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Abstract

Despite the wide variety of studies and research on 
mobile robot systems, performance metrics are not 
often examined. This makes difficult to establish 
an objective comparison of achievements. In this 
paper, the navigation of an autonomous mobile 
robot is evaluated. Several metrics are described. 
These metrics, collectively, provide an indication 
of navigation quality, useful for comparing and 
analyzing navigation algorithms of mobile robots. 
This method is suggested as an educational 
tool, which allows the student to optimize the 
algorithms quality, relating to important aspects 
of science, technology and engineering teaching, 
as energy consumption, optimization and design. 

Keywords: Educational robotics, Mobile robots, 
Navigation algorithms, Performance metrics

Resumen
A pesar de la amplia variedad de estudios e inves-
tigaciones sobre los sistemas de robots móviles, a 
menudo las métricas de rendimiento no son exami-
nadas; esto hace difícil establecer una comparación 
objetiva de los logros. En este trabajo se evalúa la 
navegación de un robot móvil autónomo; se descri-
ben varias métricas, que en conjunto proporcionan 
un indicador de la calidad de la navegación, útil 
para comparar y analizar los algoritmos de nave-
gación de robots móviles. Este método se propone 
como una herramienta educativa que permite al 
estudiante optimizar la calidad de los algoritmos, 
relacionando aspectos importantes de la ciencia, la 
tecnología y la enseñanza de la ingeniería, como el 
consumo de energía, la optimización y el diseño.

Palabras clave: Robótica Educativa, Robots Mó-
viles, Algoritmos de Navegación, Métricas de 
Rendimiento.
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I. IntroductIon

An autonomous mobile robot has to combine 
mission execution with fast reaction to unexpected 
situations. To overcome this problem, various 
types of control architectures for mobile robots 
have been designed, with the aim to improve 
performance of the navigation system of a mobile 
robot in the execution of the mission. Despite 
the wide variety of studies and research on robot 
navigation systems, quality metrics are not often 
examined, turning the objective comparison of 
performance into a challenge [1]. 

This paper presents some suggestions for 
the assessment of navigation algorithms in 
educational robotics. This method is suggested as 
an educational tool to help the student with the 
optimization of the algorithms quality, association 
of important aspects of science, technology and 
engineering teaching as energy consumption, 
optimization and design. 

II. pErFormancE mEtrIcs For robot 
navIgatIon

The navigation system gives a robot the capability 
to move between given locations. There are 
several metrics that can be used to evaluate the 
performance of a navigation system, but none 
of them are suitable to indicate the quality of the 
whole system. Therefore it is necessary to use 
a combination of different indexes quantifying 
different aspects of the system. Having a good 
range of performance measurements is useful 
for: Optimizing algorithm parameters, testing 
navigation performance within a variety of work 
environments, making a quantitative comparison 
between algorithms, supporting algorithm 
development and helping with decisions about 
the adjustments required for a variety of aspects 
involved in system performance [3, 5].

Typical performance criteria in navigation and 
obstacle avoidance are [8, 11, 12]:

1. Mission success: number of successful 
missions.

2. Path length: distance traveled to accomplish 
the task.

3.  Time taken to accomplish the task.

4.  Collisions: number of collisions per 
mission, per distance and per time.

5.  Obstacle clearance: minimum and mean 
distance to the obstacles.

6.  Robustness in narrow spaces: number of 
narrow passages successfully traversed.

7.  Smoothness of the trajectory: relative to 
control effort.

Navigation performance metrics can be classified 
in the following importance order:

A- Metrics that consider the security in the 
trajectory or proximity to obstacles.

B- Metrics that consider the trajectory towards 
the goal.

C- Metrics that evaluate the smoothness of the 
trajectory.

A. Security metrics

These metrics describe the robot security while 
it travels through a trajectory, taking into account 
the distance between the vehicle and the obstacles 
in its path [2].

Security Metric-1 (SM1): Mean distance 
between the vehicle and the obstacles through the 
entire mission measured by all the sensors; the 
maximum value will be produced in an obstacle 
free environment. If the deviation of the index 
from its maximum value is low, it means that the 
chosen route had fewer obstacles.

Security Metric-2 (SM2): Mean minimum 
distance to obstacles. This is taken from the 
average of the lowest value of the n sensors. This 
index gives an idea of the risk taken through the 
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entire mission, in terms of the proximity to an 
obstacle. In an obstacles free environment SM1 
= SM2 is satisfied.

Minimum Distance (Min): Minimum distance 
between any sensor and any obstacle through 
the entire trajectory. This index measures the 
maximum risk taken throughout the entire 
mission.

B. Dimension metrics

The trajectory towards the goal is considered in 
its time and space dimensions. In general, it is 
assumed that an optimal trajectory towards the 
goal is, whenever possible, a line with minimum 
length and zero curvature between the initial 
point (xi,yi) and the final point (xn,yn), covered in 
the minimum time.

