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Abstract. In this paper we study codimension 1 Hopf bifurcation for
a two dimensional autonomous nonlinear ordinary differential equations
system, modeling a predator-prey interaction with Holling type II func-
tional response and additive Allee effect in the prey equation. Positivity,
dissipation, boundedness and permanence of the solutions are analyzed.
Furthermore, stability and bifurcation analysis are carried out to show the
existence of periodic orbits due to the occurrence of codimension 1 Hopf
bifurcation, involving weak Allee effect as well as strong Allee effect. In the
case of strong Allee effect, through computer simulations carried in MAPLE
13, we conjecture that this model may admit a heteroclinic bifurcation.
We present some simulations which allow one to verify the analytical results.
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Análisis de estabilidad y bifurcación en un modelo presa
depredador que involucra efecto Allee aditivo

Resumen. En este artículo estudiamos bifurcación de Hopf de codimensión
1 para un sistema de ecuaciones diferenciales ordinarias bidimensional autó-
nomo no lineal, modelando una interacción depredador-presa con respuesta
funcional Holling tipo II y efecto Allee aditivo en la ecuación de la presa. Se
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analiza positividad, disipación, acotación y permanencia de las soluciones.
Además, se realizan análisis de estabilidad y bifurcación para mostrar la
existencia de órbitas periódicas debido a la ocurrencia de bifurcación de
Hopf de codimensión 1, involucrando efecto Allee débil así como efecto
Allee fuerte. En el caso de un fuerte efecto Allee, a través de simulaciones
realizadas en MAPLE 13, conjeturamos que este modelo puede admitir una
bifurcación heteroclínica. Presentamos algunas simulaciones que permiten
verificar los resultados analíticos.

Palabras clave: Sistema presa-depredador, efecto Allee, positividad, disipa-
ción, acotación, permanencia, estabilidad, bifurcación.

1. Introduction

The predator-prey models have been of crucial importance in the development of the
nonlinear systems, which has allowed the researchers interested in this field to accomplish
big advances in the study of the spatio-temporal dynamics of these models [23], [15],
[11], [31], [32], [4], [3], [18]. It is well known that in nature some species often co-
operate amongst themselves in their search for food or when they try to escape from
predators. Allee [5], [6] studied extensively the aspects of aggregation and associated co-
operative and social characteristics among the members of a species. He proposed that
intraspecific cooperation might lead to inverse density dependence (that is, the per capita
rate of population growth increases as population sizes become larger) and observed that
many animal and plant species suffer a decrease of the per capita growth rate, as their
populations reach small sizes or low densities. Furthermore, Allee brought the attention
to the possibility of a positive relationship between individual fitness and population size.
The phenomenon, broadly referred to as the Allee effect, has attracted a lot of attention
with the rise of conservation biology. Generally speaking, a population is said to have an
Allee effect, if the per capita growth rate is initially an increasing function for the low
density. Moreover, it is called a strong Allee effect if the per capita growth rate in the
limit of low density is negative, and a weak Allee effect means that the per capita growth
rate is positive at zero density.

According with Stephens [29], the Allee effect occurs when the individual fitness is re-
duced at low densities of the population and the effect of competition results dominant,
so that the variation with respect the population size is not positive for any populational
size. That is, the reproductive success of an individual never increases as the population
grows, since competition by resources increases as the number of competitors increases.
Wertheim [34] states that the Allee effect component reflects only an isolated mechanism
that produces a benefit to aggregation, which may or may not be sufficient to offset the
associated costs.

Clearly, the above mentioned situations are different from the logistic growth, in which
the per capita growth rate is a decreasing function of density (see black line in Figure
1). Logistic growth, also known as Verhulst model - has been modeled first in [30] by the
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following differential equation:

Ṅ(t) = rN(t)

(
1− N(t)

K

)
= Nf1(N) (1)

where N(t) denotes the populational density at time t, f1(N) = r
(
1 − N(t)

K

)
is the per

capita population growth rate, r > 0 is the intrinsic growth rate, and K > 0 is the
carrying capacity the environment. It is worth observing that in logistic growth, an
increment in the population density leads to a negative effect in the reproduction and
survival of an individual. On the other hand, the Allee effect means that this negative
effect occurs when there is an increment in high densities of populations, whereas in lower
densities of populations this increment may be beneficial.
It is widely accepted that the Allee effect may be understood as the cause of the increase
in extinction risk at low densities, introducing, in some case, a population threshold
that has to be exceeded by population to be able to grow. According with [15], [14], a
strong Allee effect introduces a per capita population threshold (the minimal size of the
population required to survive), and the population must surpass this threshold to grow
(see Figure 1 red line); in contrast, a population with a weak Allee effect does not have
a threshold (see Figure 1 green line).
Taking into account the carrying capacity of the environment with respect to the prey
in the per capita growth rate of the population, the weak Allee effect has been modeled
in [10] by the following differential equation:

Ṅ(t) =
r

K
N2

(
1− N

K

)
= Nf2(N)

in which N(t) denotes the populational density at time t, f2(N) = r
KN

(
1 − N

K

)
is the

per capita population growth rate, 0 < r < 1 is the species growth rate and K > 0 is the
carrying capacity of the environment. As mentioned previously, the Allee effect is weak
if there exists no critical density population, below which the per capita rate becomes
negative. Weak Allee effects are then used to describe cases where the population growth
rate is negatively affected by low population sizes, but where the per capita population
growth rate cannot go below zero. Therefore populations will grow at low population
sizes (see green line in Figure 2).
On the other hand, strong density dependence is used to denote Allee effects where the
per capita population growth rate can become negative, which means that there is a
critical point in population size below which the population will tend towards extinction
(see red line in Figure 2). The strong Allee effect has been modeled in [10] by the
following differential equation:

Ṅ(t) = rN

(
1− N

K

)(
N

A
− 1

)
= Nf3(N)

where N(t) denotes the populational density at time t, f3(N) = r
(
1 − N

K

)(
N
A − 1

)
is

the per capita population growth rate, r is the species growth rate, K is the carrying
capacity, and A is the threshold for the population to not go extinct (0 < A < K).
Based on a widespread evidence in natural populations, several mechanisms have been
hypothesized to invoke the Allee effect. Among other phenomena, the most cited and
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obvious cause of the Allee effect is the difficulty of finding mates at low population sizes
in sexually reproducing species. Other mechanisms concern genetic inbreeding, leading
to decreased fitness; reproductive facilitation (or cooperative interaction), and predation
[15], [14].

Figure 1. Per capita population growth rate: in the case of logistic growth (black line), we note that
the per capita growth rate is a decreasing function of density, an increment in low densities of population
leads to a negative effect in the reproduction and survival of an individual; in the case of weak Allee
effect (green curve) and strong Allee effect (red curve), we note that unlike to the logistic growth, a
negative effect occurs when there is an increment in high densities of populations, whereas in lower
densities this increment may be beneficial; the following parameter values r = 0.7, K = 50 and A = 10,
were considered for simulations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

For all the aforementioned phenomena, and others, the major consequence of the Allee
effect is the existence of a critical density below which the aggregation unit considered
(that is, population, colony, or social group) is likely to go extinct. The implications of
the Allee effect are potentially very important in most areas of ecology and evolution.
Particularly, on population dynamics the practical management of population numbers,
whether aiming to increase or reduce them, is strongly affected by this effect. The
consequences of Allee effects are also significant for the theory of population dynamics,
because most classic models imply a linear decrease of growth with density, as opposed
to the non-linear relationship associated with the Allee effect.
It is important to observe that the Allee effect has been modeled in different forms [4],
[3]. For instance, if in a predator-prey model we assume that the prey growth is damped
by the Allee effect and N = N(t) indicates the population size, which depends on time
t, the most usual continuous growth equation to express the Allee effect is represented
by the following ordinary differential equation:

dN

dt
= rN

(
1− N

K

)
(N −m) (2)

which is the prototypical model for the multiplicative Allee effect. The parameter r in
model (2) represents the intrinsic growth rate, K represents the carrying capacity of the
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Figure 2. Population growth rate: in the case of logistic growth (black curve), we note that there is
no critical point in low densities below which population size is afected, unlike to the weak and strong
Allee effects; in the case of weak Allee effect (green curve), we note that the populational growth rate
is negatively affected by low population sizes, but where the per capita population growth rate cannot
go below zero. Therefore populations will grow at low population sizes; in the case of strong Allee effect
(red curve), we note that there is a critical point in population size below which the population will
tend towards extinction since for lower population densities, the growth rate is negative; the following
parameter values r = 0.7, K = 50 and A = 10, were considered for simulations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

environment and m is the Allee effect constant. If −K < m < 0 it shows the weak Allee
effect, while if 0 < m < K, it shows the strong Allee effect.

