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Abstract. A homeomorphism approximation technique is applied to give (1) proofs
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generalization of a theorem of Carathéodory is obtained.

Keywords: Carathéodory’s Theory of Prime Ends, homeomorphism approximation,
homeomorphism construction, indecomposable continuum, Schoenflies Theorem,
confluent mapping, monotone mapping.

MSC2010: 54F15, 37B02.

Un enfoque realmente topológico de algunos aspectos de la
teoría de los extremos primos de Carathéodory

Resumen. Se aplica una técnica de aproximación de homeomorfismos para proporcionar
(1) pruebas de algunos teoremas de C. Carathéodory y (2) una prueba de un teorema de
N. Rutt. Las pruebas utilizan únicamente herramientas de la topología general (y son
nuevas en ese aspecto), y se obtiene una generalización de un teorema de Carathéodory.

Palabras clave: Teoría de los extremos primos de Carathéodory, aproximación de ho-
meomorfismos, construcción de homeomorfismos, continuo indescomponible, Teorema
de Schoenflies, función confluente, función monótona.

1. Introduction

Probably the simplest, most natural approach to constructing a homeomorphism is the following:
Partition the spaces that are involved into finite sets, and then assign the sets in the first space
to the sets in the second space in the manner desired. These partitions and set assignments give
the first approximation to the homeomorphism. To obtain an improved approximation, partition
the spaces again, obtaining refinements of the first partitions, and then assign sets to sets again,
keeping these assignments consistent with those already made in the first step. Continue this
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process, getting at the n level partitions of the space that refine the partition chosen at the n− 1
level, and then assign sets to sets once more, being consistent with the choices already made. The
homeomorphism approximation improves with each new level, and the end result (if all this is done
with a fair amount of care) is a homeomorphism from the first space to the second which has the
properties desired. This idea has been used by many topologists to construct homeomorphisms.
See, for example, [4], [5], [15], [16], and [17].

This author has used this approach to construct self homeomorphisms that show that certain
indecomposable continua can admit certain types of complicated dynamical behavior. (See [10],
[11], [12], [13], and [14].) In this paper we would like to apply this idea in still another way. It can
be used to give general topological proofs to some of the basic aspects of Carathéodory’s theory
of prime ends. Since this theory has been used in a very powerful way by several dynamicists
to obtain results about dynamics occurring in the plane ([3], [25], [2], and [20]), it is of interest
now to topologists and dynamicists both, and it is perhaps worth noting that it can be justified
using nothing more than some elementary facts from plane topology. Along the way we obtain a
slight generalization to Carathéodory’s main theorem, and then obtain a Schoenflies theorem and
a theorem of Rutt [24] as corollaries.

C. Carathéodory’s papers [6] and [7] on prime ends appeared in 1913 before there was a modern
definition of a topological space. His theory concerns a certain compactification of open, connected
sets on a surface. Suppose that E and E

◦ denote the closed and open unit disks in the plane,
respectively. If D is an open, bounded, connected, simply connected subset of the plane, then there
is a conformal mapping Φ of E ◦ onto D (Riemann mapping theorem). In his first paper on prime
ends [6], Carathéodory obtained a conformal Schoenflies theorem: he proved that if the boundary
of D in the plane is homeomorphic to a circle, then Φ extends to a homeomorphism of E onto
D. In his second paper [7], he made no assumptions on the boundary of D, and obtained partial
generalizations of this result.

Other treatments of the theory of prime ends using conformal mapping machinery include those
given by C. Pommerenke [23] and L. Ahlfors [1]. A treatment of the theory which relies on heavy
analytic machinery is given in M. Ohtsuka’s book [22]. J. Mather [20] has given a very nice account
of the theory which is largely topological, but his proofs make use of some not-stricly-topological
structures (polyhedra and piecewise linear mappings, for example). M.H.A Newman [21] proved
the Schoenflies theorem using topological methods, but his proofs do not use prime end theory.
That is, of course, because he does not have to have it in the locally connected context. The basic
construction involved in the treatment in this paper is a generalization of Newman’s.

Carathéodory’s theory has been used by many different kinds of mathematicians in many different
ways. However, its applications in dynamics have brought it to the attention of this author. The
power of the theory in this context comes about as follows: Suppose that D is an open, connected,
bounded, simply connected plane region. Then D is homeomorphic to an open disk. Its boundary,
though, need not be a simple closed curve, nor even anywhere close to being a simple closed curve.
It is possible that it doesn’t even contain an arc. Then D is not generally a closed disk. However,
if “D denotes the prime end compactification of D and E, as before, denotes a closed disk, then
there is a homeomorphism β : “D → E that takes D to E

