
etad

∗
ρ(0,v)

]
B∗

=

(
1 −tA (v)

∗

0 1

)
. (3)

On the other hand, for g ∈ G the restriction of adρ (g) to V coincides with ρ (g) and
the restriction of ad∗ρ (g) to V ∗ coincides with ρ∗ (g), where we are seeing V and V ∗ as
subspaces of gρ = g⊕ V and g∗ρ = g∗ ⊕ V ∗, respectively.
To describe the map A(v)∗, it is convenient to define the momentum map of the repre-
sentation ρ.
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30 J. Báez & L.A.B. San Martin

Definition 2.1. The momentum map of the representation ρ is the map

µρ = µ : V ⊗ V ∗ → g∗,

given by
µ (v ⊗ α) (X) = α (ρ (X) v) v ∈ V, α ∈ V ∗, X ∈ g. (4)

Then
A (v)

∗
α = µ (v ⊗ α) ∈ g∗,

because we have the following identifications

A (v)
∗
(α) (X) = α (A (v) (X)) = α (ρ (X) (v)) = µ (v ⊗ α) (X) .

Lemma 2.2. The momentum map is G-equivariant, with respect to the representation
ρ⊗ ρ∗ and the coadjoint representation, i.e., for g ∈ G, v ∈ V , and α ∈ V ∗

µ ((ρ(g)v)⊗ (ρ∗(g)α)) = ad∗ρ(g) · µ(v ⊗ α). (5)

Proof. Let g ∈ G, note that the restrictions of adρ (g) and ad∗ρ (g) to V and V ∗ coincide
with ρ(g) and ρ∗ (g), respectively. Then, for X ∈ g

ad∗ρ (g) (µ(v ⊗ α)) (X) = (A(v)∗α)
(
adρ

(
g−1

))
(X)

= α
(
adρ

(
g−1

))
(ρ(X)adρ(g)(v))

= µ ((ρ(g)v)⊗ (ρ∗(g)α)) (X). □✓✓✓

Since µ is bilinear, for any fixed α ∈ V ∗, the map µα : V → g∗ given by µα(v) = µ (v ⊗ α)
is a linear map and consequently, its image µα (V ) is a subspace of g∗. Let α ∈ V ∗, the
coadjoint orbit of Gρ through α will be denoted by

Gρ · α := ad∗ρ (Gρ) · α.

The following proposition shows that the coadjoint orbit for α ∈ V ∗ is the union of
subspaces µβ(V ), with β ∈ ρ∗ (G)α.

Proposition 2.3. For α ∈ V ∗, the coadjoint orbit can be written as

Gρ · α =
⋃

β∈ρ∗(G)α

µβ (V )× {β} ⊂ g∗ × V ∗,

and identifying g∗ × V ∗ with g∗ ⊕ V ∗

Gρ · α =
⋃

β∈ρ∗(G)α

β + µβ (V ) ,

where β + µβ(V ) is an affine subspace of g∗ ⊕ V ∗.
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Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form 31

Proof. Firstly, if g ∈ G we can identify ad∗ρ(g) with ρ∗(g) in the subspace V ∗ ⊂ g∗ × V ∗.
Therefore, ρ∗ (G)α ⊂ ad∗ρ (Gρ)α, and as we saw before[

etad
∗
ρ(0,v)

]
B
=

(
1 −tA (v)

∗

0 1

)
,

which shows that if β ∈ V ∗ ⊂ g∗ ⊕ V ∗ = g∗ × V ∗, then

e
tad∗

gρ
(0,v)

β = β − tA (v)
∗
(β) ,

which in terms of the momentum map is

β − tA (v)
∗
(β) = β − µβ (tv) .

Then, varying v ∈ V , we can see that the affine subspace β + µβ(V ) is contained in the
coadjoint orbit of β, for β ∈ V ∗. As ρ∗(G) · α ⊂ ad∗ρ(Gρ) · α, we conclude that⋃

β∈ρ∗(G)α

β + µβ (V ) ⊂ Gρ · α.