Other mathematical forms have been proposed to describe this phenomenon. Dennis
[15] was the first who introduced the equation that modeled the additive Allee effect,
represented by the following ordinary differential equation

dN

dt
= N

[
r(1− N

K
)− m

N + b

]
. (3)

In model (3), mN
N+b represents the additive term of the Allee effect, m and b are the Allee

effect constant with K > b. In absence of predator the prey N has a populational growth
given by

f(N) = N

[
r(1− N

K
)− m

N + b

]
.

It is clear that f(N) satisfies f(0) = 0 and f ′(0) = r − m
b . In the sense of [33], we have

the weak Allee effect when m < br, i.e., f ′(0) = r− m
b > 0; the Allee effect will be strong

when m > br, i.e., f ′(0) = r − m
b < 0. With the previous notation, we conclude that

the population presents a weak Allee effect or pure depensation if there exists a value
z ∈ (0,K), such that f ′′(z) = 0 and f(N) > 0 for all N ∈ (0,K) (see Figure 3 green
curve). On the other hand, the population presents a strong Allee effect or a critical
compensation if for lower population densities, the growth rate is negative, that is, for
small values of N near to zero, we have f(N) < 0 (see Figure 3 red curve). When the
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species is submitted to a strong Allee effect, it may have a bigger tendency to be less
able to overcome these additional mortality causes, to have a slower recovery, and to
be prone to extinction than other species [28]. These curves are called decompensation
curves, and there exist a value of z ∈ (0,K), such that f(z) = 0. The value of N = z
is an unstable equilibrium and coincides with m in the equation for the multiplicative
Allee effect, which is called the minimal level of viable population or threshold level. If
the initial population N0 at time t = 0 is less than m, i.e., N(0) = N0 < m, then for this
initial size of population less than m the population tends to extinction.

Figure 3. Graphics for the function f(N) = N(1−N)− mN
N+b

in the cases: Weak Allee effect m < br

(green curve): r = 1, K = 1, m = 0.5, b = 0.8; Strong Allee effect m > br (red curve): r = 1, K = 1,
m = 0.3, b = 0.2. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In recent studies [23], [15], [11], [20], [13], the authors studied the spatio-temporal dy-
namics for a predator-prey model with diffusion and Allee effect. In [4], [3] the existence
and stability of limit cycles for a Leslie-Gower predator prey model with additive Allee
effect was studied. In [13] the authors analyzed a predator-prey model with diffusion and
Holling type II functional response subject to additive Allee effect in the prey equation.

Following [13], we focus our attention on the following system of equations:

dN
dt = N

(
r
(
1− N

K

)
− m

N+b

)
− NP

N+a

dP
dt = sP

(
−β + N

N+a

)
.

(4)

The parameters composing the model (4) are positive, and r, K, m, b have the same
meaning as in Equations (2) and (3); a is a saturation constant; β is the death rate of
the predator; and s is the feed concentration; Dennis [15] showed that the probability of
mating encounters among individual of a population with increasing population density,
could be modeled using a rectangular hyperbola function N

N+b , where b is the population
size at which mating fitness is half of its maximum value that is, b is the population
density at which the probability of mating is 1

2 . Therefore, 1 − N
N+b = b

N+b is the
probability of not mating. Consequently, the term − m

N+b considered in the per capita
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growth rate of prey population in model (4) represents the reduction due to mating
shortage. We then have the logistic model adjusted for mating encounters. − NP

N+a is the
predation rate where the saturation constant a reflects the prey density level at which
the predation rate begins to saturate, meaning that predators have a limited capacity to
consume prey and this capacity stabilizes at high prey densities; N

N+a is the fraction of
the maximum consumption rate of prey by predators as a function of prey density.

In [13] the authors investigated the dynamics of model (4) and its diffusive version. They
analysed the local and global asymptotic stability behavior of the positive equilibrium
for both the ODE system and the reaction diffusion system. Furthermore, they obtained
conditions over the parameters for the occurrence of the Hopf bifurcation in model (4)
in the cases of weak Allee effect as well as strong Allee effect. However, to the best of
our knowledge there is no results related to the direction and stability of the bifurcating
periodic orbits for the system (4). In this paper, we determine the direction and stability
of the bifurcating periodic orbits for the system, in the case of weak Allee effect as well
as strong Allee effect by calculating the value of the first Lyapunov coefficient.

This paper is organized as follows: In Section 2 we present a review of the method found in
[26] for the calculation of the first Lyapunov coefficient for a general ordinary differential
equation system. In Section 3, positivity, dissipation, boundedness and permanence of
the solutions for model (4) are studied. In Section 4, equilibrium points of the system
(4) are identified, and a Hopf bifurcation analysis for the positive equilibrium is carried
out. We determine the direction and stability of the bifurcating periodic orbits for the
system (4), in the case of weak Allee effect as well as strong Allee effect by calculating
the value of the first Lyapunov coefficient; simulations are presented to corroborate the
analytical results. Also, in the case of strong Allee effect it is observed by a numerical
experiment the presence of an interesting global bifurcation not discussed earlier for this
mode. A discussion follows in the final section.

2. Outline of the Hopf Bifurcation Methods

In this section we present a very brief summary of the projection method described in [26]
for the calculation of the first Lyapunov coefficient associated with the Hopf bifurcation,
denoted by l1. Other equivalent definitions and algorithmic procedures to write the
expressions of the Lyapunov coefficients for two-dimensional systems can be found in [7]
and [27], among others.

Definition 2.1. Consider the differential equation

X ′ = f(X,m), (5)

where X ∈ R2 is a vector representing phase variables and m ∈ R is a parameter
representing control parameter. Assume that f is of class C∞ in R2 × R. Suppose
that system (5) has an equilibrium point X = X0, which may depend on m. Let the
eigenvalues of the linearised system about this equilibrium point be given by λ1,2(m) =
α(m) ± iω(m), and suppose that this pair of simple complex eigenvalues reaches the
imaginary axis as the parameter m varies, say at a critical value m = m∗, and we have
λ1,2(m

∗) = ±iω0, ω0 > 0. The bifurcation corresponding to the presence of λ1,2(m
∗) =

±iω0, ω0 > 0, is called a Hopf (or Andronov-Hopf) bifurcation. Specifically, at the
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bifurcation point, a complex conjugate pair of eigenvalues crosses the imaginary axis of
the complex plane, leading to the creation or destruction of a periodic orbit.

Now, consider the system (5) and suppose that it has an equilibrium point X = X0 at
m = m∗ and, denoting the variable X −X0 also by X, we write

X ′ = JX + F (X)

where

F (X) =
1

2
B(X,X) +

1

6
C(X,X,X) +O(∥X∥4), (6)

with J = fX(0,m∗) and B(X,Y ), C(X,Y, Z) are multilinear functions. In coordinates,
we have

Bi(X,Y ) =

2∑
j,k=1

∂2Fi(η)

∂ηjηk

∣∣∣∣
η=0

xjyk and Ci(X,Y, Y ) =

2∑
j,k,l=1

∂3Fi(η)

∂ηjηkηl

∣∣∣∣
η=0

xjykzl, (7)

where i = 1, 2.

Suppose that (0,m∗) is an equilibrium point of (5) where the Jacobian matrix J has a
pair of pure imaginary eigenvalues λ1,2 = ±iω0, ω0 > 0, and these eigenvalues are the
only pure imaginary eigenvalues. Let T c be the generalized eigenspace of J corresponding
to λ1,2. By this it is meant the largest subspace invariant by J on which the eigenvalues
are λ1,2.

Let p, q ∈ C2 be complex eigenvectors corresponding to −iω0 and +iω0 respectively, such
that

Jq = iω0q, JT p = −iω0p, ⟨p, q⟩ = 1, ⟨p, q⟩ = 0,

where JT is the transpose of the matrix J and ⟨p, q⟩ =
2∑

i=1

piqi is the standard scalar prod-

uct in C2 (linear with respect to the second argument). Thus, the critical real eigenspace
T c corresponding to ±iω0 is now two-dimensional, and is spanned by {Req, Imq} and
any vector Y ∈ T c can be represented as Y = wq + w̄q̄, where w = ⟨p, Y ⟩ ∈ C.

By introducing a complex variable z, system (5) can be written for sufficiently small |m|
as a single equation:

ż = λ(m)z +G(z, z̄,m)

where G = O
(∣∣z4∣∣) is a smooth function of (z, z̄,m) and

G(z, z̄,m) = ⟨p(m), F (zq (m) + z̄q̄ (m) ,m)⟩ .

Write G as a formal Taylor series in two complex variables (z and z̄):

G(z, z̄,m) =
∑

k+n≥2

1
k!n!Gkn (m) zkz̄n (8)
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where

Gkn (m) =
∂k+n

∂zk∂z̄n
⟨p(m), F (zq (m) + z̄q̄ (m) ,m)⟩z=0

for k + n ≥ 2.