◦ . Further, if F is a homeomorphism on
the plane such that F (D) = D, then F |D extends to a homeomorphism “F on “D, and there is a
homeomorphism G on E such that β“F = Gβ. Thus, there is a tool with which one can relate the
dynamics of F on D and ∂D to the more well studied and understood dynamics of G on E and
∂E. In particular, if F is orientation preserving, it is now possible to assign a rotation number ρ to
F |∂D: Since “F |∂“D is just a homeomorphism of a circle to a circle, there is the associated rotation
number ρ for “F on ∂“D, and one can assign ρ to be the rotation number for F |∂D as well. (A
note of caution here: ∂D may also be the boundary for R2 \D.) Putting the point at ∞ in order
to obtain the one-point compactification (R2 \ D) ∪ {∞} of R2 \ D means that (R2 \ D) ∪ {∞}
satisfies the conditions required, and it makes sense to speak of the prime end compactification“C of (R2 \D) ∪ {∞} = C. Then an extension “FC of F |C to “C, and another rotation number ρ′

are obtained. It is not generally the case that ρ = ρ′. In fact, it seems that the really interesting
dynamics and interesting invariant continua come about when ρ ̸= ρ′. Authors who have applied
prime ends in this way include J. Mather [18], [19]; K. Alligood and J. Yorke [2]; M. Barge and R.
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Gillette [3]; and R. Walker [25].

Why then bother with yet another proof of the main results in the theory? In addition to the fact
that a slight generalization of the theory is possible in this way, that one need only know general
topology to understand it, and that a theorem of Rutt [24] is obtained as a corollary, it seems
to this author to be worth noting exactly what assumptions, what structures are necessary to a
given theory. Sometimes, for example, one of the things dynamicists wonder about is whether or
not they can avoid some pathological behavior and pathological sets (pathological from their point
of view, anyway) by making sufficient “nice” assumptions on the maps involved. Can they, for
example, avoid indecomposable invariant continua by requiring C∞ diffeomorphisms? Since they
are concerned with the long term asymptotic behavior of the system, perhaps it is not terribly
surprising that often the answer is “no” (see [9]). But what exactly is because of the topology
and what is because of the other structures involved? In the case of the aspects of prime end
theory that interest them, the answer is that it can all be put on an entirely topological basis.
Another consideration is this: There have been some attempts to generalize prime end theory to
higher dimensions, and thus far, it is the understanding of this author, they have not been very
successful. Perhaps an approach that uses the least amount of structure possible has more of a
chance at allowing generalization than do others.

The fundamental problem in showing that “D is topologically equivalent to E is this: Although D
is topologically equivalent to E

◦ , and therefore there exists a homeomorphism τ from D onto E
◦ ,

the homeomorphism τ is not much of an aid in proving the topological equivalence of “D and E,
for it gives absolutely no control as the respective boundaries of D and E are approached. This
problem will be solved by carefully choosing a certain countable dense subset P of ∂D, choosing a
countable dense subset Q of ∂E, and then constructing a one-to-one surjection β′ : D∪P → E

◦ ∪Q
such that β′|D : D → E

◦ is a homeomorphism. In this way, enough control over what happens as
the boundary is approached will be obtained so that it will be possible to extend β′|D : D → E

◦

to a homeomorphism β : “D → E. The basic idea behind the construction of β′ is quite simple.
As previously explained, we will get a sequence of increasingly improved approximations to the
surjection β′. At each level the sets D ∪P and E

◦ ∪Q will be partitioned into finite collections of
sets, etc.

However, even though the idea is quite simple, writing down the details in a sufficiently careful way
to ensure that a proof really is there is quite tedious. Other authors have run into this problem, too.
Mather [20] notes that, “It does not appear to be possible to give a brief account of Carathéodory’s
theory which does not rely on some deep theory”. Although this account relies only on some basic
facts from plane topology, and the ideas involved are not difficult, it cannot be called “brief” either.

2. Background, definitions, elementary facts.

We give here only the background needed for this exposition. The reader who is not already
familiar with prime ends is referred to Mather’s very complete and very nice treatment [20] for
more examples, more details, and a deeper understanding.

Suppose D is a connected, open set in the plane. (Actually, any open, connected subset of a surface
will do. A surface is a Hausdorff topological space which has a countable basis and each point of
which is contained in an open set homeomorphic to either the plane or the closed upper half plane.)
A chain in D is a sequence {Vn}∞n=1 of open connected subsets of D such that (i) V1 ⊇ V2 ⊇ . . .;
(ii) ∂DVn ̸= ∅ and connected for each n; and (iii) ∂DVn ∩ ∂DVm = ∅ for n ̸= m. (Please note
that a very important distinction is being made here. For B ⊆ A, ∂AB and ClAB denote the
boundary and closure of B in A, respectively. If X is the space containing A, then ClXB = B
and ∂XB = ∂B.) The chain τ = {Wn}∞n=1 is said to divide the chain σ = {Vn}∞n=1 provided that
for each n, there is m such that Wm ⊆ Vn. Two chains are equivalent if each divides the other. A
chain is prime if every chain which divides it is equivalent to it.

A prime point of D is an equivalence class of prime chains of D. A prime end of D is a prime
point of D with a representative prime chain {Vn}∞n=1 such that ∂Vn ∩ ∂D ̸= ∅ for all n. Let “D
denote the collection of all prime points of D.
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Given an open set W in D and an element P of “D, we will say P divides W provided a representative
chain {Vn}∞n=1 of P has the property that Vn ⊆ W for some n. Let W̃ = {P ∈ “D | P divides W}.
The reader can check that the following occur:

(1) The collection W = {W̃ | W is open in D} defines a basis for a topology on “D.

