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2 R.E. CasTiLLO & H.C. CHAPARRO

1. The Hilbert transform

The Hilbert transform of a sufficiently well-behaved function f(z) is defined to be

i@ = 2 [~ 1y,
= lim — Md (1)
e—0+ T T —y
|z—y|>e

The central idea behind the definition of transform is quite simple, namely to transform

1
f(x) by convolving it with the kernel —. It is doing so rigorously that one finds technical

difficulties, the kernel fails to be absgglvutely integrable due to its slow decay and more
importantly, due the singularity at the origin. The limiting argument in (1) is used to
avoid the singularity by truncating the kernel around the origin in a systematic fashion.
The aim of this review is to address the L,-boundedness of H. We provide this analysis
in Section 4. Now, we are going to provide some references about further aspects of the
theory of singular integrals.

The theory of singular integrals has its roots in the works of Calderén and Zygmund
[3] and Mihlin [15]. The Hilbert transform is a fundamental example in the theory of
singular integrals. Two celebrated results about the boundedness properties of H can
be remarked: the L,-boundedness result of H due to M. Riesz, and the weak-(1,1)
boundedness of H, due to Kolmogorov. For the general aspects of the theory of singular
integrals as well as the modern developments about the theory of pseudo-differential
operators, which are important generalizations of the singular integrals, we refer the
reader to [7, 8, 11, 12, 17]. For a substantial treatment about the subject we refer the
reader to [14], and for a concise review on the subject we refer to [9].

This paper is organized as follows. In Section 2 we present some preliminaries dedicated
to the rearrangements of functions. In Section 3, we present the definition of Calderén-
Zygmund operators and we motivate the Hilbert transform as a fundamental example
of this definition. Finally, in Section 4, we make a review of the L,-boundedness of the
Hilbert transform.

2. Preliminaries

Let us begin by presenting some definitions and properties regarding to the decreasing re-

arrangement. As usual (R, £, m) stand for the one-dimensional Euclidean space endowed

with the Lebesgue measure and F(R, £) denote the set of all L-measurable functions on

R.

Definition 2.1. The distribution function D of a function f € F(R, £) is given by
Dy(A) =m({z € R: [f(z)| > A}), (2)

for all A > 0.
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Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces 3

Observe that the distribution function Dy depends only on the absolute value of the
function f and its global behavior. Moreover, notice that Dy may even assume the value
~+00.

It should be pointed out that the notation for the distribution function in (2) is not
standard, other authors use the notations f., s, df, Ay, among others.

The distribution function Dy enjoy the following properties.

Theorem 2.2. Let f and g be two functions in F(R,L). Then for all A\, 1, 2,3 >0
we have:

a) Dy is decreasing and continuous from the right;

b) lg| < |f| m-a.e implies that Dg(X) < Df(A);

¢) Dep(s) = Dy (ﬁ) for all c € O\ {0};
d) Dyrg(Ar+ A2) < Dyp(A1) + D(X2);

e) Dyg(MA2) < Dy(M) + D(X2);

) Iff] < lirr_1>inf | fr| m-a.e, then

Dy(N) < liminf Dy, (\);

9) I 1fal T 1f], then lim Dy, () = Dy(\).

For the proof of all this properties see [6, 5].

With the notation of the distribution function we are ready to introduce the decreasing
rearrangement function and its important properties.

Definition 2.3. Let f € F(R, £). The decreasing rearrangement of f is the function
f*:]0,00) — [0, 0],

defined by
fr@t) =inf{A >0: Ds(N) < t},

taking the usual convention that inf(f)) = oco.

The next theorem establishes some basic properties of the decreasing rearrangement
function.

Theorem 2.4. The decreasing rearrangement function has the following properties:

(a) f* is decreasing;

(b) f*(t) > X if and only if Dy(\) > t;
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4 R.E. CasTiLLO & H.C. CHAPARRO

(c) f and f* are equimeasurable, that is D¢(X) = Dg«(X) for all A > 0;
(d) (af)*(t) = la|f*(t), a € R;

(e) If [fnl T 1], then f3 1 f7;

(1) If || < liminf £, then f* < liminf f;;

(9) For 0 <p <oo, ([fP)*(t) = [f*(®)]";
(h) If [f] < |gl, then f*(t) < g*(t);

(i) If E € L, then (xg)*(t) = X(0.m(m)) (t);

(j) If € L, then (fxp)*(t) < f*(O)X(©0,m(E)) (t);

(k) Let Ey(\) = {z € R : |f(z)] > A}, If f € FR,L), A > 0 and F' = xg,; ) then
F* = XBp ) (0)-

For the proof of all these properties see [6, 5]. The next result tells us that a function
cannot have two different decreasing rearrangements, see [6] and also [5, Theorem 1.8].

