Elementos para la modelación matemática de la epidemiología de la neumonía

Elements for mathematical modeling in pneumonia epidemiology

Enith A. Gómez-Hernández,1 Elisa C. González-Santacruz,2 Eduardo Ibarguen-Mondragón3

1 Lic. en Matemáticas, Universidad de Nariño. Pasto, Colombia. e-mail: eamanda1992@hotmail.com
2 Lic. en Matemáticas, Universidad de Nariño. Pasto, Colombia. e-mail: elisacarolina2011@hotmail.com
3 Doctor en Matemáticas. Docente Tiempo Completo Programa de Licenciatura en Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño. Pasto, Colombia. e-mail: ebargun@udenar.edu.co


Resumen
La neumonía es una infección respiratoria aguda (IRA) que afecta a los pulmones, se considera como la segunda causa de muerte asociada a infecciones respiratorias a nivel global. En Colombia hay reportes de aproximadamente 120,000 consultas anuales y 50,000 egresos hospitalarios en niños menores de 5 años. En particular, en el municipio de San Juan de Pasto se presentaron 65 muertes asociadas a esta enfermedad en 2010. A través de la modelación matemática sobre la epidemiología de la neumonía se puede aportar de manera directa al estudio de la distribución, la causalidad y la prevención de dicha enfermedad. El propósito de este artículo es relacionar la epidemiología de la neumonía con la modelación matemática.

Palabras clave: Neumonía, epidemiología, matemática. (Fuente: DeCS, Bireme).

Abstract
Pneumonia is an acute respiratory infection (ARI) which affects the lungs. It is considered as the second cause of death associated with respiratory infections globally. In Colombia, there are reports of approximately 120,000 consultations per year and 50,000 hospital discharges in children under 5. In particular, in the municipality of San Juan de Pasto, there were 65 deaths associated with this disease in 2010. It can be contributed directly to the study of the distribution, causation and prevention of the disease through mathematical modeling about pneumonia epidemiology. The purpose of this review is to relate pneumonia epidemiology with mathematical modeling.

Key words: Pneumonia, epidemiology, mathematics. (Source: DeCS, Bireme).
Introducción

La neumonía es la principal causa de mortalidad en la primera infancia, se presentan alrededor de 156 millones de nuevos episodios cada año en todo el mundo, de los cuales 151 millones se encuentran en los países en desarrollo.1-3

En Colombia, esta infección es considerada como la segunda causa de muerte asociada al cambio climático. Según el DANE (Departamento Administrativo Nacional de Estadística) en el departamento de Nariño se presentaron 163 muertes en 2010 por neumonía, en San Juan de Pasto se presentó una tasa de mayor mortalidad debido a su ubicación geográfica y a la densidad de población.4

Se conoce como neumonía a la infección respiratoria aguda (IRA) que afecta a los pulmones, estos están formados por pequeños sacos llamados alveolos, que en personas sanas se llenan de aire al respirar.5-9 Los alveolos de los enfermos de neumonía están llenos de pus y líquido, lo que hace dolorosa la respiración y limita la absorción de oxígeno.10-13

El conocimiento de la epidemiología de la neumonía es de gran relevancia en la práctica de salud pública ya que ésta se basa en la evidencia científica más que en la experiencia empírica. Entender la idoneidad de los diferentes métodos de investigación es esencial para la valoración crítica de la evidencia presentada en la literatura científica.

La epidemiología es fundamental para la investigación clínica, la prevención de enfermedades, la promoción, la protección y la investigación de la salud, ésta ofrece métodos rigurosos para estudiar la distribución, la causalidad y la prevención de problemas de salud en las poblaciones. En este sentido, la modelación matemática aporta en el desarrollo de investigaciones en epidemiología que contribuyen en la toma de decisiones y formulación de estrategias para el control de la enfermedad o la infección.14-16

En el presente artículo se expone una revisión bibliográfica sobre la neumonía, la epidemiología de la neumonía y elementos que pueden servir como base para realizar un modelo matemático que describa la dinámica de esta enfermedad.

Materiales y métodos

Este artículo es una revisión de literatura, descriptiva y documental, que utiliza la búsqueda de información científica para desarrollar el estudio del estado del arte de la epidemiología de la neumonía en la primera infancia en el municipio de San Juan de Pasto y aspectos relacionados con su modelación matemática; las fuentes utilizadas fueron la Biblioteca del Banco de la República (Pasto), la Biblioteca Alberto Quijano Guerrero de la Universidad de Nariño, los datos estadísticos ofrecidos por el DANE, el Instituto Departamental de Salud de Nariño, herramientas como EBSCO y Scielo, entre otras bases de datos.