(2) Convergence in this topology works as follows: limn→∞ Pn = P iff given a representative chain
{Vn}∞n=1 of P , for each m there exists N such that Pn divides Vm for all n ≥ N .

If P is a prime end of D with representative chain {Vn}∞n=1, the impression of P is I(P ) = ∩∞
n=1V n.

(Since I(P ) is the nested intersection of a collection of continua, I(P ) is a continuum. Further,
since {Vn}∞n=1 is prime, I(P ) ⊆ ∂D.)

If A is a subset of a topological space X, and p is a point of X, then p is accessible from the set A
if there exists an arc P in X such that P ⊆ A ∪ {p} and p is an endpoint of P .

Suppose now that D is a bounded, simply connected, connected, open plane set. Let us list the
elementary facts from plane topology that we will be using:

(1) An open arc is a set homeomorphic to (0,1). An open arc C in D is a cross-cut if ∂C consists
of two distinct points in ∂D. Each cross-cut divides D into exactly two open sets, each of which
is homeomorphic to an open disk. (In other words, each of these sets is itself a bounded, simply
connected, connected, open plane set.)

(2) The set of points of ∂D that are accessible from D are dense in ∂D. (Although not crucial to our
arguments, it is worth noting that ∂D (a) can be an indecomposable continuum, and (b) may not
contain an arc, even though it does have to be connected. For example, it could be a pseudocircle.
Then a theorem of S. Mazurkiewicz tells us that the set of points of an indecomposable continuum
in the plane that are accessible from the plane minus the continuum is a first category subset of the
indecomposable continuum. Thus, the accessible points of ∂D may well be a rather small subset
of the continuum, although a dense subset.)

(3) If A is an arc in D, then every point of A is accessible from D \A.

(4) If D is an arcwise connected subset of the plane, then D is simply connected provided that if
S is a simple closed curve contained in D, then the bounded component of the complement of S
in the plane is contained in D. This is equivalent to saying that if S is a continuous image of a
simple closed curve contained in D, then each bounded component of the complement of S in the
plane is contained in D.

Note that if {Vn}∞n=1 is a prime chain in D representing a prime end P , there is a sequence of
cross-cuts {Cn}∞n=1 such that

(a) Cn ⊆ Vn;

(b) Cn separates D into two connected, open sets, one of which -call it Un- is contained in Vn; and

(c) {Un}∞n=1 is a prime chain equivalent to {Vn}∞n=1.

We will say that {Cn}∞n=1 is a representative sequence of cross-cuts for the prime end P .

We will need the following facts, the first one is a simple result of general topology and we leave
the proof to the reader, the other two are proved in Mather’s paper.

Lemma 2.1. Suppose X is a connected topological space, and A and B are nonempty, connected,
open subsets of X whose boundaries are nonempty, connected, and disjoint. Then one of the
following is true: X = A ∪B,A ⊆ B, B ⊆ A, or A ∩B = ∅.

Theorem 2.2 ([19], Lemma 3.2). Suppose σ = {V1, V2, . . .} and τ = {W1,W2, . . .} are two chains
of the surface S. Further, suppose that for each open set O that contains the point x of S, there
exists n0 such that ∂DVn ⊆ O for n ≥ n0, and that Vi ∩Wj ̸= ∅ for all i, j. Then σ divides τ .

Corollary 2.3 ([19], Corollary 3.3). If σ = {V1, V2, . . .} is a chain such that {∂DVn}∞n=1 converges
to a point in the surface S, then σ is prime.
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If x ∈ D, x is a principal point of P ∈ “D if there is a representative chain {Vn}∞n=1 for P such
that if x1, x2, . . . is a sequence with xi ∈ ∂DVi for each i, then x1, x2, . . . converges to x. The set of
all principal points is the principal set of P . We will denote the principal set of P by X(P ). The
principal set X(P ) of the prime end P is a subcontinuum of I(P ). (It is clear that X(P ) ⊆ I(P ),
but it requires a bit of proof to show that X(P ) is a nonempty continuum. See [20].)

Let us caution the reader about one thing: in general, there are no simple relationships between
the impressions of prime ends, the principal sets of prime ends, and the prime ends themselves.
The impressions do not generally give a collection of mutually disjoint continua in the boundary,
for example. For a given prime end P , the impression and principal set are always nonempty,
but beyond noting that the impression always contains the principal set, not much can be said.
It is possible that one continuum is the impression for two different prime ends, too. For more
explanation of these matters, see [20].

If X is a compact metric space and C = {c(0), c(1), . . . , c(m)} is a finite cover of X which consists
of closed, regular neighborhoods, then C is a tiling iff c(i) ∩ c(j) = ∂c(i) ∩ ∂c(j) for each i ̸= j
in {0, 1, . . . ,m}. (A closed neighborhood B is regular if (B◦) = B. An open neighborhood B is
regular if (B)◦ = B.) If f : {0, 1, . . . ,m} ↠ {0, 1, . . . , n} is a surjection, then we will say that f is
a pattern on {0, 1, . . . , n}. If G = {g(0), g(1), . . . , g(m)} and H = {h(0), h(1), . . . , h(n)} are tilings
of the compact metric space X, then the statement that B follows the pattern f in H means that
g(i) ⊆ h(f(i)) for each i ∈ {0, 1, . . . ,m}.