Theorem 2.5. There exists only one right—continuous decreasing function f* equimea-
surable with f.

For a positive strictly decreasing function f, it is itself its decreasing rearrangement, as
the next result shows.

Theorem 2.6. Let f be a strictly decreasing and non-negative function on (0,00) then
@) =r).
Proof. Consider
m({z € (0,00) : f(z) > A}) =m({z € (0,00) : f7(f(2)) < fT (M)}

=m({x € (0,00): 0 <z < f*(\)})

=71
Take t = f~1(\) then A\ = f(t). Thus

f5(t) =inf{A > 0: Ds(X\) <t} = f(t),

that is f*(t) = f(¢), as we claim. The proof of Theorem 2.6 is complete. v

The following theorem is quite important since it allows us to calculate an integral in a
general space via an one-dimensional integral. The formula (3) below is sometimes called
the Cavalieri principle.

Theorem 2.7. Let (X, o7, 1) be a o-finite measure space and let f be an of ~measurable
function. Then

Juran=p [ "0 utta e X 1) > ) ®)
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Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces 5

For the proof of this statement we refer to [6]. The next theorem, known as Minkowski
integral inequality, will be useful in proving latter results in this paper.

Theorem 2.8 (Minkowski integral inequality). Let (X, ,p) and (Y, 9%,v) be o-finite
measure spaces. Suppose that f is a <) X ofo-measurable function and f(-,y) € Ly(p)
forally €Y. Then for 1 < p < oo we have

(/[‘/f(a:,y)dl/pdu pg/(x \f ()P dp Edy.
Y %

For the proof of this statement see [6]. A function and its decreasing rearrangement has

the same Ly-norm. Indeed, we have the following L,-identity.

Theorem 2.9. Let f € L,(R), 1 <p < oco. Then

/ £1P dm = / )P .

Proof. By Theorem 2.7 and Theorem 2.4 (c), we have that

/\f|pdm :p/ooo N Im({z € R |f(@)] > A})dA

:p/oo NP Im({t € [0,00) ¢ f*(£) > A}) dA
0

:p/ )\p—l (/ X(Of(t )d}\
0 0
Next, by applying the Fubini theorem, we have that
oo oo (oo}
/ pAP~! ( / X(0.£+ (1)) (A) dt) d\ = / AP 0,5+ (1) dAdE
0 0

A /f v PAPT Laxdt
—/0 P dt.

The proof is complete. v

The following inequality is due to Hardy and Littlewood.
Theorem 2.10. If f and g, both belong to F(R, L), we have the identity

/ \fgldm < / T g (@) d. (4)
2 0
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6 R.E. CasTiLLO & H.C. CHAPARRO

Proof. Assume first that f = x4 and g = xp are characteristic functions where A and
B are sets in £. We suppose without loss of generality that m(A) and m(B) are finite.
Then it follows from Theorem 2.4(i) that

/\fg|dm:/XAdem
R R

m(AN B)

min(m(A),m(B))
/ dt

/O " oy (1) dt
/7”(14)

/ X(0,m(A))(t)g™(t) dt

0

- / £ (g () dt
0

In general let f and g be two functions belonging to F(R, £). Then

R/fmdm:R/ </o|f do‘) (/Olgld6> dm
:R/ </O'f XEf(a>da> (/Og XEf(ﬁ)cw) N

It follows from Fubini’s theorem and Theorem 2.4 (h) and the property (k) of this theorem

IN
S

[}

that
[ 1fatam = [ N / [ Xt @ 5)(8) dmdads
R R
S/OC /Oo {/OO (XE; @) (&) (xEr08)" (1) dt} dadp
=/ / {/ XE;- (o) ()X - () (1) dt} dadp
:/OOO (/0 " >da) (/OOOXEP ()dﬁ>
:/OOO (/Of*da> (/jﬁg) dt:/ooof*(t)g () dt
The proof is complete. “
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Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces 7

Theorem 2.11. Let f € L1(R). Then

sup /me7n /f

Proof. Given the real number ¢ > 0, we have that

J1s1dm = [0 B
E

m(E N Es(N\)dA+ / m(E N Ep(X))dA.