Las palabras clave utilizadas son: neumonía, epidemiología, epidemiología de la neumonía y epidemiología matemática. Se recogió la información a través de fichas bibliográficas para luego contextualizar, analizar y emitir conclusiones.

Epidemiología de la neumonía

Los estudios realizados por la Organización Mundial de la Salud muestran que la neumonía es la causa principal de muerte de niños en todo el mundo, se calcula que la neumonía mata a 1,4 millones de niños menores de 5 años anualmente, lo que corresponde al 18 % de muertes de niños menores de 5 años.10,17-20

En Colombia hay reportes de aproximadamente 120,000 consultas anuales con diagnósticos de neumonía y 50,000 egresos hospitalarios por la misma causa en niños menores de 5 años.21
Tabla 1. Muertes por neumonía en Colombia

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Muertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioquia</td>
<td>968</td>
</tr>
<tr>
<td>Bolívar</td>
<td>243</td>
</tr>
<tr>
<td>Tolima</td>
<td>201</td>
</tr>
<tr>
<td>Cauca</td>
<td>119</td>
</tr>
<tr>
<td>Nariño</td>
<td>163</td>
</tr>
<tr>
<td>Huila</td>
<td>121</td>
</tr>
</tbody>
</table>

Reporte de muertes en la región andina 2010, datos tomados del DANE

En el departamento de Nariño se presentaron 103 muertes en 2005, 196 en 2007 y en 2010 disminuyó a un total de 163 muertes causadas por neumonía.  

Tabla 2. Reporte de muerte en el departamento de Nariño por neumonía

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Muertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasto</td>
<td>65</td>
</tr>
<tr>
<td>Albán</td>
<td>2</td>
</tr>
<tr>
<td>Barbacoas</td>
<td>3</td>
</tr>
<tr>
<td>Belén</td>
<td>2</td>
</tr>
<tr>
<td>Buesaco</td>
<td>2</td>
</tr>
<tr>
<td>Cuaspud</td>
<td>3</td>
</tr>
<tr>
<td>Cumbal</td>
<td>5</td>
</tr>
<tr>
<td>Guaitarilla</td>
<td>3</td>
</tr>
<tr>
<td>Ipiales</td>
<td>13</td>
</tr>
<tr>
<td>La Unión</td>
<td>4</td>
</tr>
<tr>
<td>Los Andes</td>
<td>3</td>
</tr>
<tr>
<td>Ricaurte</td>
<td>3</td>
</tr>
<tr>
<td>Sandoná</td>
<td>4</td>
</tr>
<tr>
<td>Tangua</td>
<td>2</td>
</tr>
<tr>
<td>Túquerres</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: DANE. 2010

En la tabla 2 se muestra el número de muertes que se presentaron en algunos de los municipios del departamento de Nariño en 2010, los datos muestran que la tasa de mortalidad en Pasto es mayor que en Tumaco; teniendo en cuenta que el municipio de Pasto está localizado al sur de Colombia, en el sur-oriente del Departamento de Nariño, constituyendo dos regiones naturales: la cordillera centro Oriental y el Piedemonte andino amazónico, el paisaje es montañoso.

En el municipio de Pasto se identifican cuatro zonas climáticas: páramo, muy frío, frío y medio, estas condiciones hacen favorable el desarrollo de la neumonía. Por lo que, se podría afirmar que el desarrollo de la neumonía está influenciado por factores climáticos.

Las enfermedades infecciosas constituyen una amenaza en la sociedad, es por esto que ha ganado importancia entre la comunidad científica y profesionales de la salud el uso de métodos matemáticos para estudiar la dinámica de transmisión y control de enfermedades infecciosas, con el propósito de idear programas efectivos que interpreten patrones epidemiológicos.

A partir de la literatura encontrada hasta el momento, se establece que el modelo que mejor describe la interacción entre las poblaciones de individuos susceptibles, infecciosos y recuperados en la dinámica de transmisión de enfermedades infecciosas infantiles es el modelo SIR el cual se describe a manera de información:

Modelo epidemiológico básico SIR

La descripción de este modelo se basó en lo descrito por Wilson, Murray, Li y Allmal. En el modelo SIR se divide a la población hospedera en subclases:

**Individuos susceptibles (S):** Aquellos que no tienen inmunidad contra el agente infeccioso, por lo que pueden llegar a infectarse si se exponen.
Individuos infecciosos (I): Aquellos que actualmente están infectados y pueden transmitir la infección a las personas susceptibles que entran en contacto.