Theorem 2.4. Suppose that X and Y are compact metric spaces and G1, G2, . . . and H1,H2, . . .
are sequences of tilings of X and Y , respectively, such that

(1) for each i, Gi = {g(i, 0), g(i, 1), . . . , g(i, a(i)))} and Hi = {h(i, 0), h(i, 1), . . . , h(i, a(i)))};

(2) if A ⊆ {0, 1, . . . , a(i)}, then ∩j∈Ag(i, j) ̸= ∅ iff ∩j∈Ah(i, j) ̸= ∅;

(3) limi mesh Gi = limi mesh Hi = 0; and

(4) for each i, Gi+1 follows the pattern ηi in Gi and Hi+1 follows ηi in Hi.

Then for x ∈ X, there is an infinite sequence j(x, 1), j(x, 2), . . . of integers such that

(1) x ∈ g(i, j(x, i)), and

(2) ηi(j(x, i+ 1)) = j(x, i).

Further, if we define T (x) = ∩i<∞h(i, j(x, i)) for x ∈ X, then T : X → Y is a homeomorphism.

Proof. We will not give his proof here. We leave it as an exercise for the reader, or refer him/her
to [10, Theorem 1]. ■
A continuous function f : X → Y is confluent if the preimage of each continuum K in Y is a
collection of continua in X each of which maps onto K. The continuous function f is monotone if
the preimage of each continuum K in Y is a continuum in X. Clearly,

(1) monotone maps are confluent;

(2) there are many monotone self maps on connected open plane sets that are not homeomorphisms;

(3) there are many confluent self maps on connected open plane sets that are not monotone.

3. Statements and proofs of the theorems.

Theorem 3.1. Suppose D is an open, bounded, connected subset of the plane whose boundary is
connected. Then “D is homeomorphic to a closed disk. Further, if F : D → D is a continuous
surjection that takes D onto D, takes ∂D onto ∂D, and is confluent, then there are

(1) a homeomorphism β : “D → E, where E = {x ∈ R2 | ∥x∥ ≤ 1};

(2) an extension “F of F |D to all of “D; and

(3) a surjection G : E → E such that β“F = Gβ.
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Proof. Note that the collection of accessible points on ∂D is not only dense, but it is also the case
that if O is an open set in the plane that intersects the boundary of D, then each component of
D ∩ O contains a point accessible from D. Further, given two different accessible points of ∂D,
there are two different prime ends associated with those two points. Choose a countable dense
subset P of ∂D as follows: For each n ∈ N, there is a finite cover of ∂D by connected, open sets
of diameter less than 1/n. If O denotes one member of this collection, then O ∩D has at most a
countable number of components. For each of these components choose a point in ∂D accessible
from the component. Let Pn denote the resulting collection of accessible points. Note that Pn

is countable. Let P =
⋃∞

n=1 Pn, so that P is a countable dense subset of ∂D with the desired
property.

Next choose a countable dense subset Q of ∂E. List both P and Q as follows: P = {p0, p1, . . .}
and Q = {q0, q1, . . .}. Then choose a point p in D◦ and let q = (0, 0) in E

◦ . Next choose an arc
A0 from p to p0, and an arc A1 from p to p1 such that A0 ∩ ∂D = {p0}, A1 ∩ ∂D = {p1}, and
A0 ∩A1 = {p}. In E, let B0 and B1 denote the intersection of the rays from q through q0 and q1,
respectively, with E.

Now choose a closed disk D1/2 in D so that

(1) p ∈ D1/2
◦; and

(2) ∂DD1/2 ∩A0 and ∂DD1/2 ∩A1 consist of exactly one point.

Let E1/2 = {x ∈ E | ∥x∥ ≤ 1/2}.

What do we now have? Each of D∪P and E
◦ ∪Q has been divided by A0, A1, and D1/2; and B0,

B1, and E1/2, respectively, into four regions with the following properties:

(3) Each region is connected and closed (in D ∪ P or E
◦ ∪Q).

(4) The interior of each region is an open disk, topologically.

(5) The regions in D ∪ P are listed as G1 = {g(1, 0), g(1, 1), g(1, 2), g(1, 3)}.

(6) The regions in E
◦ ∪Q are listed as H1 = {h(1, 0), h(1, 1), h(1, 2), h(1, 3)}.

(7) There is a “natural” correspondence between the four regions, and this is reflected in the listings.
(By this we mean the following: g(1, i) ∼= h(1, i)) and if A ⊆ {0, 1, 2, 3}, then ∩n∈Ag(1, i) ̸= ∅ iff
∩n∈Ah(1, i) ̸= ∅.)