On the other hand

G (z, z̄,m) = ⟨p(m), F [z q(m) + z̄ q̄(m),m]⟩

= 1
2z

2 ⟨p,B(q, q)⟩+ zz̄ ⟨p,B(q, q̄)⟩+ 1
2 z̄

2 ⟨p,B(q̄, q̄)⟩

+ 1
6z

3 ⟨p, C(q, q, q)⟩+ 1
2z

2z̄ ⟨p, C(q, q, q̄)⟩+ 1
2zz̄

2 ⟨p, C(q, q̄, q̄)⟩

+ 1
6 z̄

3 ⟨p, C(q̄, q̄, q̄)⟩+ · · ·

(9)

comparing (8) with (9), we have

G20 = ⟨p,B (q, q)⟩ , G11 = ⟨p,B (q, q̄)⟩ , G02 = ⟨p,B (q̄, q̄)⟩ , G30 = ⟨p, C (q, q, q)⟩ ,

G21 = ⟨p, C (q, q, q̄)⟩ , G12 = ⟨p, C (q, q̄, q̄)⟩ , and G03 = ⟨p, C (q̄, q̄, q̄)⟩ .

Also, the equations

ż = λz +
∑

k+n≥2

1
k!n!Gkn (m) zkz̄n +O

(
|z|4
)

where λ = λ (m) = α (m) ± iω (m) , α (m∗) = 0, ω (m∗) = ω0 > 0 can be transformed
by an invertible parameter- dependent change of complex coordinate, for all sufficiently
small |m| , into an equation with only the resonant cubic term:

v̇ = λv + c1v
2v̄ +O

(
|v|4
)

where c1 = c1 (m) and

c1(m) =
G20G11

(
2λ+ λ̄

)
2 |λ|2

+
|G11|2

λ
+

|G02|2

2
(
2λ− λ̄

) + G21

2
.

At the bifurcation parameter value m = m∗, the previous equation reduces to

c1(m
∗) =

i

2ω0

[
G20G11 − 2 |G11|2 −

1

3
|G02|2

]
+

G21

2
.

From Lemma 3.7 pp. 98 of [26], the equation

v̇ = (α (m) + iω(m)) v + c1(m)v2v̄ +O
(
|v|4
)

where α (m∗) = 0, ω (m∗) > 0 and supposing that α′ (m∗) ̸= 0, and Re(c1(m
∗)) ̸=

0, then, the equation can be transformed by a parameter-dependent linear coordinate
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transformation, a time rescaling, and a nonlinear time reparametrization into an equation
of the form

du

dθ
=
(
β̂ + i

)
u+

l1(β̂)∣∣∣l1(β̂)∣∣∣u |u|2 +O
(
|u|4
)

where u is a new complex coordinate, and θ, β are the new time and parameter, respec-
tively,

l1(β̂)∣∣∣l1(β̂)∣∣∣ = signRe(c1(m
∗)) = ±1 and l1(m

∗) =
Re(c1(m

∗))

ω (m∗)
. (10)

Definition 2.2. The real function l1(β̂) is called the first Lyapunov coefficient. It follows
from (19) that the first Lyapunov coefficient at β̂ = 0 can be computed by the formula

l1(m
∗) =

1

2ω2
0

Re

(
iG20G11 + ω0

G21

2

)
. (11)

Proposition 2.3. Consider system (5) where X ∈ R2 is a vector representing phase
variables and m ∈ R is a parameter representing control parameter. Assume that f is
of class C∞ in R2 × R. Suppose that (5) has an equilibrium point X = X0 at m = m∗.
Then the following holds:
i) Suppose that at (X0,m

∗) the Jacobian matrix A of (5) has a pair of pure imaginary
eigenvalues λ2,3(m

∗) = ±iω0, ω > 0, and these eigenvalues are the only eigenvalues with
null real part. Then (X0,m

∗) is a Hopf point of (5).
ii) At (X0,m

∗) a two-dimensional center manifold is well-defined, it is invariant under
the flow generated by (5) and can be continued with arbitrary high class of differentiability
to nearby parameter values.
iii) If d

dmReλ(m)|m=m∗ ̸= 0 then (X0,m
∗) is a transversal Hopf point. In this case, if

l1 ̸= 0 then the system (5) undergoes a Andronov-Hopf bifurcation, that is, in a neigh-
borhood of (X0,m

∗) the dynamic behavior of the system (5), reduced to the family of
parameter-dependent continuations of the center manifold, is orbitally topologically equiv-
alent to the following complex normal form

w′ = (η + iω)w + l1w|w|2,

where w ∈ C, η, ω and l1 are real functions having derivatives of arbitrarily higher order,
which are continuations of 0, ω0 and the first Lyapunov coefficient at the Hopf point.
When l1(m

∗) < 0 (resp. l1(m
∗) > 0) a family of stable (resp. unstable) periodic orbits

can be found in these manifolds, shrinking to an equilibrium point at the Hopf point.
iv) The Hopf bifurcation is supercritical (resp. subcritical) if(

d
dmReλ(m)|m=m∗

)−1
l1(m

∗) < 0 (resp. > 0). In addition, the bifurcating peri-
odic solutions are stable (resp. unstable) if l1(m∗) < 0 (resp. l1(m

∗) > 0).

3. Positivity, dissipation, boundedness and permanence of the solu-
tions

In this section, we are mainly concerned with some simple properties of the solution to
model (4). In theoretical ecology, positivity and boundedness of the system establishes
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the biological well behaved nature of the system. On the other hand, persistence and
permanence are important in the sense that they describe long term behavior of the
system. Due to many reasons, for example, pollution, over predation, over exploitation,
mismanagement of natural resources, among others, several species become extinct and
many others are at the bound of extinction. Accordingly, the concept of persistence, that
means the survival of species for a longer time, has drawn lot of attention (see [9], [21],
[1], [2]).
Analytically, a system is said to be persistent if it persist for each population, that is,
if lim inft→∞ x(t) > 0 (stronger case) or lim supt→∞ x(t) > 0 (weaker case) for each
population x(t) of the system. Geometrically, persistence means that trajectories that
initiate in a positive cone are eventually bounded away from coordinate planes. On
the other hand permanently coexistence (uniform persistence) implies the existence of
a region in the phase space at a non zero distance from boundary, in which all the
population vectors must ultimately lie. The later one assures the survival of species in
biological sense.
It is worth observing that in many significant examples of periodic differential systems
modeling infectious diseases transmission, competition of species among others ecolog-
ical models, it is of interest to prove the existence of a nontrivial fixed point for the
operator associated with the differential system, which establishes the global existence
of nontrivial periodic solution that may implies the coexistence of the species. To this
end, some well known theorems or techniques can be applied such as Browder theorem
[12], Brouwer degree techniques, Leray-Schauder degree techniques if the space of initial
values is infinite dimensional, among others.
Although the phenomenons such as periodicity of a differential systems, uniform persis-
tence, existence of a compact global attractor with some more conditions, often implies
the global existence of a positive fixed point for the system, the focus of our paper is to
study the existence of periodic orbits for the non-periodic system (4) by Hopf bifurca-
tion arguments, which are local existence results. Nevertheless, for sake of completeness,
results concerning the persistence and permanence of system (4) are presented in this
section, since those results guarantee the the survival of the total population which is
desirable on the study of population dynamics. Mathematically, persistence of a system
means that strictly positive solutions do not have any omega limit points on the boundary
of the positive cone.
We highlight that the study of system (4) involving periodic cases to obtain some sufficient
conditions on the boundedness, permanence, extinction and global existence of a positive
fixed point will be considered in a next exposition, since our focus here is carrie out a
local analysis by Hopf bifurcation arguments.
Definition 3.1. The system system (4) is said to be weakly persistent if every solution
(N(t), P(t)) satisfies two conditions:

i. N(t) ≥ 0, P (t) ≥ 0, for all t ≥ 0.

ii. lim supt→∞ N(t) > 0, lim supt→∞ P (t) > 0.

System (4) is said to be strongly persistent if every solution (N(t), P (t)) satisfies the
following condition along with the first condition of the weak persistence:
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lim inft→∞ N(t) > 0, lim inft→∞ P (t) > 0.

Remark 3.2. Weak persistence allows that lim inft→∞ N(t) = 0 or lim inft→∞ P (t) = 0
so that arbitrarily small statistical fluctuations may annihilate a species [24].

Definition 3.3. The system (4) is said to be permanent if there exist positive constants
s and S, with 0 < s ≤ S such that

min{lim inf
t→∞

N(t), lim inf
t→∞

P (t)} ≥ s,

max{lim sup
t→∞

N(t), lim sup
t→∞

P (t)} ≤ S,

for all solutions (N(t), P (t)) of system (4) with positive initial values. System (4)
is said to be non-permanent if it has a positive solution (N(t), P (t)) such that
min{lim inft→∞ N(t), lim inft→∞ P (t)} = 0.

