
167
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 167-180. Enero-Abril, 2017. Tunja-Boyacá, Colombia. 

ISSN Impreso 0121-1129, ISSN Online 2357-5328, DOI: http://doi.org/10.19053/01211129.v26.n44.2017.5834

Assessing the behavior of machine learning methods to 
predict the activity of antimicrobial peptides

Evaluación del comportamiento de métodos de machine learning para 
predecir la actividad de péptidos antimicrobianos

Avaliação do comportamento de métodos de machine learning para 
predizer a atividade de peptídeos antimicrobianos

Francy Liliana Camacho*

Rodrigo Torres-Sáez**

Raúl Ramos-Pollán***

Abstract
This study demonstrates the importance of obtaining statistically stable results when using machine learning 
methods to predict the activity of antimicrobial peptides, due to the cost and complexity of the chemical processes 
involved in cases where datasets are particularly small (less than a few hundred instances). Like in other fields 
with similar problems, this results in large variability in the performance of predictive models, hindering any 
attempt to transfer them to lab practice. Rather than targeting good peak performance obtained from very 
particular experimental setups, as reported in related literature, we focused on characterizing the behavior of the 
machine learning methods, as a preliminary step to obtain reproducible results across experimental setups, and, 
ultimately, good performance. We propose a methodology that integrates feature learning (autoencoders) and 
selection methods (genetic algorithms) thorough the exhaustive use of performance metrics (permutation tests and 
bootstrapping), which provide stronger statistical evidence to support investment decisions with the lab resources 
at hand. We show evidence for the usefulness of 1) the extensive use of computational resources, and 2) adopting 
a wider range of metrics than those reported in the literature to assess method performance. This approach allowed 
us to guide our quest for finding suitable machine learning methods, and to obtain results comparable to those in 
the literature with strong statistical stability.
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Resumen
Este trabajo demuestra la importancia de obtener resultados estadísticamente estables cuando se emplean métodos 
de aprendizaje computacional para predecir la actividad de péptidos antimicrobianos donde, debido al costo y 
la complejidad de los procesos químicos, los conjuntos de datos son particularmente pequeños (menos de unos 
cientos de instancias). Al igual que en otros campos con problemas similares, esto produce grandes variabilidades 
en el rendimiento de los modelos predictivos, lo que dificulta cualquier intento por transferirlos a la práctica. Por 
ello, a diferencia de otros trabajos que reportan rendimientos predictivos máximos obtenidos en configuraciones 
experimentales muy particulares, nos enfocamos en caracterizar el comportamiento de los métodos de aprendizaje 
de máquina, como paso previo a obtener resultados reproducibles, estadísticamente estables y, finalmente, con 
una capacidad predictiva competitiva. Para este propósito se diseñó una metodología que integra el aprendizaje 
de características (autoencoders) y métodos de selección (algoritmos genéticos) a través del uso exhaustivo de 
métricas de rendimiento (test de permutaciones y bootstrapping), permitiendo obtener la evidencia estadística 
suficiente como para soportar la toma de decisiones de inversión con los recursos disponibles del laboratorio. En 
este trabajo se muestra evidencia de la utilidad de: 1) el uso extensivo de los recursos computacionales y 2) la 
adopción de una gama más amplia de métricas que las reportadas en la literatura para evaluar el funcionamiento 
de los métodos. Este enfoque permitió orientar la búsqueda de métodos de aprendizaje de máquinas adecuados y, 
además, se obtuvieron resultados comparables a los de la literatura con una gran estabilidad estadística.

Palabras clave: aprendizaje de máquina; curvas de aprendizaje; estabilidad estadística; péptidos antimicrobianos; 
regresión de vectores de soporte.