Individuos removidos (R): Son los individuos que son inmunes permanente o temporalmente contra el agente infeccioso y por tanto no afectan a la dinámica de la transmisión de ninguna forma cuando se ponen en contacto con otros individuos.

El cambio de un estado a otro en los individuos está representado esquemáticamente por:

\[
\begin{align*}
S & \rightarrow I \\
\end{align*}
\]

Con S (t), I (t) y R (t) como el número de individuos en cada clase en el tiempo t, se asume que:

1. La ganancia en la clase infecciosa es proporcional al número de infectados y susceptibles a desarrollar, es decir, rSI, donde \( r > 0 \) es un parámetro constante y representa la velocidad de transmisión.

2. La velocidad de eliminación de infectados que pasa a la clase removida es proporcional al número de infectados, \( \alpha S \), donde \( \alpha > 0 \) es una constante y representa la tasa de recuperación; \( 1/\alpha \) es el periodo infeccioso medio.

3. El período de incubación es lo suficientemente corto para ser insignificante, es decir, un susceptible que contrae la enfermedad es infeccioso de inmediato.

El modelo SIR basado en los supuestos anteriores es:

\[
\begin{align*}
\frac{dS}{dt} &= -rSI \\
\frac{dI}{dt} &= rSI - \alpha I \\
\frac{dR}{dt} &= \alpha I
\end{align*}
\]

Debido a que \( \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0 \), entonces el tamaño de la población total está dado por:

\[
S(t) + R(t) + I(t) = N.
\]

Por otra parte, se dice que ocurre una epidemia

- Si \( dl/dt > 0 \) durante un tiempo t (es decir, en algún momento el número de infectados crece).

- Si \( dl/dt \leq 0 \) para todo t, entonces el tamaño de la clase infecciosa no aumenta o decrece.

Por tanto, para comprender la dinámica de la enfermedad, se debe entender el signo de \( dl/dt \). De las ecuaciones del modelo SIR se tiene:

\[
\begin{align*}
\frac{dl}{dt} &= rSI - \alpha I \\
\frac{dI}{dt} &= (rS - \alpha)I,
\end{align*}
\]

El cual puede ser: positivo, negativo o cero.

- Si \( I(t)=0 \) entonces \( dl/dt = 0 \).

- Si \( I(t)=0 \) luego \( dl/dt \) puede ser positivo, negativo o cero. Esto significa que \( dl/dt \) va a ser positivo, cero o negativo cuando \( dl/dt=(rS-\alpha)I \), lo es.

- A partir de esto y debido a que \( r>0 \), se tiene:

Si \( S(t)>\alpha/r \), entonces \( dl/dt>0 \).
Si \( S(t)=\alpha/r \), entonces \( dl/dt=0 \).
Si \( S(t)<\alpha/r \), entonces \( dl/dt<0 \).

Sin embargo, \( dS/dt \) es siempre negativa, así \( S(t) \) disminuirá mientras existan individuos infecciosos. Si \( S(0)=S_0<\alpha/r \), luego \( S(t)<\alpha/r \) para todo t. Por tanto si \( S_0 \) está por debajo del valor \( \alpha/r \), entonces \( dl/dt<0 \) para todo t, es decir, la enfermedad infecciosa decrece en la población.
Pero, cuando $S_0 > \alpha / r$, el número de infectados crecerá y se producirá una epidemia.

Se define como tasa de eliminación relativa al promedio de contactos de una infección durante un período de contagio y se denota por:

$$\rho = \alpha / r.$$ 

Se define como número de infección básica de la infección al producto del número de contactos $\rho$ con la fracción susceptible inicial $S_0$, es decir, en una vecindad, cuántas personas puede infectar este foco de infección en un determinado período de tiempo, se denota por:

$$R_0 = \rho S_0 = \frac{\alpha}{r} S_0$$

Si $R_0 > 1$, la infección se extiende, mientras que si $R_0 < 1$, hay una epidemia. El número máximo de infectados en algún tiempo es el número de infectados cuando la derivada de $I$ es cero, esto es, cuando $S = \frac{\alpha}{r}$. Este máximo está dado por:

$$I_{\text{max}} = S_0 + I_0 - \frac{\alpha}{r} \log S_0 - \frac{\alpha}{r} + \frac{\alpha}{r} \log \frac{\alpha}{r}$$

**Clasificación de la neumonía**

Se puede clasificar la neumonía dependiendo del lugar y la forma de aparición:

**La neumonía adquirida en la comunidad (NAC):** Se origina en el ámbito extrahospitalario, es decir, la que aparece en sujetos que conviven en la comunidad y no han sido hospitalizados en los últimos 7 días o bien las que aparecen 48 horas después de su ingreso en un centro hospitalario.\textsuperscript{32-33} La NAC suele producirse por bacterias donde el patógeno más usual es el *Streptococcus pneumoniae*.\textsuperscript{34-36}

**La neumonía adquirida en el hospital o neumonía nosocomial:** Se origina en el ámbito intrahospitalario, que enfrentan los pacientes conectados a asistencia ventilatoria mecánica (VM); es la infección de mayor incidencia en las unidades de cuidados intensivos y la principal causa de muerte por infección intrahospitalaria. Se estima que el riesgo de adquirir neumonía es 21 veces mayor en los pacientes expuestos a VM, comparados con los pacientes que no se someten a este procedimiento.\textsuperscript{37-40}

**Tipos de neumonía**

**Neumonías virales**

Los virus son la causa más frecuente de infecciones respiratorias en menores de cinco años en todo el mundo, tanto de bronquiolitis como de neumonía.

Los pacientes con neumonías virales representan un serio problema de salud pública y se calcula que en países en desarrollo pueden ocasionar alrededor de 5 millones de muertes anuales en menores de cinco años.

Aunque ocurren en cualquier grupo de edad, los niños, se afectan dos o tres veces más que los adultos. Los virus que invaden el aparato respiratorio son ubicuos y lo hacen en forma endémica y epidémica. Las epidemias siguen un patrón climatológico y aumentan en períodos de lluvias o frío.

El 24% de las enfermedades respiratorias virales en niños ocurre por el virus *adenovirus* (Ad), encontrándose mayor incidencia en niños hospitalizados por IRA. El 12% de las neumonías en niños se da por el virus *metapneumovirus*. Otros causantes principales de este tipo de neumonía en niños son: VSR, virus de influenza y virus de parainfluenza.\textsuperscript{6,7}

**Neumonías atípicas**

Los gérmenes denominados atípicos hoy en día se consideran patógenos frecuentes y causantes de gran número de neumonías, que suelen ser leves o moderadas pero que pueden llegar a ser graves. Este tipo de neumonía es ocasionada principalmente por bacterias como: *M. pneumoniae, C. trachomatis, C. pneumoniae*. 

[223]
Neumonía por *Mycoplasma pneumoniae*: "*M. pneumoniae* es el organismo de vida libre más pequeño y uno de los causantes de alrededor del 20% de todas las neumonías en la población general y del 15-25% de las neumonías en los niños, con incidencia similar a la de *Streptococcus pneumoniae*".

Neumonía por *Chlamydia trachomatis*: "*C. trachomatis* es una bacteria patógena intracelular productora de infecciones pulmonares, es causante hasta de 30-40% de todas las neumonías en niños menores de seis meses y de 25-50% de todas las conjuntivitis del recién nacido".

Neumonía por *Chlamydophila pneumoniae*: "*C. pneumoniae*, también conocida como agente TWAR, se asocia a 15-18% de los casos de neumonía adquirida en la comunidad en niños de tres a doce años de edad".

Neumonía por *Streptococcus pneumoniae* (neumoco)

En la primera infancia, en gran parte la neumonía se produce por microorganismos, y determinar la causa en ocasiones es complicado, se debe considerar que los diversos estudios muestran que la etiología de la neumonía en la primera infancia es dependiente principalmente de la edad.

Aunque el neumococo es un patógeno reconocido desde hace muchos años, tiene hoy más protagonismo debido al surgimiento de cepas resistentes a la penicilina y al rápido desarrollo de esta resistencia en todo el mundo, lo que dificulta su tratamiento.

**Etiología**

En la primera infancia, en gran parte la neumonía se produce por microorganismos, y determinar la causa en ocasiones es complicado, se debe considerar que los diversos estudios muestran que la etiología de la neumonía en la primera infancia es dependiente principalmente de la edad. Según la OMS los agentes infecciosos de la neumonía son: virus, bacterias y hongos. Entre los más comunes están:

El *Streptococcus pneumoniae* es la principal causa de neumonía bacteriana, le sigue *Haemophilus influenzae* de tipo b (Hib); el virus sincitial respiratorio es la causa más frecuente de neumonía vírica y el *Pneumocystis jiroveci* es una causa importante de neumonía en niños menores de seis meses con VIH/SIDA, responsable de al menos uno de cada cuatro fallecimientos de lactantes cero positivos al VIH.

