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1. Introduction

Definition 1.1. [2] The real Clifford algebra A,, is a real vector space with 2™ basis
elements eg, eq,...,em_1, defined by

ep=e=1,e1 = €e1,...,€, =€n,
€12 = €1€2,€13 = €1€3,...,€m_1.m = €m—1€m,-..,€12..m = €1€2...6Em,
and let {ep,e1,...,€12,€13,...,€m_1m,€12..m} be a basis of R™. The multiplication in
A, is given by the rule
ea€s +egeq = —2048€0, o, f=1,2,...,m. (1)

Definition 1.2. [3] Every element a = ) as€, (an € R) is called a Clifford number. A
product of two Clifford numbers a = ) aqeq,b =) bgeg is defined by the formula
o B

ab = ZZaabgeaeg, (2)
o B
and their conjugate complex @ = 3" a,€,,b = > bs€s.
a B

In a standar way, we can define a Clifford algebra valued function f : R™t! — A,, by
the formula (see [2] for more details)

f@) =" falx)ea, (3)

with f, : @ — R, where  C R is a open set, and we denote by C"(€2,.A) the space
of all Clifford algebra valued functions (3) which are n times differentiable in some open
connected set 2 C R™*! [2]. The conjugate of f(x) to be the function f(z) given by the
formula

J@) =3 (1" falz)ea. (4)
k=0

a=k

On other hand, the generalization of Cauchy-Riemann operator is given by

m 8 m
D= s~ a2 Ty )

the second term correspond to Dirac Operator [1] , [4], which we will denote by D.
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An approach to derivatives for non-monogenic functions 13

Definition 1.3. [4] The Clifford algebra valued function f(z) € C'(£,A,,) is called
monogenic (Left monogenic function) in  if and only if Df = 0, that is to say

m 9 N
Df= 3 el =0 (6)

B a=1

and while g is called right monogenic function

- 9ga
gD = Z eaega—xﬂ =0. (7)
B,a=1

Remark 1.4. The expressions (6) and (7) are defined on the Dirac operator.

This paper are organized as follows: in section 2, we present the motivation. In section
3, we present the derivative for non-monogenic functions on the Dirac operator. In the
section 4, we present a new type of difference operator for non-monogenic function. In
the section 5, we introduce the derivative for non-monogenic function and in the final
section, we presents some suggestions for further studies are presented.

2. Motivation

The topic of this article are derivatives for non-monogenic functions and the motivation
comes from the study of the monogenic function in the Dirac operator (see the references
[1], [2]). In accordance with the above, our interest here is to define the derivatives for
non-monogenic functions in the Dirac operator Df # 0 (fD # 0), and introduce a new
type of difference operator similary to Dirac operator such that satisfies the property
D? = —V? subject to some commutation relations different to Clifford relation (1) and
consequently study their respective derivatives.

3. Derivative for non-monogenic functions on the Dirac operator

Remark 3.1. Let be given a open 2 C R™*!. A function f € C'(Q, A4,,) is said to be
left (right) non-monogenic in Q if and only if Df #0 (fD # 0) in Q, more exactly

- dfa
Df = Z eﬁea% 7é 0, (8)
Ba=1
&
Df = Béleﬁea% 7& 0, (9)

Definition 3.2. Let f € C(Q, A,,) be a non-monogenic function in Q. The derivative is
defined by

afa (eg) _ fa(eaeﬂxﬁ) - fOé(xB)7

8.13,@ €aesTp — T

(10)
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and its conjugate complex

%(e ) = fa(@a®srp) — foc(xﬁ). (11)

8x5 7 €,€,T3 — I3

forallc=1,2,...,m

Lemma 3.3. For the Dirac operator we have

Df = Zm: esen {fa(eaeoxﬁ) fa(xﬁ)} ’ (12)

Gaml €n€sT3 — Tp

and its conjugate complex

i— oo |:fa €,8,74) — fa(afﬁ)} . (13)

eaea 8 — :Z}ﬁ

Proof. Tt is sufficient to replace (10) into (8), and (11) into (9). [t

Theorem 3.4. Assume that f, € C*(Q, A,,) and g, € CH(Q, Apn) are a non-monogenic
functions in Q for all o =1,2,...,m and are differentiable in xg € Q then

i The product foge € CH(Q, Ay is differentiable at x5 and

0 0 dfa

9y ata)(0) = fa(eaeows) 512 + ga(ws) 5 %

it fo/9a is differentiable at xg and

9 Ja(zp)Ghe — falzs) gl
> Ua/Ga)\€s) = ; al€n€sT o\ L 0
o5 (fa/ga)(es) T Eaeats)gn () 9o 8)9a(zs) #
a n
83:5 Zeae(,xg :rg) -1
k=1

and similar arguments apply to conjugate complez.