Conversely, if g ∈ G and β ∈ V ∗

ad∗ρ (g) (β + µβ (V )) = ρ∗ (g)β + ad∗ρ (g)µβ (V )

= ρ∗ (g)β + µρ∗(g)β (V )

where the last equality is a consequence of the fact that µ is equivariant. For h ∈ Gρ,
there are g ∈ G and v ∈ V , such that

ad∗ρ (h)α = ad∗ρ (g) ad
∗
ρ

(
et(0,v)

)
α.

As ad∗ρ
(
et(0,v)

)
α ∈ α+ µα (V ), then ad∗ρ (h)α ∈ ρ∗ (g)α+ µρ∗(g)α (V ). □✓✓✓

The action of Gρ is obviously transitive on Gρ ·α, then it is an homogeneous space given
by

Gρ · α = Gρ/Zρ(α) with Zρ(α) = {(g, v) ∈ Gρ : (g, v) · α = α},

the isotropy subgroup at α ∈ V ∗ ⊂ gρ, with Lie algebra

zρ(α) = {(X, v) ∈ gρ : ad∗ρ(X, v) · α = 0}.

Then in terms of the basis B∗

ad∗ρ(X, v) · α = −µα(v) + ρ∗(X)α,

therefore,
ad∗ρ(X, v) · α = 0 ⇔ ρ∗(X)α = 0 and µα(v) = 0.

Thus
zρ(α) = {X ∈ g : ρ∗(X)α = 0} × kerµα, (6)
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32 J. Báez & L.A.B. San Martin

and
Zρ(α) = {g ∈ G : ρ∗(g)α = α} × kerµα. (7)

As Tα(Gρ · α) ' gρ/zρ(α), for any (X, v) ∈ gρ, there exists a (unique) vector field (̃X, v)
induced by (X, v) at ξ = β + µβ(w) ∈ Gρ ·α (with β = ρ∗(g)α, g ∈ G, and w ∈ V ) given
by

(̃X, v)ξ =
d

dt

(
expρ t(X, v)

)
· ξ

∣∣∣∣
t=0

= −ad∗ρ(X, v) · ξ.

Hence
Tα(Gρ · α) = {−ad∗ρ(X, v) · α : (X, v) ∈ gρ}.

By Proposition 2.3, the coadjoint orbit Gρ ·α is the union of vector spaces and fibers over
ρ∗ (G)x of the representation ρ∗. This union is disjoint because given ξ ∈ (β + µβ (V ))∩
(γ + µγ (V )) then

ξ = β +X = γ + Y X = µβ (v) , Y = µγ (w)

with X,Y ∈ g. Since the sum g∗ρ = g∗ ⊕ V ∗ is direct, it follows that β = γ and X = Y .
Therefore there is a fibration

Gρ · α → ρ∗ (G)α,

such that an element ξ = β +X ∈ β + µβ (V ) associates β ∈ ρ∗ (G)α, and its fibers are
vector spaces. The following proposition shows that this fibration can be identified with
the cotangent space of ρ∗ (G)α.
Let ϕ be the map

ϕ : Gρ · α → T ∗ (ρ∗ (G)α) ,

such that, for β ∈ ρ∗ (G)α

ϕ (β + µβ (V )) = T ∗
β (ρ∗ (G)α) .

This implies that the restriction of ϕ to a fiber β+µβ (V ) is given by a linear isomorphism

µβ (V ) → T ∗
β (ρ∗ (G)α) .

Theorem 2.4. The map ϕ is an isomorphism of vector bundles.
If ω is the KKS symplectic form on Gρ · α and ω̃ is the canonical symplectic form on
T ∗ (ρ (G)α), then ϕ is a symplectic isomorphism of vector bundles, i.e., ϕ∗ω̃ = ω.

The proof of this result has several steps, essentially they are as follows:

The restriction of ϕ to a fiber w + µw (V ) is given by the isomorphism:

µw (V ) → T ∗
w (ρ (G)x) .