Resumo 
Este trabalho demonstra a importância de obter resultados estatisticamente estáveis quando empregam-se 
métodos de aprendizagem computacional para predizer a atividade de peptídeos antimicrobianos onde, devido 
ao custo e à complexidade dos processos químicos, os conjuntos de dados são particularmente pequenos (menos 
de algumas centenas de instâncias). Igualmente, em outros campos com problemas similares, isto produz grandes 
variabilidades no rendimento dos modelos preditivos, o que dificulta qualquer intento por transferi-los à prática. 
Consequentemente, ao contrario de outros trabalhos que reportam rendimentos preditivos máximos obtidos em 
configurações experimentais muito particulares, enfocamo-nos em caracterizar o comportamento dos métodos de 
aprendizagem de máquina, como passo prévio para obter resultados reproduzíveis, estatisticamente estáveis e, 
finalmente, com uma capacidade preditiva competitiva. Para este propósito, desenhou-se uma metodologia que 
integra a aprendizagem de características (autoencoders) e métodos de seleção (algoritmos genéticos) através do 
uso exaustivo de métricas de rendimento (teste de permutações e bootstrapping), permitindo obter a evidência 
estatística suficiente como para suportar a tomada de decisões de inversão com os recursos disponíveis do 
laboratório. Neste trabalho mostra-se evidência da utilidade de: 1) o uso extensivo dos recursos computacionais 
e 2) a adoção de uma gama mais ampla de métricas que as reportadas na literatura para avaliar o funcionamento 
dos métodos. Este enfoque permitiu orientar a busca de métodos de aprendizagem de máquina adequados e, além 
disso, obter resultados comparáveis aos da literatura com uma grande estabilidade estatística.

Palavras chave: Peptídeos antimicrobianos, Aprendizagem de máquina, Estabilidade estatística, Regressão de 
Vetores de Suporte, Curvas de aprendizagem.
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I. IntroductIon

Recently, different methods of pattern recognition 
have been used to estimate the activity of biological 
molecules. For instance, Quantitative Structure-
Activity Relationship (QSAR) methodologies are 
widely used to predict the activity of synthetic and 
natural antimicrobial peptides. QSAR correlates the 
physicochemical properties (descriptors) computed 
from sequence or peptide structure with the peptide 
biological activity using a mathematical function [1]. 
Datasets used in the field are characterized by the 
high dimensionality in the descriptors, and their small 
sample size.

Some of the methods that have been used to predict 
antimicrobial peptides include Partial Least Squares 
[2, 3], Artificial Neural Networks [4], Multiple Linear 
Regression [5, 6], and Support Vector Regression 
(SVR) [7-9], among others. Performance assessment 
of these methods is typically limited to few metrics 
obtained with fixed validation sets, measuring the 
distance of prediction from the real output, but 
providing little evidence on whether the used methods 
have found a real correlation. Traditionally used 
metrics include the root mean square error (RMSEext), 
the correlation coefficient of multiple determination 
(R2ext), the Pearson correlation coefficient (Rext), and 
R2 pred. (R2 predictive) for the fixed validation set 
[10]. The convention Xext, as used in related literature, 
indicates that metric X was used with the validation 
set (or external validation set).

Metrics to measure the performance of the training 
set are not always the same as the ones used for 
validation, and include RMSE, R, R2, Cross-
validated correlation coefficient (Leave One Out, ), 
and y-randomization [10]. This, along with the great 
variability of the performance results both reported 
in the literature and observed experimentally by 
ourselves, lead us to believe that it is necessary to 
obtain a more comprehensive understanding of the 
machine learning methods behavior when applied in 
the field, as a necessary step before targeting good 
performance. In order to acquire this understanding, 
we propose a methodology that integrates feature 
learning and selection methods by using performance 
metrics, providing us with stronger foundations to 
support our decisions and investments with the lab 
resources at hand. The proposed methodology includes 
stacked autoencoders, genetic algorithms, learning 
curves, permutation tests, and bootstrapping. Using 
this methodology, we obtained predictors with good 
generalization capability, stable correlations between 
descriptors and activity, and competitive performance 
with respect to literature.

This paper is structured as follows. Section 2 presents a 
brief description of previous work. Section 3 describes 
the used datasets, and provides a general overview 
of the workflow. Section 4 explains the devised 
experiment. Section 5 describes the obtained results, 
and provides some insights into their interpretation. 
Finally, the last section draws the conclusions.