{ADf(N)<t} {ADf(A)>t}

The following is a well known fact from the measure theory: if m(E;(X)) > ¢ > 0, then
there exists a set E € £ such that £ C Ef(\) and m(E) = t. Hence

*(t)

00 (@)
:/ Df(A)dA+/ £
f=(t) 0

[ee]
- Dy (N dA + t£*(t)
f*(t)

t rf(s)
:// dXds + tf*(t)
o Jr
t
:/ f*(s)ds.
0

The proof is complete. v

S Fr(t)
dm : FE) = = E:(\)dA d\
sup ZU|m7m> | A m(E () +A ’

3. Calderon—-Zygmund singular integral operators

Taking into account the Calderéon—Zygmund theory we are going to have the Hilbert
transform as a fundamental example. We recall the following definition.

Definition 3.1. Suppose that K (z) € L,.(R™\{0}) and satisfies the following conditions:
(a) |K(z)| < Blz|~™ for all z # 0.

(b) / |K(z)]=0forall 0 <r < R < 0.

r<|z|<R

© [ K@=y - K@ <EBory2o

|z[>2y
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8 R.E. CasTiLLO & H.C. CHAPARRO

A kernel as in Definition 3.1 is called the Calderéon—Zygmund Kernel where B is a constant
independent of x and y. The condition (c) is called Hérmander condition..
Now, we present the following fundamental theorem.

Theorem 3.2. Suppose that K is the Calderéon—Zygmund kernel. For ¢ > 0 and f €
L,(R"), 1 <p < oo, let

T.f(x) = / f(& - K@) dy.
ly|>e

Then the following statements holds:

(1) | Tefllz, < ApllfllL, where Ay is independent of € and f.
(2) For any f € Ly(R™), 1ir% T.f exists in the sense of the L,—norm. That is, there
€—>

exists an operator T such that
Tf(z)= p'v/ flz—y)K(y)dy,
R’n
holds for almost every x € R™.

1
In addition, one can show that K(z) = —, that is, the kernel of the Hilbert transform
ey

satisfies the hypothesis in Theorem 3.2. We prove that it satisfies the properties in
Definition 3.1 below. Note that

1

T

B 2
< — where B = —.
|| ™

(a) [K(z)] =
(b)

<lz|<R <lz|<R

[
||

r<|z|<R

1 / dx
< el
o |z|

jo[<R

R
Sl/ dj:()_
i _R X

1

IN

1
Since — is an odd function, we have
x

K(z) =0.

r<|z|<R
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Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces 9

(c) Note that

1] 1 1l 1 y
K@ —y) - K@) = —|—— -+ =~ .
mlx—y x| w|x(x—y)
Now, if |z| > 2]y| then |z — y| > %' Indeed
|z = [yl < |z -yl
el
—slal - 5 < ly— 2l
=z —y| > M
-2
Consequently,
2 d 2
[ G-y -r@a <[22
™ || T
@] >2]y] |z >2]y|
Hence K(z) = % is a Calderon—Zygmund kernel. Now, let us define

By Theorem 3.2, we have that

L [ flz—y)
Hf(z)=pv— | —dy.

So we might say roughly that Hilbert’s transformation of a function f is the convo-

1
lution of f with the Calderén—Zygmund kernel K(x) = —.
T

4. A theorem due to E. M. Stein and G. Weiss
This section is based on [1, 4]. The following lemmas will be helpful for the proof of
Theorem 4.3. We present these lemmas and their proofs below.