To see that: take ξ ∈ Gρ · α, there is a unique β ∈ ρ∗ (G)α, such that ξ ∈ µβ (V ),
then there is v ∈ V with ξ = β + µ (v ⊗ β). The vector v ∈ V defines a linear
functional fv on V ∗, and of course their respective restriction to Tβ (ρ

∗ (G)α),
therefore fv ∈ T ∗

β (ρ∗ (G)α). Set

ϕ (ξ) = fv ∈ T ∗
β (ρ∗ (G)α) , ξ = β + µ (v ⊗ β) .

A map ϕ is a linear injective map and the linear map µ (v ∧ w) 7→ fv is surjective.
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In the coadjoint orbit Gρ · α we can define the Konstant–Kirillov–Souriau (KKS)
symplectic form, denoted by ω and defined as

ωξ

(
˜(X1, v1)ξ,

˜(X2, v2)ξ

)
= ξ · [(X,w), (Y, z)]ρ (Xj , vj) ∈ gρ, ξ ∈ Gρ · α,

where (̃X, v) = ad∗ρ(X, v) is the Hamiltonian vector field of the function H(X,v) :
M → R given by

H(X,v)(ξ) = ξ(X, v) (X, v) ∈ gρ.

Furthermore, as is known, for the cotangent bundle T ∗ (ρ∗ (G)α) we can define the
canonical symplectic form ω̃.

The best way to relate these symplectic forms is through the action of the semi-
direct product Gρ = G × V on the cotangent bundle of ρ∗ (G)α. This action is
described in Proposition 3.11 (in a general case), the action of Gρ on T ∗ (ρ (G)α)
is Hamiltonian and then it defines a moment map

m : T ∗ (ρ∗ (G)α) → g∗ρ.

The construction of m shows that it is the inverse of ϕ. Moreover, m is equivariant,
that is, it interchanges the actions on T ∗ (ρ (G)α) and the adjoint orbit, which
implies that m is a symplectic morphism.

2.1. Compact case

Let U be a compact connected Lie group with Lie algebra u and take a representation
ρ : U → Gl(V ), where V admits a U -invariant inner product 〈·, ·〉 when V is a real vector
space (a Hermitian inner product when V is a complex vector space).

We will denote by Uρ the semi-direct Lie group U ×ρ V , with Lie algebra uρ = u ×ρ V .
The inner product allows us to identify V with V ∗ by

v ∈ V 7→ 〈v, ·〉 ∈ V ∗,

and we can also identify ρ with ρ∗ by

ρ∗(X)(v)(w) = −〈ρ(X)w, v〉 v, w ∈ V, X ∈ u.

Now, analogously to the discussion for the general case, we can characterize the coadjoint
orbit of Uρ in terms of the momentum map µ : V ⊗ V → u∗ given by

µ (v ⊗ w) (X) = 〈ρ (X) v, w〉, v, w ∈ V, X ∈ u.

By construction, ρ(u) is an isometry for all u ∈ U with respect to the fixed U -invariant
inner product, then ρ(X) is a skew-symmetric linear map with respect to 〈·, ·〉 for all
X ∈ u, and we have

µ(v ⊗ w)(X) = 〈ρ(X)v, w〉 = −〈ρ(X)w, v〉 = −µ(w ⊗ v)(X),
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34 J. Báez & L.A.B. San Martin

that is, µ is skew-symmetric. Therefore, the momentum map µ is defined in the exterior
product ∧2V = V ∧ V . Furthermore, the compact Lie algebra u admits an ad-invariant
inner product such that we can identify u∗ with u, then

µ : V ∧ V → u.

Similarly, the dual u∗ × V ∗ of uρ = u × V is identified by its inner product which is a
direct sum of ad-invariant inner products of u and V . In that identification, the coadjoint
representation of u can be seen as the adjoint representation of u because its inner product
is u-invariant, but the inner product of V is not invariant under the adjoint representation
of V , then the coadjoint representation of that Abelian algebra is the transpose of its
adjoint representation. This means that the coadjoint representation of u× V is written
in u× V as type matrices on orthonormal bases:

ad∗ρ (X, v) =

(
ad (X) −A (v)

0 ρ (X)

)
X ∈ u, v ∈ V,

where for each v ∈ V , A (v) : V → u can be identified by A (v) (w) = µ (v ∧ w).