Length of the Covered Trajectory (PL) is the length 
of the entire covered path by the vehicle from the 
initial point to the goal. For a trajectory in the x-y 
plane, composed of n points, and assuming the 
initial point as (x1, f(x1)) and the goal as (xn, f(xn)), 
PL can be calculated as:

    (1)

Where (xi, f(xi)), i = 1, 2, . . . , n are the n points of 
the trajectory in Cartesian coordinates [6].

The length of a trajectory given by y = f(x), in the 
x-y plane between the points (a, f(a)) and (b, f(b)), 
can also be calculated as [10].

  (2)

Mean distance to the goal (Mgd): This metric 
can be applied to robots capable of following 
reference trajectories. An important aspect when 
determining the quality of the robot navigation 
system is the ability to follow a trajectory that 
aims to reach a goal. To evaluate the quality of the 
trajectory execution, the mean distance between 
the vehicle and goal is analyzed. The difference is 

more significant if the covered distance is shorter 
[9]. The mean distance to the goal is defined by the 
square of the proximity to the goal (ln), integrated 
across the length of the trajectory and normalized 
by the total number of points n:

    (3)

      (4)

Control Periods (LeM): It is the amount of control 
periods. This metric is related to the number of 
decisions taken by the planner to reach the goal, 
if the robot moves with lineal and constant speed 
(v). This gives an idea of the time needed to 
complete the mission [2].

C. Smoothness metrics

The smoothness of a trajectory shows the 
consistency between the decision-action 
relationship taken by the navigation system, as 
well as the ability to anticipate and to respond to 
events with rapidly enough [9]. The smoothness 
of the generated trajectory is a measure of the 
energy and time requirements for the movement; 
a smooth trajectory translates into energy and time 
savings [4]. A smooth trajectory is also beneficial 
to the mechanical structure of the vehicle. 

Bending Energy (BE): This is a function of the 
curvature (k) used to evaluate the smoothness 
of the robot’s movement. For curves in the x-y 
plane, the curvature at any point (xi, f(xi)) across 
a trajectory is given by:

   (5)

The bending energy (BE) can be understood as 
the energy needed to bend a rod to the desired 
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shape [1]. BE can be calculated as the sum of 
the squares of the curvature at each point of the 
line k(xi,f (xi)), along the length of the line L. So, 
the bending energy of the trajectory of a robot is 
given by: 

     (6)

Where k(xi, f(xi)) is the curvature at each point of 
the trajectory of the robot and n is the number of 
points in the trajectory.

The value of BE is an average and does not 
show with enough clarity that some trajectories 
are longer than others. Therefore, TBE can be 
used instead. This metric takes into account 
the smoothness and length of the trajectory 
simultaneously.

TBE is defined by   (7)

and numerically,     (8)

As the trajectory gets straighter, the values BE and 
TBE will be lower, which is desirable since the 
energy requirement are increased according to the 
increase in the curvature of the trajectory.

Smoothness of Curvature (Smoo) is defined by 
the square of the change in the curvature k of the 
trajectory of a vehicle with respect to the time, 
integrating along the length of the trajectory and 
normalized by the total time (t) [9].

  (9)

III. robot and navIgatIon algorIthm

Navigation algorithms provide basic capabilities 
for the mobile robot, such as the ability to evade 
obstacles and to generate a trajectory towards a 
goal.

A. Navigation Algorithm 

This is a reactive algorithm based on the potential 
field method, which produces two different 
behaviors: first, goal attraction, and second, 
obstacles repulsion (keeping away from objects). 
The planning of the movement consists in the 
proper combination of both behaviors in such 
a way that the robot reaches the goal without 
collisions, figure 1. This combination is achieved 
using a vector sum [7].

FIg. 1. Diagram of Navigation based in potential field 
method

Where

(x,y,Φ): current position and orientation

(x,y)f : final goal position

Si: sensors information (length measurement 
sensors)

(V,δ): velocity and orientation angle commands

(v,w): linear and angular velocity

B. Mobile robotics platform

The robot was simulated according to the 
characteristics of the common robotics platforms 
used for education or research. This has a 
cylindrical structure, differential drive system and 
distance measuring sensors distributed equally 
around the robot’s circumference (the robot 
was simulated with 16 sensors, each one with a 
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distance range equal to 50cm and detection cone 
angle equal to 10 degree), figure 2.

FIg. 2. Test Scenario for Mobile Robot Navigation

C. Simulations

A 6 m x 4 m frame, structured environment with 
static obstacles was created for the execution of a 
navigation mission between two points (towards 
a goal); figure 2. The paths generated by the 
algorithms in the scenario are shown in figure 3 
and 4. Table 1 summarizes the results obtained 
from the simulation using both control algorithms 
according to the quality metrics described above.