Let C(1) = {p0, p1} and C ′(1) = {q0, q1}. Next choose finite subsets C(2) and C ′(2) of P and Q
as follows:

(8) |C(2)| = |C ′(2)| with C(2) ⊆ P \ C(1) and C ′(2) ⊆ Q \ C ′(1);

(9) p2 ∈ C(2) and q2 ∈ C ′(2);

(10) C(2) = {p2,0, p2,1, . . . , p2,m(2)} and C ′(2) = {q2,0, q2,1, . . . , q2,m(2)};

(11) for i ∈ {0, 1, 2, . . . ,m(2)} there is an arc A2,i from p to p2,i in D such that A2,i ∩ ∂D =
{p2,i}, A2,i ∩ ∂D1/2 consists of exactly one point, and A2,i ∩A0 = {p} = A2,i ∩A1;

(12) for i ∈ {0, 1, 2, . . . ,m(2)} there is a ray B2,i from q to q2,i in E
◦ such that B2,i ∩ ∂E =

{q2,i}, B2,i ∩ E1/2 consist of exactly one point, and B2,1 ∩B0 = {q} = B2,i ∩B1; and

(13) for i, j ∈ {0, 1, 2, . . . ,m(2)}, A2,i ∩A2,j = {p}.

Note that a natural, circular ordering of the points of not only Q, but also of P , is being set up,
and the listing and choice of points in C(2) and C ′(2) reflects this: Let A1,0 = A0 and A1,1 = A1.
Each arc A2,j chosen splits one of the open disks in the collection of open disks that make up
D \ ∪{A1,0, A1,1, A2,1, . . . , A2,j−1} into exactly two open disk. If Ak,1 and Ak′,1′ denote the arcs
bounding the split disk, we may, without ambiguity, consider p2,j to be between pk,1 and pk′,1′ .
Likewise (and in a simpler manner) q2,j will be chosen so that q2,j is between qk,1 and qk′,1′ . Thus,

(14) |C(2) ∩ g(1, i)| = |C ′(2) ∩ h(1, i)| for i ∈ {0, 1, 2, 3}. Having done this, choose closed disks
D1/4 and D3/4 in D such that p ∈ D1/4

◦ ⊆ D1/4 ⊆ D1/2
◦ ⊆ D1/2 ⊆ D3/4

◦ ⊆ D3/4 ⊆ D, and
each point of D3/4 is within a distance of 1/4 from ∂D. Let E1/4 = {x ∈ E | ∥x∥ ≤ 1/4},
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E3/4 = {x ∈ E | ∥x∥ ≤ 3/4}. Further, choose the disks D1/4 and D3/4 so that the boundary of
each intersects each of the arcs Ai,j exactly in one point. Note that the collection of all arcs Ai,j

and disks Dr thus chosen partitions D ∪ P into a finite collection of relatively closed, connected,
simply connected sets that intersect only at their boundaries in D ∪ P , and that the collection
of all rays Bi,j and disks Er thus chosen partitions E

◦ ∪ Q into a finite collection of relatively
closed, connected, simply connected sets that intersect only at their boundaries in E

◦ ∪ Q. See
Figure 1. Further, there is a natural correspondence between these collections of sets, which we
will name G2 = {g(2, 0), g(2, 1), . . . , g(2, n(2))} and H2 = {h(2, 0), h(2, 1), . . . , h(2, n(2))} for D∪P
and E

◦ ∪Q, respectively, such that
(15) if γ ⊆ {0, 1, . . . , n(2)}, then ∩i∈γg(2, i) ̸= ∅ iff ∩i∈γh(2, i) ̸= ∅ and
(16) each g(2, i) ∼= h(2, i).
Also, G2 refines G1 and, therefore, follows some pattern η1 in G1. The collection H2 follows the
same pattern η1 in H1

Continue the process that has been started, choosing two sequences G1, G2, . . . and H1,H2, . . .
of collections of covers of D ∪ P and E

◦ ∪ Q, respectively; two sequences C(1), C(2), . . . and
C ′(1), C ′(2), . . . of subsets of P and Q, respectively; two sequences A(1) = {A1,0, A1,1},A2 =
{A2,0, . . . , A2,m(2)}, . . . and B(1) = {B1,0, B1,1},B(2) = {B2,0, B2,1, . . . , B2,m(2)}, . . . of arcs in D∪P
and rays in E

◦ ∪Q, respectively; D = {Dr | r is a dyadic rational in (0, 1)}, a collection of closed
disks in D; and E = {Er | r is a dyadic rational in (0, 1)}, where Er = {x ∈ E | ∥x∥ ≤ r}, so that
(17) Gi+1 follows the pattern ηi in Gi, and Hi+1 follows the pattern ηi in Hi;
(18) we list Gi = {g(i, 0), g(i, 1), . . . , g(i, n(i))} and Hi = {h(i, 0), h(i, 1), . . . , h(i, n(i))};
(19) each member of P is in some C(i) and each member of Q is in some C ′(i);
(20) each C(i) is finite and |C(i)| = |C ′(i)|;
(21) each arc Ai,j intersects ∂D in exactly the point pi,j in C(i) = {pi,1, . . . , pi,m(i)}, intersects
the boundary of the disk Dr in exactly one point, and intersects any other arc Ak,1 in exactly the
point p;
(22) ∪Dr = D with each point of the boundary of D(2n−1)/2n within a distance of 1/2n from ∂D;
(23) each ray Bi,j intersects ∂E in exactly the point qi,j ; and
(24) if r and r′ are dyadic rationals in (0,1) and r < r′, then Dr ⊆ Dr′