Then the representations adρ and ad∗ρ of Uρ are obtained by exponentials of representa-
tions in uρ, take v ∈ V ⊂ u× V and by Proposition 2.3

Uρ · v := ad∗ρ(Uρ) · v =
⋃

w∈ρ(U)v

w +A(w) (V ) .

2.2. Examples

We will see some examples of semi-direct coadjoint orbits to compare them with the usual
orbits. To begin with, take ρ the canonical representation of u = so (n) in V = (Rn, 〈·, ·〉).
The momentum map with values in u is given by

µ (v ∧ w) (B) = 〈Bv,w〉 B ∈ so (n) ,

and as we know the invariant inner product on so(n) is

(A,B) = tr ABT = −tr AB.

To describe the orbit, take the isomorphism I : ∧2V → so (n) given by

I (v ∧ w) (x) = 〈v, x〉w − 〈w, x〉v,

which satisfies
I (v ∧ w)

T
= −I (v ∧ w) = I (w ∧ v) .

If A ∈ so(n) we have

I (v ∧ w)
(
ATx

)
= 〈v,ATx〉w − 〈w,ATx〉v
= 〈Av, x〉w − 〈Aw, x〉v.
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Let {e1, . . . , en} be an orthonormal basis of V , then

tr
(
I (v ∧ w)AT

)
=

∑
i

〈I (v ∧ w)AT ei, ei〉

= 〈Av,
∑
i

〈w, ei〉ei〉 − 〈Aw,
∑
i

〈v, ei〉ei〉

= 2〈Av,w〉.

Therefore identifying V ∗ with V by 〈·, ·〉, and so(n)∗ with so(n) by 1
2 (·, ·), the momentum

map is µ(v ∧ w) = I(v ∧ w), that is

µ (v ∧ w) (x) = 〈v, x〉w − 〈w, x〉v µ (v ∧ w) ∈ so (n) .

For simplicity of notation, we will denote I(w ∧ v) for v, w ∈ V as v ∧ w. If v and w are
n× 1 column vectors, we have

v ∧ w = vwT − wvT

which is an n× n matrix.
As we saw above, the coadjoint representation of so(n)×ρ R is given by

ad∗ρ (B, v) =

(
ad (B) −A (v)

0 B

)
B ∈ so (n) , v ∈ Rn,

where for each v ∈ Rn, A (v) : Rn → so (n) is the map

A (v) (w) = vwT − wvT .

The representation so (n)×ρRn defines a representation of the semi-direct product Uρ =
SO(n) ×ρ Rn on so (n) × Rn by exponentials (here so (n) × Rn is the space where the
Uρ-orbit is being identified). As discussed earlier a Uρ-orbit of v ∈ Rn ⊂ so (n) × Rn is
given by ⋃

w∈O
w +A (w) (Rn) O = SO (n) · v.

In this case, the orbits of SO (n) in Rn are the (n − 1)-dimensional spheres centered at
the origin.

Example 2.5. For n = 2, we have that so (2) ×ρ R2 is isomorphic with R3 and for all
w ∈ R2 the image A (w)

(
R2

)
= so (2), therefore the coadjoint semi-direct orbits are the

circular cylinders with the axis on the line generated by so (2) in so (2)× R2 ≈ R3.

Let h be a subalgebra of so(n). We can induce the canonical representation of h in Rn

as a restriction on so(n), then

µ (v ∧ w) (B) = 〈Bv,w〉 B ∈ h,

because the inner product of Rn is invariant by h. The trace form −tr AB provides (by
restriction) an inner invariant product in h, that allows us to identify h with h∗.
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36 J. Báez & L.A.B. San Martin

Let p : so(n) → h be the orthogonal projection in relation to the trace form. By the
identification above of h∗ and h we can define the h-momentum map

µh : ∧2Rn → h given by µh = p ◦ µ,

where µ is the momentum map of so(n). Then

µh(v ∧ w) = p(vwT − wvT ).

For u(n), we can take a canonical representation in Cn = R2n and see u(n) as an immersed
subalgebra of so(2n) by matrices 2n× 2n of the form(

A −B
B A

)
AT = −A, BT = B.