II. Background

Different algorithms and descriptors have been 
traditionally used to predict the activity of 
antimicrobial peptides. For example, Zhou et al. 
[7] used approximately 1500 descriptors, which 
were reduced to 711 after preprocessing, together 
with Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), and Support Vector Regression 
(SVR). However, they only used two metrics (R and 
RMSE) in the model assessing phase, and according to 
the literature, it is convenient to use additional metrics 
such as R2 and R2

pred [10].

In another study, Borkar et al. [2] used Genetic 
Function Approximation and Partial Least Square 
with 43 descriptors; however, the true performance is 
not clear because the results of the reported metrics 
are based on the activity prediction in a logarithmic 
scale. In another study, Wang et al. [5] showed good 
results with the training set; however, with the test 
set the performance is low. Torrent et al. [4] created 
a model with 8 descriptors, and reported only R2 for 
the validation set, which does not guarantee the good 
behavior of the model [11]. An important aspect 
in some of these studies is that the training and test 
sets are explicit, that is, a single data split is made, 
and every case indicates which data are used for each 
split, which clearly bias the results. Consequently, our 
work takes a resampling approach, where data are split 
several times to ensure the statistical robustness of the 
results.

III. MaterIals and Methods

This section describes the procedure by which we 
created our datasets for experimentation, and describes 
the novel methods we apply: Stacked Autoencoders for 
automatic learning of new representations for peptides, 
Learning Curves for assessing the generalization 
capabilities of our models, and Permutation Tests 
to assess their statistical significance. Since Support 
Vector Machines and Genetic Algorithms are more 
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commonly used in the field, we refer the reader to [8, 
12] for further information.

A. Dataset and descriptors

The dataset used is this study is CAMELs, which has 
101 sequences of peptides, each one composed of 15 
amino acids, and whose antimicrobial activity has 

been reported as the mean antibiotic potency [13]. 
From the peptides primary structure, it is possible to 
compute a wide range of descriptors. Therefore, we 
started off from the properties described by Zhou 
et al. [7], who used the web tool PROFEAT [14] to 
compute ten groups of properties (Table 1); however, 
due to PROFEAT technical problems, we used instead 
a Python library called propy [15].

taBle 1
Ten groups of descripTors exTracTed from The daTaseT. columns ‘iniTial’ and ‘final’ 

represenT The number of descripTors before and afTer The preprocessing, respecTively [9]
DESCRIPTORS Initial Final

Dipeptide Composition (Ddcd) 400 106

Normalized Moreau-Broto autocorrelation (Dnmba) 240 112

Moran autocorrelation (Dmad) 240 112

Geary autocorrelation (Dgad) 240 112

Composition, transition and distribution (Dctd) 147 147

Sequence order coupling number(Dsoc) 20 20

Quasi sequence order (Dqso) 50 46

Pseudoaminoacid composition type I (Dpaac) 30 23

Pseudoaminoacid composition type II (Dapaac) 30 23

All Descriptors (AllDesc) 1517 730

Additionally, since the order of amino acids plays 
an important role in the peptides function [16], we 
computed the Composition Moment Vector descriptor 
(CMV) [17] that measure the order and frequency of 
amino acids in the sequence. In total, we considered 
11 descriptor groups.

B. Stacked Autoencoders (SAE)

According to Camacho et al. [9], a stacked autoencoder 
is a “neural network with two or more layers of 
autoencoders that are used in an unsupervised manner. 
The main idea with SAE is to capture high order 
features from the data. Training is conducted using the 
approach called greedy-wise, i.e. each hidden layer is 

trained separately and the output of each one is used 
as input for the next layer [18]. If training succeeds 
to reconstruct the input data at the output layer, the 
hidden layer will contain a new representation of the 
input data which will be more compact if the hidden 
layer has less neurons than the input layer, or more 
sparse if it has more neurons.”

In the case of an autoencoder with two hidden layers, 
we first trained an autoencoder with only the first layer 
[19] (Fig. 1a). Then, we kept the obtained weights, 
add the second layer, and performed another training 
process in this setup (Fig. 1b). This can be seen, first 
as obtaining an intermediate representation by training 
only the first layer, and then, feeding it to the second 
layer to obtain a final representation.
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FIg. 1. Stacked autoencoder with 2 hidden layer. a) contains 6 input neurons and four neurons in the hidden layer. 
Note this is a compressing autoencoder. It contains (6+1)*4+(4+1)*6 = 58 connections [18].