D. Metrics selection 

Taking into account that the objective is to 
execute a navigation mission from a starting 
point to a final point (navigation mission towards 
a goal), an order of importance can be established 
in order to evaluate the navigation characteristics, 
as follows:

1. The mean distance between the vehicle and 
the obstacles during the trajectory.

2. The distance covered by the vehicle between 
the starting point and the goal.

3. The time needed to complete the mission.

4. The smoothness of the trajectory.

The first point considers the security of the 
trajectory and measures the risk taken by the 
robot in its movement towards the goal. The 
second and third points measure aspects related to 
the planning of the trajectory, and the fourth point 
considers the quality of the trajectory according 
to the energy and time required for the movement.

These characteristics can be analyzed using the 
following set of performance metrics:

1. SM1, SM2 and Min are proposed for 
evaluating security.

2. PL and LeM are proposed for evaluating the 
trajectory. 

3. TBE is proposed for evaluating the 
smoothness of the trajectory.

Iv. tEsts and rEsults

The code for navigation algorithm is shown in 
figure 5. This algorithm has two parameters (katr 
and krep). In all simulations, katr=1, but krep 
takes two values.

First simulation, krep=0.1, 

Second simulation, krep=0.01

FIg. 3. Mobile Robot Navigation, krep=0.1
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FIg. 4. Mobile Robot Navigation, krep=0.01

In the first simulation, the algorithm has krep=0.1, 
the repulsive force is bigger, and the navigation 
has an oscillatory pattern near obstacles. 
Consequently it takes more time to complete the 
mission.

In the second simulation, the algorithm has 
krep=0.01, the repulsive force is less important, 
and the navigation has a soft pattern near obstacles, 
uses less control periods. Consequently, it takes 
less time to complete the mission, and it covers a 
safer and shorter path.

The figure 3 shows that krep=0.1 produces a great 
oscillation for each control period. The figure 4 
shows that krep=0.01 covers a smoother path, 
there is a smaller change in the orientation during 
each control period. Consequently, it implies 
energy saving and less structural stress on the 
robot.

From table 1, it can be deduced that the difference 
between both simulations in trajectory and 
time is 20.5% and 20% respectively. The robot 
programmed with krep=0.01 passed minimum 12 
cm from any obstacle, which is acceptable for a 25 
cm diameter robot. It also showed approximately 
89% less bending energy for krep=0.01 than for 
krep=0.1. For these reasons, krep=0.01 can be 
considered the best choice.

v. conclusIons

This suggestion for the assessment of navigation 
algorithms provides a tool for educational 
robotics. A very simple application example was 
presented. The obtained results demonstrate the 
need to establish a procedure to be used when 
analyzing and comparing control algorithms 
using several performance metrics. This is an 
open topic of research. It has become necessary 
to establish proper approaches and benchmarking 
procedures, for example, using a benchmarking 
standard framework for navigation algorithm 
assays and performance assessment. 

This metrics can be applied in simulated 
environments, but the performance metrics 
evaluation is more important in real environments. 
Many of the challenges in robot navigation come 
from the challenges of real environments, such 
as uncertainty in the sensors and the errors in 
odometry, which are generally not considered in 
simulation. 
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%SENSORS SETTINGS: 16 sensor 
for i = 0:22.5:337.5
 sensor(i,10,50);
end
% ATTRACTION AND REPULSION PARAMETERS
katr = 1;
krep = 0.1; % or krep=0.01
 
% GOAL POSITION
xf = 500;
yf = 300;
 
thdet = ROBOT.AnDtcSensor * pi / 180;
 
for i = 1:60
 [x,y,Alpha] = posicion;
 
 dt = abs(sqrt((xf - x)^2 + (yf - y)^2));
 xatr = katr * (xf - x) / dt;
 yatr = katr * (yf - y) / dt;
 [datr,nd] = cart2pol(xatr,yatr);
 datr = datr - Alpha * pi / 180;
 [xatr,yatr] = pol2cart(datr,nd);
 
 for j = 1:1:16
 si(j) = leer(j);
 end
 crep = krep .* si;
 [xrep,yrep] = pol2cart(thdet,crep);
 xrep = sum(xrep);
 yrep = sum(yrep);
 if abs(xrep) < 10^-6, xrep = 0; 
 end
 if abs(yrep) < 10^-6, yrep = 0; 
 end
 [drep,nd] = cart2pol(xrep,yrep);
 xnav = xatr + xrep;
 ynav = yatr + yrep;
 [delta,nd] = cart2pol(xnav,ynav);
 delta = delta * 180 / pi;
 mover(10,delta);
end

FIg. 5. Part of the Navigation Algorithm, Matlab Code
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tablE 1
robot performanCe

Parameter Metrics

Krep SM1 

[cm]

SM2 

[cm]

Min 

[cm]

PL 

[cm]

LeM TBE

0.1 47.2 33.4 16 698,7 75 0.7463

0.01 43.1 25.3 12 554.8 60 0.0810

SM1 maximum = 50 cm
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