Then h = u(n) and p : so(2n) → u(n) is the orthogonal projection with respect to the
trace form. Hence the momentum map is

µu(n)(z ∧ w) = p(zwT − wzT ), z, w ∈ R2n.

3. Coadjoint semi-direct orbit given by a Cartan decomposition

In this section, we will see the results of Section 2 in the structure of any semisimple
non-compact Lie algebra, determined by a given Cartan decomposition. This structure
was studied and described in [1], where the authors made the following: Let g be a
non-compact semisimple Lie algebra with Cartan decomposition g = k⊕ s. As [k, s] ⊂ s,
the subalgebra k can be represented on s by the adjoint representation. Then, we can
define the semi-direct product kad = k × s, where s can be seen as an Abelian algebra.
This is a new Lie algebra structure on the same vector space g where the brackets [X,Y ]
are the same when X or Y are in k, but the bracket changes when X,Y ∈ s. The
identification between kad = k× s and its dual k∗ad = k∗× s∗ is given by the inner product
Bθ (X,Y ) = −〈X, θY 〉, where 〈·, ·〉 is the Cartan-Killing form of g and θ is a Cartan
involution. If A ∈ k, then ad (A) is anti-symmetric with respect to Bθ, while ad (X) is
symmetric for X ∈ s. The moment map is given by

µ (X ∧ Y ) (A) = Bθ (ad (A)X,Y ) A ∈ k; X,Y ∈ s,

the second part of that equality is

Bθ ([A,X] , Y ) = −Bθ ([X,A] , Y ) = −Bθ (A, [X,Y ]) = −〈A, [X,Y ]〉

because [X,Y ] ∈ k. Therefore the moment map of the adjoint representation of k on s is

µ (X ∧ Y ) = [X,Y ] ∈ k X,Y ∈ s,

where [·, ·] is the usual bracket of g. Therefore, the coadjoint representation of the semi-
direct product k× s is given by (in an orthonormal basis)

ad∗ (X,Y ) =

(
ad (X) −A (Y )

0 ad(X)

)
X ∈ k, Y ∈ s

[Revista Integración



Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form 37

where for each Y ∈ s, A (Y ) : s → k is the map A (Y ) (Z) = [Y, Z].
Let G be a connected semisimple Lie group with Lie algebra g and take K ⊂ G the
subgroup given by K = 〈exp k〉. The semi-direct product of K and s will be denoted by

Kad = K ×ad s.

The coadjoint orbit of X̃ ∈ s ⊂ k×s is the union of the fibers A (Y ) (s) with Y belonging to
the K-coadjoint orbit of X̃ in s. As A (Y ) (Z) = [Y, Z], then A (Y ) (s) = ad (Y ) (s) where
ad is the adjoint representation in g. To detail the coadjoint orbits of the semi-direct
product, take a maximal Abelian subalgebra a ⊂ s. The ad (K)-orbits in s are passing
through a are thus the flags on g. Take a positive Weyl chamber a+ ⊂ a. If H ∈ cl (a+)
then the orbit ad (K)H is the flag manifold FH . By Proposition 2.4, the Kad-orbit in
H ∈ cl(a+) is diffeomorphic to the cotangent bundle of FH , thus the Kad-orbit itself is
the union of the fibers ad (Y ) (s), with Y ∈ FH . In conclusion

Kad ·H =
⋃

Y ∈FH

Y + ad(Y ) (s) . (8)

In this union, the fiber over H is H + ad (H) (s) with ad (H) (s) ⊂ k. With the notations
above this subspace of k is given by

ad (H) (s) =
∑

α(H)>0

kα.

3.3. Hermitian symplectic form and Lagrangian submanifolds

Let gC be a complex semisimple Lie algebra and u its compact real form with Cartan
involution τ , such that

Hτ (X,Y ) = −〈X, τY 〉C X,Y ∈ gC

is a Hermitian form of gC, where 〈·, ·〉C is the complex Cartan–Killing form of gC.