Lemma 4.1. Let P(z) = 2" + a2t + -+ + agz + a1 be polynomial of degree n. Let
r1,72, " , Ty be the roots of P(x) =0, then

n

E T = —Qp.

k=1

Proof. The proof uses the mathematical induction. When n = 2, the polynomial z2 +
asx + a1 = 0 has two roots, 1 and ro, such that

(x —r1)(z—1r2) =0,

Vol. 42, No. 1, 2024]



10 R.E. CasTiLLO & H.C. CHAPARRO

then

22—z — rox 4+ rire = 0.

In consequence

z® — (r1 4+ ro)x +rirg = 0.

Hence 7, + 73 = —as. Now, for n = 3, the polynomial 23 + a3z? + asx +a; = 0 has three
roots named rq, 7y and r3 such that

(x —r)(z —7r2)(x —1r3) =0,
(gc2 — (r1+ra)x+rir)(x —r3) =0,
- (T+T‘2)l’2 + (rire)x — rez? + (r1 + ro)rsx — rirars = 0,

23— (ry + 1y +r3)x? + (rire + rir3 + rors)x — rirers = 0.
From this last equality we have that
1 +Tre+ 73 = —as.
Next, suppose that for
"+ apz" T 4+ Fasz+ag =0,
the property

Zrk = —ay holds.
k=1

Now, the polynomial 2"*! +a, 12" +---+asx +a; = 0, has n+ 1 100ts 71,79, -+ , Tpi1
such that

(x —m)(x—ra)-- (=) (@ = rny1) =0,

n
|;:Z:n - < rk) znil + h
k=1

(I - TTL+1) = Oa

n n
[xnﬂ B (Z rk) A e (Z T’“) Ppp1@" 4| =0,
k=1 k=1
n+1
- <Zrk> "4 =0.
k=1
Therefore
n+1
Z Tk = —Qp41-
k=1
The proof of Lemma 4.1 is complete. v

[Revista Integracion
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Figure 1 | | =g(x)
z — by

Lemma 4.2. Suppose that a;, b; (i = 1,2,3,---,n) are real numbers satisfying that
a1 < by <as <by<---<an<b, and let g be the rational function

glo) = [ 5= (x €R). (5)

)
k=1 k

If A # 1, then the equation g(x) = |A| has n different roots r1,r9, -+ , 7, which satisfy

that . N N
Zbkzzrk+(1— 1Zbk—ak (6)
k=1 k=1 k=1

Furthermore, if A > 1, then
(A=Dm({g>A}) = (A+ Dm({g < —A}) =D (b — ay). (7)
k=1

Proof. Since g has a simple pole at each by, (k=1,2,3,--- ,n) and

lim g¢g(z)= lim lim =1, 8
|J:\~>oog( ) || =00 i1 T — bk H \w|~>oo T — bk ( )
there are exactly n different solutions, say ri,ra,---, 7, to the equation g(x) = |A|

(A #1). Then

Vol. 42, No. 1, 2024]



12 R.E. CasTiLLO & H.C. CHAPARRO

Pl Xr — bk
[[@-a) =a]]@-b
k=1 k=1
and so .
[[@—a)—A]][@—-t) =0,
k=1 k=1
where N N .
Pla) =Y mat = [Jw—a) - A[[@—b) = ©)
k=0 k=1 k=1
Then . .
H(:C—ak) —AH(sc—bk) =0,
k=1 k=1

which implies that

()] o)

(1-A ( Zak+AZbk> +--=0

=D g @k + A b L1
(1-A4)

=0

a" + 4+ =0.

Since ry,79, - ,r, are the roots of the polynomial P(z) = 0, then by Lemma 4.1 we
have that

zn:r :__Zzz1ak+AZZ:1bk
: (1-A) '

In consequence,
i:rk:(l_A)_li:ak 1AA Zbk
k=1 k=1 ( )k
- 1-A—1
— A)_l Zak + ( >
k=1 k=
— A)71 Zak + (]. )
k=1
fA)’IZak+ (1-1-A)

n

—_
Msw
=

bi

b
I

1

M:

by,
k

1
Zak+2bk— 1— Zb
k=1

[Revista Integracion



Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces

Hence

n

Zbk = Z""k"‘(l_A)_lek - (1—A)_1Zak
k=1 k=1 k=1 k=1

= irk + (1 — A)_l Z(bk — ak).
k=1

k=1

If A>1, then {g > A} = U (bg, rr), (see figure 1) and so

k=1
m({g > A}) = m (U (bk,m)
k=1
= Zn:(rk — bi,)
k=1

Since

we have that

<
3

n

(bx —rr) = (L= A)"" > (b —ax),
k=1 k=1

and putting these equations together we have that

Zn: k—bk I—A)_lz(bk—ak)