C. Learning Curves (LC)

A learning curve is a graphical representation of the 
performance of a machine learning method trained 
with increasing data. For a given metric, performance 
is measured in the train and test part of a dataset, 
increasing the size of the dataset split from, typically, 
10 % to 90 % in steps of 10 % (e.g., 10 % is used for 
training, and 90 % for testing, then, 20 % for training 
and 80 % for testing, until 90 % is used for training and 

10 % for testing). This process is conducted n times by 
sampling with replacement, and then the average and 
standard deviation are calculated for that particular 
train/test split percentage [20]. Learning curves 
allow us to assess the generalization capabilities of 
the method in hand, identifying scenarios such as 
high variance (overfitting) or high bias (under fitting) 
[19], and supporting our decisions to improve the 
performance of our experiments (acquire more data, 
reduce or augment the complexity of our algorithm, 
etc.) (Fig. 2).

FIg. 2. Three typical learning curves for accuracy metric. The dotted line represents the accuracy in the validation 
part of the data, the solid line on the training part. The size of the training data increases in each curve as in the 

right direction. a) shows a typical case of overfitting (adding data does not help increasing validation performance). 
b) shows a typical case of high bias (the model cannot perform well even with training data). c) shows a good 

performing model, were both training and validation performances finally converge to high values as data is added.
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D. Permutation Test (PT)

The permutation test is a procedure to evaluate the 
reliability of a performance metric using a notion of 
statistical significance; in other words, it measures 
the probability that the observed metric is a result of 
chance. A significant predictor should reject the null 
hypothesis that the data and labels are independent 
[22] through a small p-value. This procedure takes 
the original data, randomly permutes the labels, trains 
the predictor, and computes the metric. The process is 
repeated k times, and thus, a distribution of the metric 
values is obtained. The p-value is computed according 
to definition 1 in [23]:

    
(1)

where  is the data with their 
respective labels, 𝑓 is the function learned by the 
predictor algorithm,  is the set of all possible original 
dataset permutations, 𝑒(𝑓, 𝐷′) is the error of the 
predictor with permuted labels, and 𝑒(𝑓, 𝐷) is the error 
with original data.

E. Processing workflow

The processing workflow was composed of five 
stages:

a) Preprocessing: all descriptors are preprocessed by 
standardizing their values, and removing entries with 
the same value for all peptides (standard deviation of 
zero).

b) Unsupervised Feature Learning: to create the new 
representation of the data, preprocessed descriptors 
with different configurations of autoencoders (AE) 
and stacked autoencoders (SAE) are trained and run 
[19].

c) Feature selection: genetic algorithms to select the 
most useful descriptors are used.

d) Supervised prediction: different configurations of a 
Support Vector Regression (SVR) task are run on the 
descriptors to effectively predict antimicrobial activity 
of the initial peptides.

e) Assessing the performance: the performance of the 
models with different metrics using learning curves 
and permutation tests are verified.

IV. experIMental setup

A. Experimental configurations

Starting off from the 11 groups of descriptors for each 
peptide obtained with propy and CMV, we designed 
five general experimental setups, and run each 
descriptor group through each setup after following 
the workflow described above [9]. Below, we describe 
the five setups.

Original: to obtain a baseline against which to 
measure the behavior of further setups, we performed 
a Support Vector Regression directly on each group of 
physicochemical properties without further processing 
or feature learning (Fig. 3).



173
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 167-180. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Francy Liliana Camacho - Rodrigo Torres-Sáez - Raúl Ramos-Pollán

FIg. 3. Graphical representation of the methodology used in this work. The Train/test and Validation set were taken 
from Zhou et al. [7]. CMV: Composition Moment Vector. Dqso: Quasi sequence order. LC: learning curve. PT: 

permutation test.