Remark 3.1. To avoid confusion, we have that gC is the complexification of g (or realifi-
cation for gR), the complexification will be denoted at the top. While gC will simply be
to indicate that it is complex (or real for gR) , this is will be denoted at the bottom.

The imaginary part of Hτ will be denoted by Ωτ , which is

Ωτ (·, ·) = im (Hτ (·, ·)) (9)

is a symplectic form on gC (see [13]) and will be called the symplectic Hermitian form
determined by τ .
Let G be a connected Lie group with Lie algebra gC. For that, let gC = u ⊕ iu be a
Cartan decomposition with Cartan involution τ , for g a semisimple complex Lie algebra.
If U ⊂ G is the compact subgroup with Lie algebra u. Then, we will denote by Uad its
respective semi-direct product (described in Section 3 for the general case).
If H ∈ s = iu, then its semi-direct orbit is denoted by Uad ·H, given by

Uad ·H =
⋃

Y ∈ad(U)H

(Y + ad (Y ) (iu)) .
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Remark 3.2. Without loss generality, we can choose H ∈ a or H ∈ cl(a+), where a ⊂ s
is the maximal Abelian subalgebra of g, or a+ their respective positive Weyl chamber
(see [12] and [13]).

In [1] it was proved that the form Ωτ of g restricted to Uad ·H is a symplectic form, for
H ∈ cl(a+) and the following theorem:

Theorem 3.3. The manifolds (Uad ·H, Ωτ ) and (ad(G) ·H, Ωτ ) are symplectomorphic.

3.4. Lagrangian families

Let g be a real semisimple non-compact Lie algebra, such that is a real form of gC, and
u a compact real form of gC with Cartan involution τ (i.e., g and u are real forms of gC).
Then

g = (g ∩ u)︸ ︷︷ ︸
k

⊕ (g ∩ iu)︸ ︷︷ ︸
s

(10)

is a Cartan decomposition of g.

Lemma 3.4. The restriction of Hτ to g is real.

Proof. For X,Y ∈ g, there are X1, Y1 ∈ g∩u and X2, Y2 ∈ g∩ iu such that X = X1+X2

and Y = Y1 + Y2. Then

τX1 = X1, τX2 = −X2, τY1 = Y1, τY2 = −Y2.

As we have that

Hτ (X,Y ) = −〈X, τY 〉C = −〈X1 +X2, Y1 − Y2〉C

where 〈·, ·〉C is the Cartan–Killing form of gC, then

Hτ (X,Y ) = −〈X1, Y1〉C − 〈X2, Y1〉C + 〈X1, Y2〉C + 〈X2, Y2〉C. (11)

However

Hτ (Y,X) = −〈Y, τX〉C
= −〈Y1 + Y2, X1 −X2〉C
= −〈X1 −X2, Y1 + Y2〉C
= −〈X1, Y1〉C − 〈X1, Y2〉C + 〈X2, Y1〉C ++〈X2, Y2〉C,

as Hτ is an Hermitian form, we have that Hτ (X,Y ) = Hτ (Y,X), thus,

〈X2, Y1〉C = 〈X1, Y2〉C,

and by equation (11), we have that

Hτ (X,Y ) = −〈X1, Y1〉C + 〈X2, Y2〉C,

but X1, Y1, iX2, iY2 ∈ u, and the restriction of 〈·, ·〉C to u is negative-definite, we can
conclude that Hτ |g is real. □✓✓✓
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Corollary 3.5. Ωτ |g ≡ 0.

Moreover, let GC be a Lie group with Lie algebra gC. Therefore, given any submanifold
M of Uad · H, M must be contained on g. In fact, M is an isotropic submanifold of
Uad ·H. By Theorem 3.3 the same applies to any submanifold M of adr(GC) ·H.
Remark 3.6. To avoid confusion, in this subsection, we say GC to specify that this is a
complex Lie group with Lie algebra gC.

Now, our purpose is to apply the last results for a non-trivial immersion on the coadjoint
semi-direct orbit to find some Lagrangian submanifolds. With the Cartan decomposition
of g given in (10), then

kad = k×ad s ⊆ u×ad iu = uad.