The following results ensure the positivity, boundedness, dissipativeness and permanence
of solutions of system (4).

Lemma 3.4. The positive quadrant of R2
+ is invariant for the system (4).

Proof. The first quadrant is an invariant region for (4) since {(N,P ) ∈ R2
+ : N = 0}

and {(N,P ) ∈ R2
+ : P = 0} are invariant manifolds of (4). Therefore, the solutions of

(4) with the initial values N(0) > 0 and P (0) > 0 are positive. The basic existence and
uniqueness theorem for differential equations ensures that positive solutions and the axis
cannot intersect. □✓✓✓

Theorem 3.5. The system (4) is dissipative when t ≥ 0 and N(t0), P ((t0) > 0.

Proof. From the first equation of system (4), we have dN
dt ≤ rN

K

(
K−N

)
. By integrating

the previous inequality from t0 to t, it follows that

N(t) ≤ N(t0)Ke−rt0

N(t0)e−rt0 + (K −N(t0))e−rt
=

K

1 +
(

K
N(t0)

− 1
)
e−r(t−t0)

.

Letting t → ∞ in the previous inequality, it follows that lim supt→∞ N(t) ≤ K. As a
consequence, for any ϵ1 > 0, there exists a T1 > 0 such that N ≤ K + ϵ1 for t > T1.

On the other hand, multiplying the first equation in (4) by s and then adding with the
second one, we obtain

(
sN + P

)′ ≤ srN − sβP . Let ξ = maxt≥0{srN(t) + s2βN(t)}.
Then we have

(
sN +P

)′ ≤ ξ− sβ(sN +P ). From Gronwall’s inequality, we obtain that

sN + P ≤
(
N(t0) + P (t0)

)
e−sβ t +

ξ

sβ

(
1− e−sβ t

)
as long as the solution exists. Letting t → ∞ in the previous inequality, it follows that
lim supt→∞(sN + P ) ≤ ξ

sβ . Hence P (t) is also bounded. As a consequence, for any
ϵ2 > 0, there exists a T2 > 0 such that sN + P ≤ ξ

sβ + ϵ2 for t > T2. This completes
the proof of the boundedness of solutions and the system under consideration is weakly
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persistent (dissipative). Hence, any solution is defined for t ≥ 0 and enter the attracting
compact set

J =
{
(N,P ) : N ≥ 0, P ≥ 0, and N + P ≤ K +

ξ

sβ

}
for sufficiently large values of t, which implies that J is positive invariant. Consequently,
the system is dissipative and its global attractor is contained in J . □✓✓✓

Remark 3.6. We observe that in the case of m = 0, i.e., in model (4) without Allee effect,
the dissipation and boundedness of the solution are similar to the results in Theorem 3.5.
In other words, the solutions of the system without Allee effect are always dissipative
and uniformly bounded.

Theorem 3.7. If m > rb− bξ
saβ holds, then any solution of system (4) starting from the

interior of the first quadrant satisfies lim inft→∞ N(t) ≥ 0, lim inft→∞ P (t) ≥ 0.

Proof. From Theorem 3.5 it is clear that N(t) ≤ K + ϵ1 and P (t) ≤ ξ
sβ + ϵ2 for t ≥ T =

max{T1, T2}. Therefore, from the first equation of system (4) we have

N ′ ≥ rN
[(
1− N

K

)
− m

br
− P

ar

]
≥ r

K
N
[(
K − Km

br
− Kξ

ra(sβ + ϵ2)

)
−N

]
for t ≥ T . Thus, using a comparison theorem (see [8] pp. 1071) and the arbitrariness of
ϵ2 > 0, we obtain lim inft→∞ N(t) ≥ 0 provided K− Km

br − Kξ
rasβ < 0 or equivalently m >

rb− bξ
saβ . On the other hand, observe that P ′ ≥ −βP , hence lim inft→∞ P (t) ≥ 0. □✓✓✓

Remark 3.8. According with Theorem 3.7, we may have lim inft→∞ N(t) =
lim inft→∞ P (t) = 0, provided m > rb − bξ

saβ . This condition implies that the sys-
tem is non-permanent. Such a scenario occur when the system (4) is weakly persistent,
allowing arbitrarily small statistical fluctuations to lead to the extinction of a species.
This annihilating phenomenon may take place when the system (4) is subject to strong
Allee effect, i.e., m > rb. Clearly this inequality highlights the contribution of the strong
Allee effect.

4. Equilibria, stability and Hopf bifurcation

In this section, equilibrium points of the system (4) are identified and a Hopf bifurcation
analysis for the positive equilibrium is carried out. It is worth noting that in [13],
assuming a < b in case of weak Allee effect and a ̸= b in case of strong Allee effect,
the authors proved that the model (4) undergoes a Hopf bifurcation around its positive
equilibrium at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
. (12)

Even though they have focused on the study of Hopf bifurcation for the system (4),
there is no result concerning the direction of the Hopf bifurcation and stability of the
bifurcating periodic solutions. Our main goal in this section is to determine the direction
of the Hopf bifurcation and the stability of the bifurcating periodic solutions for this
system, when additive Allee effect is considered in the prey equation. First, we focuses
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on the case when the Allee effect in (4) is the weak one, i.e., m < br. Next, we analyze
the system (4) when the Allee effect is the strong one, i.e., m > br.
It was observed in [25] that because of difficulties in finding mates when prey population
density becomes low due to increasing emigration rate, Allee effect may occur in prey
species. These two mechanisms are related, because high rates of emigration further
decrease density, thereby reducing the probability of locating mates at low densities.
Consequently, these two mechanism may increase the risk of extinction of small local
population. As we will see in this section, the predator-prey model with weak Allee
effect may not increase the extinction risk of both predators and prey. However, when
the model is subject to strong Allee effect it may increase the extinction risk of both
species.

4.1. The case of weak Allee effect

Let us assume m < br. As a starting point of this subsection, we discuss the equilibria
of system (4) that is, the solutions of the system

N
(
r
(
1− N

K

)
− m

N+b

)
− NP

N+a = 0

sP
(
−β + N

N+a

)
= 0.

(13)

Following the ideas in [13], one can verify that model (4) has always two boundary
equilibria

E0 = (0, 0), and E1 = (N11, P11) =

(
r(K − b) +

√
r2(K − b)2 + 4Kr(br −m)

2r
, 0

)
.

On the other hand, system (4) has a unique positive equilibrium E∗ = (N∗, P ∗) provided

0 < β < 1, m < br +
aβr

[
(K − b)(1− β)− aβ

]
K(1− β)2

and (14)

max

{
b,

aβ

1− β

}
< K < b+

aβ

1− β
, (15)

where

N∗ =
aβ

1− β
; P ∗ =

ar(K −Kβ − aβ)

K(1− β)2
− am

b(1− β) + aβ
. (16)

In this subsection, we will assume the conditions given in (14) from now on.
The Jacobian matrix associated with the system (4) is given by

J(N,P ) =

(
r − 2rN

K − mb
(N+b)2

− Pa
(N+a)2

− N
N+a

asP
(N+a)2

−sβ + sN
N+a

)
. (17)

The authors in [13] observed that the equilibria E0 and E1 are saddle point for model
(4).
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Remark 4.1. When the system (4) is compared with the predator prey model without
Allee effect, whose boundary equilibria E0 = (0, 0) and E1 = (N1, 0) are also saddle
points, we can see that if the Allee effect of the prey population in system (4) is very
weak, it may not increase the extinction risk of both predators and prey. However, when
model (4) is subject to a strong Allee effect it may not be true as we will see in the
next subsection. Furthermore, since the positive equilibrium of model (4) without Allee
effect is given by (N∗, P ∗) =

(
aβ
1−β ,

ar(K−Kβ−aβ)
K(1−β)2

)
, provided K > aβ

1−β and β < 1, this is
obvious from (16) that the equilibrium density of prey population is the same, however,
the equilibrium density of predator population is smaller. That is, a decrease of predator
population density at the equilibrium is caused by the Allee effect of prey population.
This highlights the extinction risk caused by the Allee effect.

In the following, we collect the main results given in [13] related to the stability of the
equilibrium E∗, with few modifications which guarantee the positivity of m∗.

Theorem 4.2. (i) If K(1 − β)3(a − b)m < r(Kβ −K + a + aβ)(aβ + b − bβ)2 holds,
then the equilibrium point E∗ is locally asymptotically stable for the system (4) .

(ii) If K(1−β)3(a−b)m > r(Kβ−K+a+aβ)(aβ+b−bβ)2 holds, then the equilibrium
point E∗ is unstable for the system (4).