◦.
We may also, without loss of generality, require that the following properties hold:
(25) limi→∞ mesh {g(i, j) ∈ Gi | g(i, j) ⊆ Dr} = 0, for r a fixed dyadic rational in (0,1).
(26) limi→∞ mesh {g(i, j) ∩Ak,i | g(i, j) ∈ Gi} = 0 (for fixed Ak,1).
Finally then, we may define a map β : P ∪D → Q ∪E

◦ as follows: If x ∈ D ∪ P , then there is an
infinite sequence j(x, 1), j(x, 2), . . . of integers such that for each i

(27) x ∈ g(i, j(x, i)), and
(28) ηi(j(x, i + 1)) = j(x, i). Define β(x) = ∩i∈Nh(i, j(x, i)). It is not difficult to check that β is
well-defined, one-to-one, and onto. Further, because of the fact that if X = Dr for some allowable
r, or X = Ak,l for some allowable k and l, then Gi(X) = {g(i, j) ∩ X | j ∈ {0, . . . , n(i)}} and
g(i, j) ∩X ̸= ∅} is a tiling on X, and Hi(X) = {h(i, j) ∩ β(X) | (g(i, j) ∩X) ∈ Gi(X)} is a tiling
on β(X), and the fact that the tilings involved satisfy the requirements of the background theorem
given, it follows that β|X : X → β(X) is a homeomorphism. Also, β(g(i, j)) = h(i, j), β(Ak,l) =
Bk,l, β(Dr) = Er, and β(pk,1) = qk,l (for appropriate i, j, k, l, and r). Then β|D : D → E

◦ is a
homeomorphism.
β is also continuous: Suppose qm,1 ∈ Q and O is an open set in E that contains qm,1. Then there
is some h(i, j) in some Hi such that qm,l ∈ h(i, j)◦ and h(i, j) ⊆ O. Since pm,l ∈ g(i, j)◦ and if
x ∈ g(i, j), then β(x) ∈ h(i, j), it follows that β is continuous on D ∪ P .

We have now a map from D to E
◦ that is “sufficiently nice”. That is, if P is a prime end in “D, then

P may be represented by a prime chain {Vn}∞n=1 such that ∂DVn is an arc whose endpoints are two
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points in P , that intersects ∂D only in those two points, and such that β|∂DVn is a homeomorphism.
By construction, {β(Vn)}∞n=1 is a prime chain in “E(∼= E). If we define, β̃(P) = Q, the prime end
represented by {β(Vn)}∞n=1, then β̃ : “D → “E is well-defined, and it is a simple matter to check that
it is in fact a homeomorphism.

Let us turn our attention then to F . Note that the diagram below commutes:

D D

E◦ E◦

F |D

β β (where G = βFβ−1|E◦)

G

Suppose {Vn}∞n=1 is a prime chain in D chosen so that limn diam(∂DVn) = 0, and limn ∂DVn = {x}.
Then {F (Vn)}∞n=1 is a nested collection of connected sets in D, as is {F (Vn)}∞n=1. For each x in D.
let ϵx = min{∥x− y∥ | y ∈ ∂D}/2, and let Bϵ(z) denote the ϵ-ball about the point z in the plane.
For each positive integer n, let Wn = ∪{Bϵx/2n(x) | x ∈ D ∩ F (Vn)}. Hence, Wn is connected and
open in D, and {Wn}∞n=1 is a chain, but is it a prime chain?

Note that if W is a connected, open set of D, then F−1(W ) consists of a collection of connected,
open sets in D, each of which maps onto W . For each n, let Kn denote the component of F−1(Wn)
that contains Vn. It must be the case that ClDKn+1 ⊆ Kn. Also, if α is the prime point represented
by {Vn}∞n=1, then F (I(α)) = ∩F (Vn) = ∩Wn. Suppose that the chain {W ′

n}∞n=1 divides {Wn}∞n=1.
Without loss of generality, we may assume that ClDW ′

n ⊆ Wn and that F (Vn) ∩W ′
n ̸= ∅. Let K ′

n

denote that component of F−1(W ′
n) that intersects Vn. Now {K ′

n}∞n=1 is a chain in D. But it follows
from Mather’s theorem (Theorem 2.2) that {K ′

n}∞n=1 divides {Vn}∞n=1, from which it follows that
each W ′

n is contained in some F (Vm). Thus, {Wn}∞n=1 is prime. If ν is that prime point represented
by {Wn}∞n=1, define “F (α) to be ν. Since every prime point in “D may be represented by such a
prime chain as {Vn}∞n=1, we have a well defined function from “D onto “D with “F . It is easy to check
that it is also continuous. Then if “G = β“Fβ−1, we are done. ■
Theorem 3.2. (Schoenflies) Suppose that D is a bounded, connected, regular, open subset of the
plane, that ∂D is locally connected, and that D is simply connected. Then “D is homeomorphic to
a closed disk.

Proof. Please recall the proof and construction given for Carathéodory’s Theorem, as we refer to
it here and give the notation used the same meaning.