Take K = 〈exp k〉, then Kad · H is an immersed submanifold on Uad · H, for H ∈ a.
Moreover,

TxKad ·H ⊆ kad ∀x ∈ Kad ·H,

where kad can be identified with g as a vector space and by Corollary 3.5, the restriction
of Hτ to g is real, thus,

Ωτ |kad
≡ 0.

Therefore, Kad ·H is an isotropic submanifold of Uad ·H, we want to see that Kad ·H is
a Lagrangian submanifold of Uad ·H, as we can see in the following example.
Example 3.7. For g = sl(2,R), k = so(2), and u = su(2). Given

H =

(
1 0
0 −1

)
∈ a,

we have that Kad · H (cylinder) is a 2-dimensional isotropic submanifold of Uad · H, a
4-dimensional manifold.
Hence, the cylinder Kad ·H is a Lagrangian submanifold of Uad ·H.

Let σ be an anti-linear involutive conjugation on gC, such that g is the subspace of
fixed points of σ, that is

g = {X ∈ gC : σ(X) = X}.

If we have that A := {X ∈ Uad · H : σ(X) = X} coincides with Kad · H, then we
can conclude that Kad ·H is a Lagrangian submanifold of Uad ·H, with respect to the
Hermitian symplectic form, for H ∈ a.
As Kad ·H is contained on g and it is a submanifold of Uad ·H, we have that Kad ·H ⊆ A.
For the opposite inclusion, by equation (8) we have that

Uad ·H =
⋃

Y ∈ad(U)·H

Y + ad(Y ) (iu) ,

then given an element x ∈ Uad ·H implies that

x = Y︸︷︷︸
∈iu

+ [Y, iZ]︸ ︷︷ ︸
∈u

, where Y = ad(u) ·H, u ∈ U, Z ∈ u.

As u = k⊕ is, we have the following possibilities:
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Take X ∈ k, then etX ∈ U

σ(x) = σ
(
ad(etX) ·H

)︸ ︷︷ ︸
∈s

+ σ
(
i[ad(etX) ·H,Z]

)
= ad(etX) ·H − i

(
[σad(etX) ·H,σZ]

)
= ad(etX) ·H − i

(
[ad(etX) ·H,σZ]

)
,

if Z ∈ k, we have that σ(Z) = Z and if Z ∈ is, we have that σ(Z) = −Z, then
σ(x) = x if and only if Z ∈ is.
Thus, x is a fixed point if and only if x ∈ Kad ·H.

Take X ∈ is, then etX ∈ U

σ(x) = σ
(
ad(etX) ·H

)︸ ︷︷ ︸
∈ik

+ σ
(
i[ad(etX) ·H,Z]

)
= −ad(etX) ·H − i

(
[σad(etX) ·H,σZ]

)
= −ad(etX) ·H + i

(
[ad(etX) ·H,σZ]

)
,

for Z ∈ u, we have that σ(x) 6= x, then in this case it is impossible to have fixed
points.

For any other possible choice of X ∈ u, we do not have fixed points because it
would be a combination of the cases above.

Therefore, A = Kad ·H and Kad ·H is the set of fixed points of σ, its dimension is half
the dimension of Uad ·H. Hence,

Proposition 3.8. For H ∈ a, the coadjoint orbit Kad ·H is a Lagrangian submanifold of
Uad ·H, with respect to the Hermitian symplectic form.

By Theorem 3.3, the Kad-coadjoint orbit is symplectomorphic to G-adjoint orbit and
Uad-coadjoint orbit is symplectomorphic to GC-adjoint orbit, with respect to Ωτ . Then,
we can conclude that

Corollary 3.9. For H ∈ a, the orbit ad(G) ·H is a Lagrangian submanifold of ad(GC) ·H,
with respect to the Hermitian symplectic form.