k=1 k=1
—m({g > A}) = (1—=A)"" > (bk — ar)
k=1
(A—1Dm({g>A}) = (bx — ar).
k=1

Moreover, if —A < —1, then {g < —A} = J;_, (7, bx), (see figure 1). Hence

({g< A} m<o Tk,bk>
= Z(bk — Tk).

Now, we have

3
3

by, = e+ (A+1)71 Z(bkfak).
k=1 k=1 k=1

Vol. 42, No. 1, 2024]
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14 R.E. CasTiLLO & H.C. CHAPARRO

Also,
Z k_Tk A+1 12 k—ak)
k=1 k=1

In consequence

m({g < —A}) =(A+ 1) (br —ax).
k=1
Finally,
(A+1)m({g < —A}) = (b — ag).
k=1
In view of the analysis above, we conclude that
(A =Dm({g > A}) = (A+ Dm({g < —A}) =) (b — ax). (10)
k=1
The proof of Lemma 4.2 is complete. v

In the following result we can observe that the distribution function of Hyg depends
only on the measure of E and not on the way in which F happens to be distributed over
the real line.

Theorem 4.3 (Stein-Weiss [19]). Let E be the union of finitely many disjoint intervals,
each of finite length. Then

2m(E)

b () (70\); A>0. (11)

Dy, (\) =
Where Dp,, (A = m({|Hxg| > A}).
Proof. We may express the set F in the form

U (aj,bj), (12)

where a1 < b; < ag < by <--- < a, <b,. We already know that
1| b dy
o ==
e [z/y]
o — gm—bi
n
HCC—ai
1

[Revista Integracion



Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces

Fix A >0, and let ' = {|H, ;| > A}. Then m(F) = Dp, (). Since

T —a
Hx—b:]’

i=1

we have that
n

Tr — a;
|}

i=1

e'rrHXE (z) —

Tr — Qg
= F' can be decompose as
T —0;

n
If we set g(x) = H

=1
F={lgl>e™yu{lgl <e ™} =F UF.
Now, by applying Lemma 4.2 to g we obtain,

m(F1) =m({|g] > e™})
=m({g > e™}) +m({g < —e™})
i (bi —ai) + > i (bi —ai)
e —1 e +1
m(E)  m(E)
e —1 e +1
2e™\m(E)
e2mx _ 1
m(E)
sinh ()’

+

Next, for Fy, we have that,

m({lgl <e™™})
m({g > -7} +m({g <e™™})

i (bi — a) N doiq (b — ag)
—e T -1 —e A+ 1

m(Fy)

sinh (—7\)

_m(E)

sinh (7))’

Finally om(E
m({|Hy | > \}) = m(F1) + m(Fz) = SHE((WK\)

Vol. 42, No. 1, 2024]
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16 R.E. CasTiLLO & H.C. CHAPARRO

2m(E)

m({[Hyz| > A}) = m

The proof of Theorem 4.3 is complete.

A short proof of the Stein-Weiss theorem using complex-variable methods can be found

in Calderén [2] and Garnett [13].
and Xiang [18].

Also, an additional discussion can found in Sagher
The Stein-Weiss theorem has been discussed for the ergodic Hilbert

transform by Ephremidze [10]. As a corollary of Theorem 4.3, given that f* is essentially

the inverse function of D¢()), we compute (Hxg)" (t) as follows.

Corollary 4.4. Let E C with m(E) < co. Then

(e (0= Lsin ™ (245,

The next theorem shows that the operator H is anticommutative.