**Tabla 3. Protocolo del tratamiento de las neumonías en la infancia**

<table>
<thead>
<tr>
<th>Etiología de la neumonía por edad</th>
<th>Neonato</th>
<th>Menores de 3 meses</th>
<th>3 meses a 5 años</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Streptococcus B</em></td>
<td>Virus respiratorio</td>
<td>Virus respiratorio</td>
<td></td>
</tr>
<tr>
<td>Varicela-Herpes</td>
<td><em>Streptococcus B</em></td>
<td><em>S. pneumoniae</em></td>
<td></td>
</tr>
<tr>
<td>Citomegalovirus</td>
<td><em>Chlamydia trachomatis</em></td>
<td><em>H. influenzae</em></td>
<td></td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>Enterobacterias</td>
<td><em>Myc. pneumoniae</em></td>
<td></td>
</tr>
<tr>
<td><em>Listeria monocytogenes</em></td>
<td><em>S. aureus &amp; Myc</em></td>
<td><em>Myc. tuberculosis</em></td>
<td></td>
</tr>
<tr>
<td><em>Klebsiella pneumoniae</em></td>
<td><em>Listeria monocytogenes</em></td>
<td><em>St. Aureus</em></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Sociedad Española de neumología pediátrica.
Síntomas

- Tos, que puede venir acompañada con secreción amarillenta, verdosa o incluso moco con sangre.
- Fiebre, escalofríos.
- Dificultad o incomodidad al respirar o la sensación de no estar recibiendo suficiente aire.
- Confusión.
- Sudoración excesiva y piel pegajosa.
- Dolor de cabeza.
- Poco apetito, baja energía y fatiga.
- Dolor torácico agudo o punzante que empeora al respirar profundamente o cuando se tose.

Tratamiento

Según la OMS, la neumonía se trata con antibióticos, cuya administración depende del microorganismo que se sospeche, la gravedad de la neumonía y las características del enfermo; estos suelen recetarse en los centros de salud u hospitales. En la mayoría de los casos no se busca el germen causante, basta con suministrar antibióticos orales (amoxicilina/ IBL, cefuroxime- axetil o macrólidos) recetados por el médico. No tomar bebidas alcohólicas, no fumar, respirar aire caliente y húmedo, tomar un par de respiraciones profundas dos o tres veces cada hora, puede ayudar a sacar la flema de los pulmones, tomar bastantes líquidos, reposo y cuidados en el hogar suelen ser suficientes para la desaparición de la infección, sin embargo aquellas personas que presentan mayor gravedad en los síntomas deben ser hospitalizadas. Al paciente hospitalizado se le realizan técnicas diagnósticas como cultivo de muestras respiratorias o de sangre, broncoscopia, serología o punción pulmonar.

En general es difícil saber si la neumonía es causada por una bacteria o un virus, por esta razón se debe realizar un tratamiento antibiótico, éste implica el empleo de determinados antibióticos según el germen que se sospecha, en mayor medida este tratamiento cubre las dos bacterias más frecuentes en la primera infancia: Streptococcus pneumoniae, Haemophilus influenzae tipo b.

<table>
<thead>
<tr>
<th>Tabla 4. Antibióticos según la edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Recién nacido</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>De 1 a 6 meses</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mayores de 6 meses</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Atención primaria de la salud.

Conclusiones

El estudio de la epidemiología de la neumonía muestra que esta enfermedad tiene altas tasas de morbimortalidad en Colombia, en particular en San Juan de Pasto (Nariño), de ahí la importancia de formular un modelo matemático que capture los rasgos básicos de la transmisión de esta enfermedad, con el fin de crear estrategias de control.

El modelo básico SIR describe la dinámica de enfermedades infecciosas. En este sentido, dicho modelo puede ser utilizado como base para formular un modelo matemático sobre la epidemiología de la neumonía, mediante la inclusión de nuevas variables y parámetros que influyan significativamente en su propagación.

Las matemáticas aplicadas complementan el estudio de enfermedades infecciosas, en particular la neumonía. Finalmente, la interacción entre profesionales de matemática
aplicada y de salud conllevaría a realizar investigaciones que se aproximen de manera más pertinente a los factores que influyen en la dinámica de las enfermedades infecciosas.

Agradecimientos
Los autores manifiestan sus más sinceros agradecimientos al Instituto Departamental de Salud de Nariño, por su disposición al brindarnos información sobre el tema. A los estudiantes Irene María Ester Erazo Estrada y David Alejandro Escobar Jiménez por su colaboración.

Referencias