Furthermore, the coadjoint orbit Uad ·H is invariant by the automorphism of u, because
any automorphism of u leaves invariant its Cartan subalgebra (see [12] or [14]). Given
k ∈ Aut(k) we know that the k-action on g leaves invariant the Cartan decomposition
of g, its maximal Abelian subalgebra and u (because k is contained in u). If exp is the
exponential between the Lie algebra u and the Lie group Aut(u), then for any X ∈ is
we have that gtX = exp(tX) · g is a real form of gC with Cartan decomposition gtX =
ktX ⊕ stX . Take GtX a Lie group with Lie algebra gtX ⊂ u, then we can conclude that.

Theorem 3.10. For X ∈ is ⊂ u, there are a Lagrangian family of submanifolds {MtX} on
ad(GC) ·H with respect to the Hermitian symplectic form. For t ∈ I, MtX = ad(GtX) ·H̃.
In fact, the family of Lagrangian submanifolds is determined by g, and given by the
is-conjugated real forms of g.
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Appendix: Representations and symplectic geometry

Let M ⊂ W be an immersed submanifold of the vector space W (real, that is, W = RN ).
The cotangent bundle π : T ∗M → M is provided with the canonical symplectic form ω.
Given a function f : TM → R denote by Xf the corresponding Hamiltonian field, such
that df (·) = ω (Xf , ·). If α ∈ W ∗, the height function fα : M → R is given by

fα (x) = α (x)

and also denote by fα its lifting fα ◦ π which is constant on the fibers of π. Denote by
Xα the Hamiltonian field of this function. Since fα is constant in the fibers, the field Xα

is vertical and the restriction to the fiber T ∗
xM is constant in the direction of the vector

(dfα)x ∈ T ∗
xM . Furthermore, if α, β ∈ W ∗, the vector fields Xα and Xβ commutes. In

terms of the action of Lie groups and algebras, the commutativity [Xα, Xβ ] = 0 means
that the map α 7→ Xα is an infinitesimal action of W ∗, seen as an Abelian Lie algebra.
This infinitesimal action can be extended to an action of W ∗ (seen as an Abelian Lie
group because the fields Xα are complete).
Now, let R : L → Gl (W ) be a representation of the Lie group L on W and take an
L-orbit given by M = {R (g)x : g ∈ L}. The action of G on M lifts to an action in the
cotangent bundle T ∗M by linearity. If l is the Lie algebra of L, then the infinitesimal
action of l in the orbit M is given by the fields y ∈ M 7→ R (X) y, where X ∈ l and R (X)
also denotes the infinitesimal representation associated to R. The infinitesimal action of
the lifting in T ∗M is given by X ∈ l 7→ HX , where HX is the Hamiltonian field on T ∗M ,
such that the Hamiltonian function is FX : T ∗M → R given by

FX (α) = α (R (X) y) α ∈ T ∗
yM.

The actions of L and W ∗ in T ∗M are going to define an action of the semi-direct product
L × W ∗, defined by the dual representation R∗. The action of L × W ∗ on T ∗M is
Hamiltonian in the sense that the corresponding infinitesimal action of l×W ∗ is formed
by Hamiltonian fields. When we have a Hamiltonian action we can define its moment
map (See [13, Section 14.4]). In this case, a map

m : T ∗M → (l×W ∗)
∗
= l∗ ×W.

In the action on T ∗M , the field induced by X ∈ l is the Hamiltonian field HX of the
function FX (α) = α (R (X) y), while the field induced by α ∈ W ∗ is the Hamiltonian
field of the function fα. So if γ ∈ T ∗

yM , y ∈ M ⊂ W then for X ∈ l and α ∈ W ∗

m (γ) (X) = γ (R (X) y) and m (γ) (α) = α (y)

The first term coincides with the momentum µ : W ⊗W ∗ → l∗ of the representation R,
that is, m (γ) = µ (y ⊗ γ) such that the restriction of γ ∈ W ∗ to the tangent space TyM
is equal to γ. The second term shows that the linear functional m (γ) restricted to W ∗

is exactly y. Consequently,
Proposition 3.11. The moment map m : T ∗M → l∗ ×W = l∗ ⊕W is given by

m (γy) = µ (y ⊗ γ) + y,

where γy ∈ T ∗
yM and γ ∈ W ∗, is an element whose restriction to TyM = {R (X) y : X ∈

l∗} equals to γ.
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