(iii) Assume that a < b and aβ + a + Kβ − K < 0. Then the system (4) undergoes a
Hopf bifurcation around the positive equilibrium E∗ at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
.

.

(iv) Assume that a < b, rb2(K−a) < K(b−a)m and max{b, aβ
1−β } < K < min{a+ b, b+

aβ
1−β } holds. Then E∗ is globally asymptotically stable for the system (4).

The Jacobian matrix of model (4) evaluated at E∗ = (N∗, P ∗) takes the form

J = J(E∗,m) =


mN∗

(N∗+b)2
+ P∗N∗

(N∗+a)2
− rN∗

K − N∗

N∗+a

asP∗

(N∗+a)2
0

 . (18)

It is easy to see that det(J) = asN∗P∗

(N∗+a)3
> 0 and tr(J) = mN∗

(N∗+b)2
+ P∗N∗

(N∗+a)2
− rN∗

K .

In the next theorem we determine the direction of the Hopf bifurcation and stability
of the bifurcating periodic solutions for the system (4). To this purpose, we follow the
frame work of Section 2 (see also [35], [19] and [26]). We highlight that these results were
not established in [13].

Theorem 4.3. Assume that one of the following two conditions is true:

i) a < b and aβ + a+Kβ −K < 0;
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ii) a > b and aβ + a+Kβ −K > 0.
Then the system (4) undergoes a Hopf bifurcation around the positive equilibrium E∗

at m = m∗ = r(aβ+a+Kβ−K)(aβ−bβ+b)2

K(a−b)(1−β)3 . Furthermore, the first Lyapunov coefficient
associated with the equilibrium E∗ is given by

l1(m
∗) =

Re(c1(m
∗))

ω0 (m∗)
(19)

or equivalently

l1(m
∗) =

1

2ω2
0

Re

(
iG20G11 + ω0

G21

2

)
(20)

with

ω0(m
∗) =

√
arsβ ((K − b)(1− β)− 2aβ)

K(a− b)(1− β)

where

Re(c1 (m
∗)) = −

(
m∗b(2N∗2−(b−4a)N∗+ab)

2(N∗+b)4N∗(N∗+a)
+ aP∗(2N∗+a)

2(N∗+a)4N∗ + r(N∗−a)
2kN∗(N∗+a)

)
. (21)

If ( d
dm tr(J)|m=m∗)−1l1(m

∗) < 0 (resp. > 0) the Hopf bifurcation is supercritical (resp.
subcritical) for the system (4). On the other hand, if l1(m

∗) < 0 (resp. > 0) the
bifurcating periodic solutions are stable (resp. unstable).

Proof. To determine the direction of the Hopf bifurcation, we will calculate the first
Lyapunov coefficient for the system (4) at m = m∗. Note that E∗ = (N∗, P ∗) is the
unique positive equilibrium of system (4) and the Jacobian matrix of system (4) evaluated
at
(
E∗,m∗) is given by

J∗ = J (N∗, P ∗,m∗) =

 0 − N∗

N∗+a

asP∗

(N∗+a)2
0

 . (22)

The Jacobian matrix (22) has the purely imaginary eigenvalues

λ(m∗) = ±iω0(m
∗) = ±i

√
arsβ ((K − b)(1− β)− 2aβ)

K(a− b)(1− β)
.

From [13] we have

d

dm
tr(J)|m=m∗ =

d

dm
Reλ(m)|m=m∗ =

β(a− b)(1− β)2

(bβ − aβ − b)2
. (23)

Note that the characteristic equation associated with the matrix given in (22) is

λ2 +
arsβ [(K − b)(1− β)− 2aβ]

K(a− b)(1− β)
= 0 with arsβ [(K − b)(1− β)− 2aβ]

K(a− b)(1− β)
> 0.
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The eigenvectors associated with the eigenvalues λ(m∗) = i
√

arsβ[(K−b)(1−β)−2aβ]
K(a−b)(1−β) and

λ̄(m∗) = −i
√

arsβ[(K−b)(1−β)−2aβ]
K(a−b)(1−β) are, respectively,

q(m∗) =

(
1

− iω0(N
∗+a)

N∗

)
=

(
a0
b0

)
and q̄(m∗) =

(
1

iω0(N
∗+a)

N∗

)
=

(
ā0
b̄0

)
. (24)

On the other hand, the transposed matrix of J is given by

JT = JT (N∗, P ∗,m∗) =

(
0 asP∗

(N∗+a)2

− N∗

N∗+a 0

)
where

p(m∗) =
1

2

(
1

− iN∗

ω0(N∗+a)

)
=

(
a∗0
b∗0

)
and p̄(m∗) =

1

2

(
1

iN∗

ω0(N∗+a)

)
=

(
ā∗0
b̄∗0

)
(25)

are the eigenvectors of JT associated with the eigenvalues λ(m∗) =

i
√

arsβ[(K−b)(1−β)−2aβ]
K(a−b)(1−β) and λ̄(m∗) = −i

√
arsβ[(K−b)(1−β)−2aβ]

K(a−b)(1−β) , respectively.

We calculate the terms B(q, q), B(q, q̄), B(q̄, q̄), C(q, q, q), C(q, q, q̄), C(q, q̄, q̄) and
C(q̄, q̄, q̄) given in Section 2 which are evaluated at

(
E∗,m∗). Given that

f
NN

(m∗
0, 0, 0) = − 2r

K +
2m∗

0b

(N∗+b)3
+ 2aP∗

(N∗+a)3

f
NP

(m∗
0, 0, 0) = − a

(N∗+a)2

f
PN

(m∗
0, 0, 0) = − a

(N∗+a)2

f
PP

(m∗
0, 0, 0) = 0

; g
NN

(m∗
0, 0, 0) = − asP∗

(N∗+a)3

; g
PN

(m∗
0, 0, 0) = as

(N∗+a)2

; g
NP

(m∗
0, 0, 0) = as

(N∗+a)2

; g
PP

(m∗
0, 0, 0) = 0

we have

B(q, q) =

(
c0
d0

)
=

(
fNN (m∗

0,0)a
2
0 + fPP (m

∗
0,0)b

2
0 + 2fNP (m

∗
0,0)a0b0

gNN (m∗
0,0)a

2
0 + gPP (m

∗
0,0)b

2
0 + 2gNP (m

∗
0,0)a0b0

)

=

 (
− 2r

k +
2m∗

0b

(N∗+b)3
+ 2aP∗

(N∗+a)3

)
+ 2a

(N∗+a)2

√
asP∗

N∗(N∗+a) i

− asP∗

(N∗+a)3
− 2as

(N∗+a)2

√
asP∗

N∗(N∗+a) i

 ,

and

B(q, q̄) =

(
e0
f0

)

=

(
fNN (m∗

0,0) |a0|
2
+ fNP (m

∗
0,0)

(
a0b̄0 + ā0b0

)
+ fPP (m

∗
0,0) |b0|

2

gNN (m∗
0,0) |a0|

2
+ gNP

(
a0b̄0 + ā0b0

)
+ gPP |b0|2

)

=

 (
− 2r

k +
2m∗

0b

(N∗+b)3
+ 2aP∗

(N∗+a)3

)(
− asP∗

(N∗+a)3

)  .
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On the other hand, since

fNNN (m∗
0, 0, 0) = − 6m∗

0b

(N∗+b)4
− 6aP∗

(N∗+a)4
; fPPP (m

∗
0, 0, 0) = 0

fNNP (m
∗
0, 0, 0) = 2a

(N∗+a)3
; fPNP (m

∗
0, 0, 0) = 0

fNPN (m∗
0, 0, 0) = 2a

(N∗+a)3
; fPNN (m∗

0, 0, 0) = 2a
(N∗+a)3

fNPP (m
∗
0, 0, 0) = 0 ; fPPN (m∗

0, 0, 0) = 0,

gNNN (m∗
0, 0, 0) = 6asP∗

(N∗+a)4
; gPNN (m∗

0, 0, 0) = − 2as
(N∗+a)3

gNNP (m
∗
0, 0, 0) = − 2asP∗

(N∗+a)3
; gPNP (m

∗
0, 0, 0) = 0

gNPN (m∗
0, 0, 0) = − 2as

(N∗+a)3
; gPPN (m∗

0, 0, 0) = 0

gNPP (m
∗
0, 0, 0) = 0 ; gPPP (m

∗
0, 0, 0) = 0,

we have

C (q, q, q̄) =

(
g0
h0

)

=

(
fNNN |a0|2 a0 + fNNP

(
2 |a0|2 b0 + a2

0b̄0
)
+ fNPP

(
2 |b0|2 a0 + b20ā0

)
+ fPPP |b0|2 b0

gNNN |a0|2 a0 + gNNP

(
2 |a0|2 b0 + a2

0b̄0
)
+ gNPP

(
2 |b0|2 a0 + b20ā0

)
+ gPPP |b0|2 b0

)

=

 − 6m∗
0b

(N∗+b)4
− 6aP∗

(N∗+a)4
− 2a

(N∗+a)3

√
asP∗

N∗(N∗+a) i

6asP∗

(N∗+a)4
+ 2as

(N∗+a)3

√
asP∗

N∗(N∗+a) i

 .