Proof. i

fa(eaesrp)galeaesrs) — folxs)ga(rs)
€qesTp — T

%(faga)(eﬂ) =

_ foleaeotp)ga(enesp) + fal(€ao®s)ga(s) = fa(eaeorp)ga () = fa(®p)ga ()

€qesT — T

] + ga(zp) [

ga(€aesrs) — ga(rp)
€qesT — T3

fa(eaeawﬂ) - fa(xﬂ):|

€qesTy — T

fa(eaeowp) [

99a Ofa
= fa(eaeﬂxﬁ)T + ga(zp) 5—
B BZL’[—;
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faleaeszg)  fa(zg)
ga(eaeorg)  galzg)

€qn€sTy — I
fa(eaeszp)ga(®p) — gal(eaeszp)fa(xp)
(eaeszp — zp)[ga(neszp)ga(rp)]

19}
%(fa/ga)(eo)

15

fa(eaesrs)ga(rs) — fa(xs)ga(s) + fa(zp)ga(®s) — galeaeszs) fa(zs)

(eaeozs — 25)[ga(eaeorp)ga(zs)]

faleaeszg)—falzg) ga(eaesrg)—galzg)
ga(zp) [ eaesrg—g ] — fa(zp) [ eaecrg—rg ]

gu(eaeozﬁ)ga(mﬁ)
B ga(wﬁ)gi(g *fu(w)giz
Ja (eneﬂmﬁ)ga(mﬁ)
0 (ea€srs)" — x?
g ll@a)y) = e b
T3 €nCsTp — Tp

= (eaeawg)"_l + (eaeaxg)"_%cg + et acgf1

n
= Y (eaeowp)" Fap k.
k=1

Example 3.5. 1. Forxg #0, %(1/@3) = _m‘
2. If f € CY(Q, Ay,) defined by fo(xg) = (z5)* + xg, then
Ofa

—— =eq,esT3 + x5+ 1.
8.’176 aColp B

Now, we introduce a new type of difference operator for non monogenic functions as

follows.

4. A new type of difference operator for non-monogenic function

Definition 4.1. Let us consider the real algebra B, is a real vector space with 2P basis
elements e1,...,er_1, and let {e1,eq,e3,...,€,} be a basis of RP. The multiplication in

B, are given by the rules

€nem T Gnm€emen = 5mn

€nem + emen = 2(1 + Qm’n) m,n=1,2...,p,

-1 m#n,
dnm = .

0 m=n

being gnm

Lemma 4.2. For m = n we have 2 = 1 and e,, = 1, and for m # n also
€nem — emen = 0.
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As a direct consequence we obtain the following definition.

Definition 4.3. Let e1,¢e2,€3,. .., ¢, be elements that satisfy (14),
Thus the difference operator D is defined as

0 0
1
D en O0xm, ¢ Oz, |’ (17)

which is subject to

0 7] 7]

A Cmy— temy—Cpy— =
0xm m@xn mamn naxm

0 0 0 0 0? 0?
€n a.Tm |:<en axm) 5mn:| - em?{ﬂﬂ |:<em8xn) 6mn:| - (1 - an) (ax?n + (91'%) )

€n

(18)
and its conjugate
— 0 0
= e, [ 19
{e 8xm+e axn} (19)
Theorem 4.4. Let us consider the differential operator
0? 0?
2
- - 2
v ox2, + ox2 (20)

on RP. If we try to find a square root of this operator of the form (17), the D?> = —V?
leads to equations €2 = 1,e2, =1, (14), (15) and (18).

Proof. For m = n we have

0 0 0 0
2 _ -
b= (e" 9y " 3%) <e" Fr 8%) ’

, O 0 B o a0 ., 0

= 822, B "y By " O 00T
using (18) we get
0? 0? G, 9 G, )
D2: a o a5  Cma— a5ma75 n| — €En 677, 75777,0(
oa%, " o2~ " Gw, {e D B} e {eﬁ ? o, ]

9? o
—(1-0) ( + > :
0x2 ~ Ox2,
and from Lemma 4.2 and (15), finally we obtain
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0? 0?

pr=_2 9
ox2, 0x2

For m # n we have

2 2
e ot (o)

. e 2
0r2 022, "0z, \ Oz,

O (. 0N (O
oz, \ " 0z 922, " 922 )

P
2 2 2
(enem + emen) 0 —2(8 g ),

= o2 T2
O 0%n or2, * 0x2

and from (15) finally we obtain

v

The next definition gives us an analogous formula of functions according to expressions
(14) and (15) to the Clifford algebra valued function.

Definition 4.5. Let CP(¥, ;) be a space of all algebra valued functions following the
structure of the relation (14). According to the above , we can stablish the valued
functions of the following form

F@) = [fy(@)es + fol@)es], (21)
o,

for all o, € N. Where ¥ denotes the open such that ¥ ¢ RP+2,

One can see their respective conjugate in the following remark.

Remark 4.6. The conjugate of f is given by

F@) =" [f(@)es + fol)e,]. (22)

o,y

and therefore we can propose the derivative for non-monogenic function in the following
section.
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18 J. C. JARAMILLO-QUICENO

5. A new type of derivative for non-monogenic function

In this section, for simplicity we will denote the functions (21) and (22 ) as
f@) = fy(w)es + fo(w)ey, (23)
f@) = [1(2)8s + fo(2)E,. (24)

and now let us consider the following theorem.