First, in the countable dense subset P of ∂D that was chosen, a circular ordering was set up on
the members of P . In particular, note that whenever pm,1 = a and pm′,1′ = a′ are members of
P , suppose T denotes an arc in ∂D with endpoints a and a′. Since Am,1 ∪ T ∪ Am′,1′ = T ′ is a
simple closed curve in D, the bounded component C of the complement of T ′ is contained in D.
Let U1 and U2 denote the components of D \ (Am,1 ∪ Am′,1′). Either C ⊆ U1 or C ⊆ U2, say
C ⊆ U1. Then ∂DC = ∂DU1. Each radial arc Ar,s, besides Am,1 and Am′,1′ , intersects either U1 or
U2. Since ∂DC = ∂DU1, any radial arc that intersects U1 also intersects C. Then it is contained,
except for its endpoints, in C. It follows that C = U1 (because C is dense in U1 and U1 is regular),
and T ′ = U1 \ U1.

Further, since ∂D is locally connected, and therefore points close together in P may be connected
with arcs of small diameter, we may choose a finite subset {a(0), a(1), . . . , a(n)} of P , with a(0) =
p0 < a(1) < · · · < a(n), such that each pair a(i), a(i+ 1) is connected by an arc T (i) in ∂D whose
endpoints are a(i) and a(i + 1), and such that each T (i) contains each point in P “between” a(i)
and a(i + 1). Further, we may choose this set so that an arc T (n) in ∂D whose endpoints are
a(n) and a(0) contains every point “between” a(0) and a(n) in P . Then ∪T (i) = ∂D. Let C(i)
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denote the bounded component of the complement of the simple closed curve formed by T (i) and
its associated radial arcs. Suppose T (i) ∩ T (j) ̸= ∅. Without loss of generality, we may assume
that j = i+1. (If not, we can combine any intervening arcs, and lose nothing.) Now T (i)∩T (i+1)
does at least contain the common endpoint a(i + 1), but suppose there is another point in the
intersection.

Suppose the point t ̸= a(i+1) is in the intersection, and that n > 1. There are points pm,1, pm′,1′ ,
and pk,r in P such that the ends of T (i) are pm,1 and pm′,1′ , and the ends of T (i+1) are pm′,1′ and
pk,r. Now pm,1 < pm′,1′ < pk,r. Let [pm,1, t] and [t, pm′,1′ ] denote the subarcs of T (i) determined by
t, and let [pm′,1′ , t] and [t, pk,r] denote the subarcs of T (i+1) determined by t. (It is possible that
one of these “arcs” is degenerate.) Now we may assume that S(1) = Am,1∪ [pm,1, t]∪ [t, pk,r]∪Ak,r

is a simple closed curve. However, [t, pm′,1′ ] ∪ [pm′,1′ , t] = S(2) is the continuous image of a
simple closed curve which is nondegenerate and intersects S(1) in exactly the point t. But this is
impossible : The bounded component of the complement of S(1) contains C(i) ∪ C(i+ 1), and so
pm′,1′ ∈ S(1) ∩ S(2). However, pm′,1′ /∈ S(1).

By construction, for the case where ∂D is locally connected, β−1 : E
◦ ∪ Q → D ∪ P is a home-

omorphism, for in this situation, limi mesh Gi = 0. In fact, we may go even further: Let
Gi = {g(i, j) | g(i, j) ∈ Gi}. Then each Gi is a tiling of D, and we could just as well have constructed
a homeomorphism β from D to E. (This makes heavy use of the fact that g(i, j) ∩ g(i′, j′) ̸= ∅ iff
g(i, j) ∩ g(i′, j′) ̸= ∅, and that ∂g(i, j) ∩ ∂g(i′, j′) ∩ ∂D = ∅ or consists of one point of P .) ■
Theorem 3.3. (Rutt [24], Theorem 4) If ∂D is and indecomposable continuum, then there is a
prime end P in “D such that I(P ) = ∂D.

Proof. Again, this proof refers to the construction and notation of the Carathéodory Theorem.
For each i, there is some g(i, j) ∈ Gi such that ∂g(i, j) ∩ ∂D is an indecomposable continuum.
(Otherwise ∂D is the union of a finite number of nowhere dense subcontinua.) Then we can
find an infinite nested sequence g(1, i1) ⊇ g(2, i2) ⊇ . . . so that each g(k, ik) contains ∂D in its
boundary in the plane. This sequence {g(k, ik)}∞k=1 may not be a chain, however, for it is possible
that the boundaries of two different members of the sequence intersect in D. We can correct this
by considering r(i) = {g(i, j) ∪ g(i, k) | g(i, j) and g(i, k) are adjacent members of Gi with points
of ∂D in their closure}. Then we may obtain an infinite sequence {r(i)}∞i=1 such that for each i
and j ∈ N:

(1) ∂D ∩ ∂r(i) is an indecomposable continuum;

(2) ClDr(i+ 1) ⊆ r(i); and

(3) ∂Dr(i) ∩ ∂Dr(j) = ∅.