For the sake of convenience we denote q(m∗) as q and p(m∗) as p, as well as its conjugates.
On the other hand, we get

G20 = ⟨p,B (q, q)⟩ , G11 = ⟨p,B (q, q̄)⟩ , G02 = ⟨p,B (q̄, q̄)⟩ , G30 = ⟨p,C (q, q, q)⟩

G21 = ⟨p,C (q, q, q̄)⟩ , G12 = ⟨p,C (q, q̄, q̄)⟩ , G03 = ⟨p,C (q̄, q̄, q̄)⟩
(26)

where

⟨p,B (q, q)⟩ =

⟨
1
2

(
1

− iN∗

ω0(N∗+a)

)
,

 (
− 2r

K
+

2m∗
0b

(N∗+b)3
+ 2aP∗

(N∗+a)3

)
+ 2a

(N∗+a)2

√
asP∗

N∗(N∗+a)
i

− asP∗

(N∗+a)3
− 2as

(N∗+a)2

√
asP∗

N∗(N∗+a)
i

⟩

=
(
− r

K
+ m∗b

(N∗+b)3
+ aP∗

(N∗+a)3
+ as

(N∗+a)2

)
+
(

2a−N∗

2(N∗+a)2

√
asP

N∗(N∗+a)

)
i

⟨p,B (q, q̄)⟩ =

〈
1
2

(
1

− iN∗

ω0(N∗+a)

)
,

 (
− 2r

K +
2m∗

0b

(N∗+b)3
+ 2aP∗

(N∗+a)3

)(
− asP∗

(N∗+a)3

) 〉
= − r

K +
m∗

0b

(N∗+b)3
+ aP∗

(N∗+a)3
− N∗

2(N∗+a)2

√
asP∗

N∗(N∗+a) i
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1
2 ⟨p,C (q, q, q̄)⟩ =

1
2

〈
1
2

(
1

− iN∗

ω0(N∗+a)

)
,

 − 6m∗
0b

(N∗+b)4
− 6aP∗

(N∗+a)4
− 2a

(N∗+a)3

√
asP∗

N∗(N∗+a) i

6asP∗

(N∗+a)4
+ 2as

(N∗+a)3

√
asP∗

N∗(N∗+a) i

〉

= 1
4

(
− 6m∗

0b

(N∗+b)4
− 6aP∗

(N∗+a)4
− 2as

(N∗+a)3

+

(
6asP∗

(N∗+a)4

√
N∗(N∗+a)

asP∗ − 2a
(N∗+a)3

√
asP∗

N∗(N∗+a)

)
i

)
therefore,

Re
(

i
2ω0

⟨p,B (q, q)⟩ ⟨p,B (q, q̄)⟩
)
=

(N∗+a)

2N∗(N∗+a)2

(
(N∗ − a)

(
− r

K +
m∗

0b

(N∗+b)3
+ aP∗

(N∗+a)3

)
+ asN∗

(N∗+a)2

)
,

Re( 12 ⟨p,C (q, q, q̄)⟩) = − 1
2

[(
6mb

(N∗+b)4
+ 6aP∗

(N∗+a)4

)√
asP∗

N∗[N∗+a]

(
N∗[N∗+a]

asP∗

) 3
2

+ 2N∗

P∗(N∗+a)2

]
− 1

2

[(
6mb

(N∗+b)4
+ 6aP∗

(N∗+a)4

)√
asP∗

N∗[N∗+a]

(√
N∗[N∗+a]

asP∗

)3

+ 2N∗

P∗(N∗+a)2

]
−N∗

P∗

[
3
(

mb
(N∗+b)4

+ aP∗

(N∗+a)4

)
[N∗+a]

as + 1
(N∗+a)2

]
.

and

Re
(
1
2 ⟨p,C (q, q, q̄)⟩

)
= 1

4

(
− 6m∗

0b

(N∗+b)4
− 6aP∗

(N∗+a)4
− 2as

(N∗+a)3

)
finally,

Re(c1 (m
∗)) = −

(
m∗b

(
2N∗2−(b−4a)N∗+ab

)
2(N∗+b)4N∗(N∗+a)

+ aP∗(2N∗+a)

2(N∗+a)4N∗ + r(N∗−a)
2KN∗(N∗+a)

)
. (27)

Consequently, according with [26] and taking into account (23) if a < b, aβ + a+Kβ −
K < 0, and l1(m

∗) > 0 (resp. l1(m
∗) < 0), the Hopf bifurcation is supercritical (resp.

subcritical) for the system (4), and the bifurcating periodic solutions are unstable (resp.
stable). On the other hand, if a > b, aβ + a + Kβ − K > 0 and l1(m

∗) < 0 (resp.
l1(m

∗) > 0), the Hopf bifurcation is subcritical (resp. supercritical) for the system (4)
and the bifurcating periodic solutions are stable (resp. unstable). □✓✓✓

Remark 4.4. It is worth highlighting that the results obtained in Theorems 4 and 5
concerning the existence of periodic orbits for the non-periodic system (4), are local
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results which were obtained by Hopf bifurcation arguments. As observed in Section 3,
the analysis of system (4) involving periodic cases, will be considered in a next exposition
since our main purpose in this paper is to carrie out a local stability and bifurcation
analysis for the proposed system.

In the following propositions we give conditions on the parameters such that the ex-
pression (21) becomes negative, which implies that l1(m

∗) < 0 and consequently, the
bifurcating periodic orbits of system (4) around the equilibrium E∗ are stable.

Remark 4.5. It is clear that φ(N∗) = 2N∗2 − (b− 4a)N∗+ab is a quadratic function,
which geometrically represents a parabola that opens upwards and whose vertex is given

by the point
(

b−4a
4 ,

16ab−(b2+16a2)
8

)
, which is positive as long as the discriminant of

the equation φ(N∗) = 0 is negative or equivalent when 16ab > b2 + 16a2. Consequently
φ(N∗) > 0, if 16ab > b2 + 16a2.

Taking into account Remark 4.5, we can establish the following propositions.

Proposition 4.6. If m < br, a < b, max
{
b + aβ

1−β ,
a(β+1)
1−β

}
< K < b + aβ

1−β , 16ab >

b2 + 16a2 and

m∗b
(
2N∗2−(b−4a)N∗+ab

)
(N∗+b)4

+ aP∗(2N∗+a)

(N∗+a)3
> r(a−N∗)

K
(28)

then l1(m
∗) < 0. Moreover, if a < b we have d

dm tr(J)|m=m∗ < 0. Consequently, the
system (4) undergoes a subcritical Hopf bifurcation arround the equilibrium point E∗ at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
.

Furthermore, according with Theorem 3.3 page 100 in [35], the bifurcating periodic solu-
tions are stable.

Proof. It is clear that the conditions m < br, a < b, max
{
b, a(β+1)

1−β

}
< K < b + aβ

1−β ,
16ab > b2 + 16a2 and (28) imply that m∗ > 0, P ∗ > 0, ω0(m

∗) > 0 and hence l1(m
∗) =

Re(c1(m
∗))

ω(m∗) < 0. Furthermore, by (23) we have d
dm tr(J)|m=m∗ < 0 if a < b. □✓✓✓

The Figure 4 illustrates the result obtained in Proposition 4.6.

Proposition 4.7. If m < br, a > b, b+ 2aβ
1−β < K < a(1+β)

1−β , 16ab > b2 + 16a2 and

m∗b
(
2N∗2−(b−4a)N∗+ab

)
(N∗+b)4

+ aP∗(2N∗+a)

(N∗+a)3
> r(a−N∗)

k , (29)

then l1(m
∗) < 0. Moreover, if a > b we have d

dm tr(J)|m=m∗ > 0. Consequently, the
system (4) undergoes a supercritical Hopf bifurcation arround the equilibrium point E∗

at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
.
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Figure 4. Subcritical Hopf bifurcation around the positive equilibrium (0.157, 0.085). The simulations
were carried using MATCONT [16] to illustrate the result obtained in Proposition 4.6, by choosing
the values of parameters: (a) a = 0.1, b = 0.7, β = 0.6, K = 0.71, r = 1, s = 0.1, m = 0.52,
(N∗, P ∗) = (0.15, 0.043). (b) a = 0.1, b = 0.7, β = 0.6, K = 0.71, r = 1, s = 0.1, m∗ = 0.516,
(N∗, P ∗) = (0.15, 0.0446). (c) a = 0.1, b = 0.7, β = 0.6, K = 0.71, r = 1, s = 0.1, m = 0.5,
(N∗, P ∗) = (0.15, 0.049).