Theorem 5.1. Let us consider a function f : W — RP. The left non-monogenic differ-
ential operator Df is given by

of Ofo of 9 f,,
l)f—eneaaqg’Y +e nfya +e moaiﬁy‘V' m’ya (25)
and its conjugate
I af, o1,
=&,6, o mCo —— + EpCy ———. 26
J=ee 3xm+e%3xm+e ¢ 8o:n+e evﬁxn (26)
Proof. Tt is sufficient to apply (17) and (19) into (23) and (24). v
Remark 5.2. The right non-monogenic operator can be written as
f’Y afa’ af'y afg
D= o€n €n €oClm 7 — €m ’ 2
f e,e R +ey oz, +e o, +e, oz, (27)
and its respective conjugate
A of dfs af Afs
fD:egenﬁ +ee, oz, +e5 manL » maxn' (28)

Consequently, we can state the derivatives g Iy , 88 xf < gﬂ’: * and af < in the following defi-

nition.

Definition 5.3. For a function f: ¥ — RP, the derivatives for non - monogenic func-

tions 24 0fa Ofy nnq af“ are defined as
OTy ? O ) Oxpy

8f’y _ f'y(e'yeaxm) - f’y(xm) afa fcr(ecre'yl'm) — fd(mm)

= = 29
Oxm, €yEoTm — Ty T Oz, €oyLm — T ’ (29)
afy _ fry(leyeoan) — fy(zn)  Ofc _ fo(eaern) — folan) (30)
oz, €yCoTy — Tp " Oz, Coly Ty — Tp ’

and their respective conjugates

gf“/ _ [+ (&8em) — fr(Tm) 0fs _ fo(€oeym) — folwm) (31)
0T, €€ Tm — Tm T Oz, €oCyLm — Ty ’
afy _ fy(&yeozn) — fy(2n) % _ fo(€seyzn) — folan) (32)
8xn €4CsTpn — Tn ’ axn eae'yxn — Tn .
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An approach to derivatives for non-monogenic functions 19

Theorem 5.4. Assume that f, : ¥ — RP and g, : ¥ — RP are non-monogenic
differential functions at x,,. Then

1. the sum fy + g, : ¥ — RP is differentiable at z,, and

Ofy = Ogy
0T, + O’

0
%(fv "’g'y) =

2. the product fyg, : ¥ — RP is differentiable at x,, and

(f~9+) 99~ Afy
— = = e, e — + —.
O fo(ey axm)axm g'v(xm)axm
3. (xm)" : U — RP is differentiable at x,, and
6 n
W(Im)n = Z(e'yeaxm)nik(xm)kil'
m k=1
Proof. 1.
0 (s +9,) = frleyeom) + gy(ereotm) — fy(@m) — gy(¥m)
Oxp, 7 €480 Tm — T, ’
_ fy(eveom) — fo(Tm) n gy (eveoTm) — g (Tm)
€4€eTm — Tm €4€5Tm — Tm
_ ofy n 09~
0xym  Oxm
2.
1} cTm cTm) — m m
@(f’vg'y) _ fr(eveom )Q'VCE:';:ZEZ jxrf'y(m )G (Tm)
_ f’y (ewevwﬁt)gw (e'yeawvn) + f’y(e'yeaahn)g'y (w'm) - fw(eweaw'rn)gw(wnL) - f’y (w'rn)gw(a:?n)
B emeoTm — Tm
_ f’y(e'yealﬂm) [gw(eveaxm) - g'y(xm)i| + gw($m) [f’y(e'yeaxm) - f’y(xm)i|
€yeoTm — Tm €y€eTm — Tm
7] o
= Fy(erean) 225 + g (om) 5
3.
0 ()" = (eveoxm)™ — ™
Oxp €y€oTm — Tm
= (er0mm) "t + (eyeomm)" 2 + (eyepmm) 222, + ...+ 2!
n
= Z(eveoxm)"kaf{l.
k=1

Remark 5.5. The proof for conjugates is similar.
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Now, let us consider the following example:

Example 5.6. For f.(z,,) = 3(xm)3

0

0T

3
(3(Im)3) =3 Z(e’yeal’m)gik(%n)kilv

k=1
thus the left non-monogenic operator D f

3

D(3(x,)?) = 3ene, Z(eyeaxm)?’_k(xm)k_l.
k=1

Now, for the right non-monogenic operator

3
(3(xm)®)D = Besen D (€rey@m)> F(2m)" .
k=1

and its conjugate we have

D(323) = 36,65 Y (e560am)> F(zm) L.

NE

k=1
6. Suggestions for further works
The main point of this paper has been to show of the definition the derivatives for non-
monogenic functions. There are two further topics arising from this paper which are worth

investigation. First, one might consider the g— quadratic derivatives for non-monogenic
functions based in (see [5] for more details)

aqf f[(xm + q2emxn)xn] - f(xmxn)

OgTm qTy, ’
aqf _ f[(xn + qzenl'm)xm] - f(xnxm)
Oy, qTm ’

assuming that x,x,, are not commutative, and considering the deformed version analo-
gous to (17)

O f
OgTm

g f

OgTm

D,f =e, +em

and secondly there is the problem of describing the solution of the differential equations
of the form

(33)
for g: ¥ — RP.
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