Theorem 4.5. Let f € L,(R) and g € Ly(R) (1 < p < o). Then

| twng o =- [ mie
Proof. Let us start by defining

Hyf(z) = / 1) dy
r—y
le—y|>5
Note that
Consequently,
Hf(z) = lim / /) dy.
n—o00 ]

[Revista Integracion



Boundedness of the Hilbert Transform on Rearrangement Invariant Spaces 17

An application of Fubini Theorem gives

[ Har@gte)

g(x)dx

S/

R Ne—yl>4

:/ / X{|x =503 g0 g(a) da
-y
z)X P
:/f / ly=al>3 @} 50| gy
y—x
/ o / 9(x) . dy
y—x
R y—z|>1
- [ 1w
E
Finally by the monotone convergence Theorem we have that
/Hf(x)g(w) :/ lim H,f(z)g(z)dx
n— oo
R
= lim /H flx
n—oo
= lim —/f(x)Hng(x) dx
n—oo
R
z—/f(x) lim H,g(z)dx
n—oo
R
—— [ f@)Hg(a) do
R

The proof is complete.

The following result, due to O’Neil, provides a bound of (H f)**
with enough details.

Theorem 4.6 (O'Neil-Weiss [16]). If

Vol. 42, No. 1, 2024]
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18 R.E. CasTiLLO & H.C. CHAPARRO

The function H f(z) exists almost everywhere and for each s > 0 one has that

(Hf)™(s) <:S/OOC F*(t) sinh ™! (;) dt

™ Jo \/82+t2
where
1 t
— [ e
tJo

Proof. By Theorem 2.11, the statement will be established if we can show

J1s@iae<? [ pwsuc (2 a=2 [T L0,

E

for each set E of measure s, that is m(F) = s.

Given such a set, let E1 C E be the subset where H f(x) > 0 and let E; = E'\ Ey. Using
Theorem 2.10, Corollary 4.4 and Theorem 4.5 we have that

/|Hf(z:)|d:z::/Hf(:c)dzf/Hf(x)d:z:
E Eq E>

~ [ Hi@e @i~ [ Hi@xe @
[ @@ [ @@ d
< [ i@ @lde s [ If@ @)l
/ et HXEl)*(t)dt+/Ooo f*(t) (Hxg,)" (t)|dt.
By Corollary 4.4, the previous expression is equal to

1 /OO ) {sinhl (2miE1)> +sinh~ (W)} dt

/ £ th—( (E1)+m(E2)> gt

L (42 [ s G

So the desired inequality holds. The equality

;/0 f (t)blnh ! (;) dt = o ﬁdt

follows by integration by parts. The proof of Theorem 4.6 is complete. v

[Revista Integracion
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Corollary 4.7 (O'Neil-Weiss's Inequality). Let f be a measurable function on (—oo,0).

Then . .
H**<t>g2[1 [ s [ f**(s)ds],

T |t S

for each t > 0.

We shall need the following form of the Hardy inequality (see [6]).
Lemma 4.8. Ifp > 1 and [ is a nonnegative function defined on (0,00). Then:

1 1

o ([T rwa] a) < 2 ([Cuwre)s
([ (me(t)cit>p); <o([utras)”

Now we present a theorem due to M. Riesz.

Theorem 4.9 (M. Riesz Theorem). If 1 < p < oo and f € L,(R). Then there exists A,
independent of f € L,(R) such that

IH fllz,® < Apllfllz,®)-

Proof. By Corollary 4.7 we have that

IH fllL,®) < (/OOO((Hf)**(s))”ds) '

AL G roas [rof)] o)

=A+ B.

Now, by Lemma 4.8(a), we have that

as 2 ([Fuoras) <2 (C2) ke

And by part (b) of Lemma 4.8 we have that

« b
52, (/0 (f**<5))pds> < %wnmm-

The analysis above shows the theorem. v

We can also give another proof of Theorem 4.9 using Minkowski’s integral inequality, as
it is shown below. The proof is due to O’Neil-Weiss [16].

Vol. 42, No. 1, 2024]
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Proof. By making an appropriate change of variables and by employing Minkowski’s
integral inequality (see Theorem 2.8), we have that

1H ], < ( / L Hf)**<s)]pd8)
1 [ om0 of
LG G)smw () d?)'” ds];
([ () smntwl) ]

) )

du

IN

A0 Ao 3w

D=

=

du

=

Il
Al 3o F
o\»
8
2]
=
o =
g =
=
S~—
g
8=
TN N
S—
8
\h
*
&
=
=
£
N N
Y

=4yl fllL,-

Thus we proved Theorem 4.9 with
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