Furthermore, according with Theorem 3.3 page 100 in [26], the bifurcating periodic solu-
tions are stable.

Proof. It is clear that the conditions m < br,a > b b + 2aβ
1−β < K < a(1+β)

1−β , 16ab >

b2 + 16a2 and (29) imply that m∗ > 0, P ∗ > 0, ω0(m
∗) > 0 and hence l1(m

∗) =
Re(c1(m

∗))
ω(m∗) < 0. Furthermore, by (23) we have d

dm tr(J)|m=m∗ > 0 if a > b. □✓✓✓

The Figure 5 illustrates the result obtained in Proposition 4.7.

4.2. The case of strong Allee effect

Following the ideas in [13], assume that m > br, that is, the Allee effect in
model (4) is strong. One can verify that model (4) has one boundary equilibrium
E0 = (0, 0). If m < r(K+b)2

4K the system (4) has other two boundary equilib-
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Figure 5. Supercritical Hopf bifurcation around the positive aquilibrium (0.2, 0.5). The simulations
were carried using MATCONT [16] to illustrate the result obtained in Proposition 4.7, by choosing the
values of parameters: (a) a = 0.7, b = 0.2, β = 1

3
, K = 1, r = 1, s = 0.2, m = 0, 14, (N∗, P ∗) =

(0.3, 0.42). (b) a = 0.7, b = 0.2, β = 1
3

, K = 1, r = 1, s = 0.2, m∗ = 0, 15, (N∗, P ∗) = (0.3, 0.4). (c)
a = 0.7, b = 0.2, β = 1

3
, K = 1, r = 1, s = 0.2, m = 0, 16, (N∗, P ∗) = (0.3, 0.38).

ria E1 = (N1, P1) =

(
r(K−b)−

√
r2(K−b)2+4Kr(br−m)

2r , 0

)
and E2 = (N2, P2) =(

r(K−b)+
√

r2(K−b)2+4Kr(br−m)

2r , 0

)
.

It is not difficult to determine that the equilibria E0 is always locally stable, E1 and E2

are saddle points.

Finally, if

K > b+
aβ

1− β
and br < m < br +

aβr

K(1− β)2
[(K − b)(1− β)− aβ] (30)

holds, then the system (4) has a unique positive equilibrium E∗ = (N∗, P ∗) where
N∗ = aβ

1−β ; P ∗ = ar(K−Kβ−aβ)
K(1−β)2 − am

b(1−β)+aβ . In this subsection, we will assume the
condition (30) from now on.

In the following theorem, we summarize the main result from [13] regarding the stability
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of the equilibrium point E∗ under the influence of a strong Allee effect, with a few
adjustments ensuring the positivity of m∗.

Theorem 4.8. Assume that one of the following conditions are true:

i) a > b and b+ 2aβ
1−β < K < a

1−β + aβ
1−β

ii) a < b and max
{
b+ aβ

1−β ,
a

1−β + aβ
1−β

}
< K < b+ 2aβ

1−β .

Then:

(1) If K(1 − β)3(a − b)m < r(Kβ − K + a + aβ)(aβ + b − bβ)2 holds, the equilibrium
point E∗ is locally asymptotically stable for system (4).
(2) If K(1 − β)3(a − b)m > r(Kβ − K + a + aβ)(aβ + b − bβ)2 holds, the equilibrium
point E∗ is unstable for system (4).
(3) The system (4) undergoes a Andronov-Hopf bifurcation at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
. (31)

We prove in the next theorem that if model (4) does not have neither boundary equilibria
nor interior equilibrium, i.e., if the Allee effect of prey population is very strong, then
E0 is globally asymptotically stable. Any positive orbit converges to E0 as t tends to
infinity, meaning prey and predators cannot coexist even if the initial population density
of prey is abundant. As observed in Remark 3.8, this annihilating phenomenon of the
species may occur due to the weakly persistence of system (4) subject to strong Allee
effect. A typical phase portrait is shown in Figure 6.

Theorem 4.9. Let c1 and c2 be positive constants. The equilibrium point E0 of system
(4) is globally asymptotically stable provided c1 > c2s and m > r(b +K). In this case,
the only equilibrium point of system (4) is E0.

Proof. Consider the following Lyapunov function V (N,P ) : R2
+ → R defined by

V
(
N(t), P (t)

)
= c1N(t)+ c2P (t). The time derivative of V along the solutions of system

(4) is
dV

dt
= c1rN − c1r

K
N2 − c1m

N + b
N + (sc2 − c1)

NP

N + a
− sβc2P

Taking into account that limt→∞ N(t) ≤ K, we have, for t → ∞, that
dV
dt ≤ − c1r

K N2 + c1rN − c1m
K+bN + (sc2 − c1)

NP
N+a − sβc2P

= N
(
− c1r

K N + c1r − c1m
K+b

)
+ (sc2 − c1)

NP
N+a − sβc2P.

(32)

Now, dV
dt ≤ 0 if N

(
− c1r

K N + c1r − c1m
K+b

)
≤ 0 and sc2 − c1 ≤ 0. The last inequality

is equivalent to c1 > sc2. On the other hand, define Φ(N) = N
(
− c1r

K N + c1r −
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Figure 6. We made the phase portrait using MAPLE 13 to illustrate the global stability of E0 = (0, 0)

by choosing: a = 0.6; b = 0.6; β = 0.25; K = 1; r = 1; m = 0.7; s = 0.1. Here, m <
r(K+b)2

4K
,

K > b+ aβ
1−β

and m > br +
aβr((K−b)(1−β)−aβ)

K(1−β)2
.

c1m
K+b

)
which is a parabola with concavity towards down, whose zeros are N∗

1 = 0 and

N∗
2 =

[r(K + b)−m]K

r(K + b)
. Thus, if N2 < 0 we have Φ(N) ≤ 0 for all N ≥ 0. This is the

case if m ≥ r(K + b). Finally, observe that:

i) m > r(K + b) > r(K+b)2

4K ⇐⇒ K > b
3 , which is true since K > b. This implies that

system (4) has no boundary equilibria other than E0.

ii) m > r(K + b) > br + aβr
K(1−β)2 [(K − b)(1− β)− aβ] ⇐⇒ K2 − aβ

1−βK +
(
aβb
1−β +

a2β2

(1−β)2

)
> 0. If we define Ψ(K) = K2 − aβ

1−βK +
(
aβb
1−β + a2β2

(1−β)2

)
, we easily conclude that

Ψ(K) > 0 for all K > 0 since the the parabola has concavity towards up and its zeros are
complex conjugate. Consequently, this implies that system (4) has no positive equilibria
within R2

+. □✓✓✓

Remark 4.10. In model (4) without a strong Allee effect, the boundary equilibria are
E0 = (0, 0) and E1 = (N1, 0) both of which are saddle points. There exists a positive
equilibrium E∗, feasible under conditionsd K > aβ

1−β and β < 1. The equilibrium E0 of
system (4) is always a locally stable node, implying that both prey and predators will be-
come extinct if their population densities enter the attraction region of E0. In particular,
if the population density of prey becomes less than N1 =

r(K−b)−
√

r2(K−b)2+4Kr(br−m)

2r ,
then both predators and prey will go extinct (A typical phase portrait is shown in Figure
7). It is important to observe that the unstable manifold of the equilibrium E2 goes
toward the interior equilibrium (blue curve in Figure 7), and the stable manifold of E1

(black curve in Figure 7) is above the unstable manifold of E2. The model (4) when
compared with the predator-prey model without Allee effect, increases the extinction
risk of both predators and prey due to the presence of strong Allee effect in the prey
population.
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Figure 7. We made the phase portrait using MAPLE 13 to illustrate that prey and predators will
become extinct when their population densities lie in the attraction region of E0 by choosing: a = 0.6;
b = 0.6; β = 0.25; K = 1; r = 1; m = 0.61; s = 0.1. The critical points on the plane N P are points:
E0 = (0, 0), E1 = (0.02679491925, 0), E2 = (0.3732050808, 0) and E∗ = (0.2, 0.03).

Figure 8. We made the phase portrait using MAPLE 13 to illustrate that prey and predators will
become extinct when their population densities lie in the attraction region of E0. However, if we
take initial conditions on the stable manifold of E1 (black curve) it means the coexistence of the prey
population. We choose the parameter values: a = 0.5; b = 0.6; β = 0.25; K = 1; r = 1; m = 0.62;
s = 0.1. The critical points on the plane N P are points: E0 = (0, 0), E1 = (0.02679491925, 0),
E2 = (0.3732050808, 0) and E∗ = (0.2, 0.03).