By construction, it also follows that {r(i)}∞i=1 is a prime chain. (Remember the map β and
the associated chain {β(r(i))}∞i=1.) Thus,

⋂∞
i=1 r(i) = ∂D = I(P ), where P is the prime end

represented by {r(i)}∞i=1. ■

Vol. 41, No. 1, 2023]



66 Judy Kennedy

D1/2

p2,3

q2,0

p

p1 p2,1
p2,0

p0

p2,2

q

p2,4

q2,1

q2,2

q1q2,3

q2,4

E1/2

q0q0

Figure 1

Figure 2
Schoenflies Theorem

a(i)

Am,l

p
Am′ ,l′

a(i+ 1)

T (i+ 1)

a(i+ 2)

T (i)

Ak,r

t

References

[1] Ahlfors L.V., Conformal Invariants: Topiscs in Geometric Function Theory, McGraw-Hill, New York,
1973. Reprint of the 1973 original. With a foreword by Peter Duren, F. W. Gehring and Brad Osgood.
AMS Chelsea Publishing, Providence, RI, 2010.

[2] Alligood K.T. and Yorke J.A., “Accessible saddles on fractal basin boundaries”, Ergodic Theory
Dynam. Systems, 12 (1992), 377-400.

[3] Barge M. and Gillette R., “Indecomposability and dynamics of invariant plane separating continua”, in
Continuum theory and dynamical systems, Contemporary Math., 117 Amer. Math. Soc., Providence,
RI, (1991), 13-38.

[4] Bing R.H., “A homogeneous indecomposable plane continuum”, Duke Math. J., 15 (1948), No. 3,
729-742.

[Revista Integración



A really topological treatment of some aspects of Carathéodory’s theory of prime ends 67

[5] Bing R.H., “Each homogeneous nondegenerate chainable continuum is a pseudo-arc”, Proc. Amer.
Math. Soc., 10 (1959), No. 3, 345-346.

[6] Carathéodory C., “Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des
Inneren einer Jordanschen Kurve auf einen Kreis”, Math. Ann., 73 (1913), 305-320.

[7] Carathéodory C., “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73
(1913), 323-370.

[8] Cartwright M.L. and Littlewood J.E., “Some fixed point theorems”, Math. Ann., 54 (1951), No. 1,
1-37.

[9] Handel, M., A pathological area preserving C∞ diffeomorphism of the plane, Proc. Amer. Math. Soc.,
86 (1982), 163-168.

[10] Kennedy J., “The construction of chaotic homeomorphisms on chainable continua”, Topology Appl.,
43 (1992), No. 2, 91-116.

[11] Kennedy J., “Examples of homeomorphisms on pseudoarcs that admit wandering points”, Topology
Appl., 36 (1990), No. 1, 27-38.

[12] Kennedy J., “Positive entropy homeomorphisms on the pseudoarc”, Michigan Math. J., 36 (1989),
No. 2, 181-191.

[13] Kennedy J., “Stable extensions of homeomorphisms on the pseudoarc”, Trans. Amer. Math. Soc., 310
(1988), No. 1, 167-178.

[14] Kennedy J., “A transitive homeomorphism on the pseudoarc which is semiconjugate to the tent map”,
Trans. Amer. Math. Soc., 326 (1991), No. 2, 773-793.

[15] Kennedy J. and Rogers, Jr. J.T., “Orbits of the pseudocircle”, Trans. Amer. Math. Soc., 296 (1986),
No. 1, 327-340.

[16] Lewis W., “Most maps of the pseudo-arc are homeomorphisms”, Proc. Amer. Math. Soc., 91 (1984),
No. 1, 147-154.

[17] Lewis W., “Stable homeomorphisms of the pseudo-arc”, Can. J. Math., 31 (1979), No. 2, 363-374.

[18] Mather J.N., “Area preserving twist homeomorphism of the annulus”, Comment. Math. Helv., 54
(1979), 397-404.

[19] Mather J.N., “Invariant subsets of area-preserving homeomorphisms of surfaces”, Math. Suppl. Stud-
ies, 7B Academic Press, New York-London (1981), 531-561.

[20] Mather J.N., “Topological proofs of some purely topological consequences of Caratheodorys theory
of prime ends,”, Selected Studies: physics-astrophysics, mathematics, history of science. A volume
dedicated to the memory of Albert Einstein. (T. M. Rassias, G. M. Rassias, editors) North-Holland,
Amsterdam-New York, 1982, 225-255.

[21] Newman M.H.A., “Elements of the topology of plane sets of points”, Cambridge University Press, 8
(1939), No. 221, 487-488. Reprint of the second edition. Dover Publications Inc., New York (1992).

[22] Ohtsuka M., Dirichlet Problem Extremal Length and Prime Ends, Van Nostrand Reinhold Co., New
York, 1970.

[23] Pommerenke C., Univalent functions, with a chapter on differentials by Gerd Jensen, Studia Mathe-
matica/Mathematische Lehrbücher Band XXV, Vandenhoeck & Ruprecht, Götingen (1975).

[24] Rutt N.E., “Prime ends and indecomposability”, Bull. Amer. Math. Soc., 41 (1935), No. 4, 265-273.

[25] Walker R.B., “Periodicity and decomposability of basin boundaries with irrational maps on prime
ends”, Trans. Amer. Math. Soc., 324 (1991), No. 1, 303-317.

Vol. 41, No. 1, 2023]