Remark 4.11. It is worth observing that in Figure 7 the stable manifold of the equilibrium
point E1 is above the unstable manifold of the equilibrium point E2. On the other hand,
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in Figure 8 the stable manifold of the equilibrium point E1 is below the unstable manifold
of the equilibrium point E2. This suggests that heteroclinic cycles occurs in model (4)
for certain values of the parameters. This numerical experiment confirms the presence
of an interesting global bifurcation not discussed earlier for this model. Accordingly we
have the following:

Conjecture In view of remark 4.11, we conjecture that heteroclinic cycles occurs in
model (4) for certain values of the parameters.

In the following, we determine the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions in the case of strong Allee effect for the system (4).

Theorem 4.12. Assume that one of the following two conditions is true:

i) a > b and b+ 2aβ
1−β < K < a

1−β + aβ
1−β ,

ii) a < b and max
{
b+ aβ

1−β ,
a

1−β + aβ
1−β

}
< K < b+ 2aβ

1−β .

Then, the system (4) undergoes a Hopf Bifurcation around the positive equilibrium
E∗ = (N∗, P ∗) at m = m∗ given by (31). Furthermore, the first Lyapunov coefficient
associated with the equilibrium E∗ is given by (19), where

Re(c1 (m
∗)) = −

(
b
(
2N∗2−(b−4a)N∗+ab

)
2(N∗+b)4N∗(N∗+a)

m∗ + aP∗(2N∗+a)

2(N∗+a)4N∗ + r(N∗−a)
2kN∗(N∗+a)

)
. (33)

If ( d
dm tr(J)|m=m∗)−1l1(m

∗) < 0 (resp. > 0) the Hopf bifurcation is supercritical (resp.
subcritical) for the system (4). On the other hand, if l1(m

∗) < 0 (resp. > 0) the
bifurcating periodic solutions are stable (resp. unstable).

Proof. The proof is analogous to that given in Theorem 4.3 and therefore will be omitted.
□✓✓✓

In the following propositions, taking into account Remark 4.5, we give conditions on the
parameters such that the expression (33) becomes negative, which implies that l1(m∗) < 0
and consequently the bifurcating periodic orbits of system (4) around the equilibrium
E∗ are stable.

Proposition 4.13. If br < m < br + aβr
K(1−β)2

[(K − b) (1− β)− aβ], max
{
b +

aβ
1−β ,

a(β+1)
1−β

}
< K < b+ 2aβ

1−β , a < b, 16ab > b2 + 16a2, and

m∗b
(
2N∗2 − (b− 4a)N∗ + ab

)
2 (N∗ + b)

4
N∗ (N∗ + a)

+
aP ∗ (2N∗ + a)

2 (N∗ + a)
4
N∗

>
r (a−N∗)

2kN∗ (N∗ + a)
, (34)

then l1 (m
∗) < 0. Moreover, if a < b we have d

dm tr(J)|m=m∗ < 0. Consequently, the
system (4) undergoes a subcritical Hopf bifurcation around the equilibrium point E∗ at

m = m∗ =
r(aβ + a+Kβ −K)(aβ − bβ + b)2

K(a− b)(1− β)3
.
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Furthermore, the bifurcating periodic solutions are stable.

Proof. The conditions br < m < br + aβr
K(1−β)2

[(K − b) (1− β)− aβ], max
{
b +

aβ
1−β ,

a(β+1)
1−β

}
< K < b+ 2aβ

1−β , a < b, 16ab > b2+16a2 and (34) imply that N∗ > 0, P ∗ > 0,
m∗ > 0 and hence l1 (m

∗) < 0. Furthermore, by (23) we have d
dm (trJ (m))m=m∗ < 0 if

a < b. □✓✓✓

The Figure 9 illustrates the result obtained in Proposition 4.13.
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Figure 9. Subcritical Hopf bifurcation around the positive equilibrium (0.3, 0.22). The simulations
were carried using MATCONT [16] to illustrate the result given by Proposition 4.13, by choosing the
values of parameters: (a) a = 0.1, b = 0.3, β = 0.5, K = 0.49, r = 0.2, s = 0.1, m = 0.061,
(N∗, P ∗) = (0.1, 0.0013). (b) a = 0.1, b = 0.3, β = 0.5, K = 0.49, r = 0.2, s = 0.1, m∗ = 0.062,
(N∗, P ∗) = (0.1, 0.00083). (c) a = 0.1, b = 0.3, β = 0.5, K = 0.49, r = 0.2, s = 0.1, m = 0.063,
(N∗, P ∗) = (0.1, 0.00033).

Proposition 4.14. If br < m < br+ aβr
K(1−β)2

[(K − b) (1− β)− aβ], b+ 2aβ
1−β < K, a > b,

16ab > b2 + 16a2, and

m∗b
(
2N∗2 − (b− 4a)N∗ + ab

)
2 (N∗ + b)

4
N∗ (N∗ + a)

+
aP ∗ (2N∗ + a)

2 (N∗ + a)
4
N∗

>
r (a−N∗)

2KN∗ (N∗ + a)
, (35)
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then l1 (m
∗) < 0. Moreover, if a > b we have d

dm tr(J)|m=m∗ > 0. Consequently, the
system (4) undergoes a supercritical Hopf bifurcation around the equilibrium point E∗ at
m = m∗ = r(aβ+a+Kβ−K)(aβ−bβ+b)2

K(a−b)(1−β)3 . Furthermore, the bifurcating periodic solutions are
stable.

Proof. The conditions br < m < br + aβr
K(1−β)2

[(K − b) (1− β)− aβ], b + 2aβ
1−β < K,

a > b, 16ab > b2+16a2, and (35), imply that N∗ > 0, P ∗ > 0, m∗ > 0, and l1 (m
∗) < 0.

Furthermore, by (23) we have d
dr (trJ (m))

∣∣
m=m∗ > 0 if a > b. □✓✓✓

The Figure 10 illustrates the result obtained in Proposition 4.
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Figure 10. Supercritical Hopf bifurcation around the positive equilibrium (0.3, 0.22). The simulations
were carried using MATCONT [16] to illustrate the result given by Proposition 4.14, by choosing the
values of parameters: (a) a = 0.8, b = 0.45, β = 0.25, K = 1, r = 1, s = 0.1, m = 0.047, (N∗, P ∗) =
(0.26, 0.082). (b) a = 0.8, b = 0.45, β = 0.25, K = 1, r = 1, s = 0.1, m∗ = 0.04891, (N∗, P ∗) =
(0.26, 0.054259). (c) a = 0.8, b = 0.45, β = 0.25, K = 1, r = 1, s = 0.1, m = 0.5, (N∗, P ∗) =
(0.26, 0.038).

5. Discussion

It is well know that in the past decades, the Allee effect has been drawn remarkable
attention in many aspects of populational dynamics, and its consequences become more
and more significant. In this paper, a model describing the interaction of a predator-prey
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system with Holling type II functional response subject to additive Allee effect in the prey
equation has been analyzed. It is observed that this model exhibits interesting dynamics
of the interacting populations due to the presence of the Allee effect. We investigate
the impact of the Allee effect on the stability of the equilibrium states of model (4)
when the prey population is subject to both, weak and strong Allee effect. When we
compare model (4) with the predator-prey model without Allee effect it is observed that,
although the extinction risk of both predators and prey may not occur in the case of weak
Allee effect, the equilibrium density of predator population is smaller. In other words,
a decrease in the population density at a equilibrium is caused by the presence of weak
Allee effect. It is also observed that, the model (4) subject to strong Allee effect when
compared with the predator-prey model without Allee efect, increases the extinction risk
of both predators and prey due to the presence of the strong Allee effect. Conditions are
derived for the occurrence of Hopf bifurcation of the equilibria of model (4) when subject
to weak and strong Allee effect. Compared with the model that does not include Allee
effect, it is observed that the Allee effect of the prey population may be a destabilizing
force in the predator-prey system when the Allee effect constant m is shifted.
Finally, through computer simulations carried in MATLAB, we conjecture that this
model may admit heteroclinic bifurcation which has important biological implications.
Note that the model (4) does not take into account the fact neither that the populations
naturally develop life strategies nor that they are not spatially dependent. Both of
these considerations involve diffusion processes that can be quite intricate as different
concentration levels of individuals cause different population movements. Accordingly,
it would be interesting to introduce diffusion in appropriate terms of the model since it
is natural to assume that members of the same or different populations may meet any
other member with different probability. Although the authors in [13] has considered the
spatial version of model (4), to the best of our knowledge there is no results related to
the complete analyzes of codimension 1 Hopf bifurcation for this system. We defer our
work in this direction to a subsequent exposition.
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