GA: We optimized each group of descriptors 
using Genetic Algorithms (GA) (Fig. 3). In GA, a 
chromosome is a representation of the solution of a 
problem (different chromosomes or possible solutions 
may be generated); in this case, each chromosome is 
formed by a binary vector with one bit per feature, 
where 1 represents the selected feature, and 0 the non-
selected. Then, a fitness function is used to evaluate 
each chromosome and determinate the best. In this 
study, we took the fitness function from Zhou et al. 
[7]:

    
(2)

where p is a weight coefficient that controls the tradeoff 
between precision of the regression model and number 
of selected descriptors, 𝑅𝑀𝑆𝐸 is Root Mean Square 
Error, n is the number of selected descriptors, and N 
is the total of descriptors. Throughout the evolution, 
the chromosomes are subject to selection, crossing, 
and mutation. For each chromosome, we trained and 

tested a SVR with 5-fold cross-validation, after the 
optimization of free parameters, and computed the 
average 𝑅𝑀𝑆𝐸 across the cross-validation folds. A total 
of 200 K Support Vector Regressions were trained and 
tested only for this experiment setup. The parameters 
of genetic algorithm were taken from Shu et al. [3], 
where the population was 200, the maximum number 
of generations were 200, the crossover frequency was 
0.5, and the mutation was 0.005. We used Pyevolve as 
the genetic algorithm framework.

Regarding the architecture of the autoencoders, we 
followed the same experimental setup as in [9], which 
is herewith reproduced for completeness:

“AE: We trained different configurations of 
autoencoders (AEs) to learn a new set of features 
which were then fed to a Support Vector Regression 
task. In each AE configuration we vary the number of 
neurons in the hidden layer from 20 to 1000 neurons. 
This allows for configurations producing both compact 
and sparse representations with respect to the number 



174
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 26 (44), pp. 167-180. Enero-Abril, 2017. Tunja-Boyacá, Colombia.

Assessing the behavior of machine learning methods to predict the activity of antimicrobial peptides

of descriptors in each group. When the number of 
neurons in the hidden layer was between 20 and 500 it 
was varied with a step of 20, and it was between 500 
and 1000 it was varied with a step of 50. This resulted 
in 35 AE configurations which were used for each 
group of descriptors. Each one of these configurations 
contains several thousand connections that need to 
be trained. For instance an AE with 500 neurons in 
the hidden layer for descriptor group Ddcd with 106 
descriptors contains around 106K connections.

SAE2: For each AE configuration we created a two 
layer stacked autoencoder by adding an additional 
hidden layer with half the neurons, producing 
therefore another 35 configurations. As explained, 
each configuration was trained layer-wise. Sizes 
of SAE2 configurations ranged between 800 
connections and 1.6 million.

SAE4: Likewise SAE2 but the number of neurons 
in the second hidden layer was obtained by dividing 
the number of neurons in the first hidden layer 
by 4 yielding, again, another 35 configurations. 
Sizes of SAE4 configurations ranged between 600 
connections and 1.1 million.”

Since we have 11 descriptor groups, in total we run 
1177 experimental configurations: 385 for AE, SAE2, 
and SAE4, 11 for Original, and 11 for GA.

B. Validation and supervised training

For supervised training, first, we split the data into 
a subset for training and another for validation, 
according to Zhou et al. [7], and then, optimized the 
free parameters of the Support Vector Regression task 
(Fig. 3, step 5). For this, we created a grid varying (C, 
γ, ε), and for each combination of parameters, we used 
the train data split to train a SVR with 5-fold cross-
validation, and with the average score of 𝑅2

𝑒𝑥𝑡 , we 
chose the parameters yielding the maximum score 
(Fig. 3, step 6). Our parameter grid contained 1872 

parameter combinations, which were run with each 
configuration described in Section 3.1. Therefore, 
we trained 4,382,752 Support Vector Regression, 
cross validation processes, and selected one for each 
one of the 1177 Original, GA, AE, SAE2, and SAE4 
configurations.

With the best parameter combination (C, γ, ε) for 
each configuration, we trained a SVR with the full 
training split (no cross-validation), and tested it 
with the validation data split to obtain the final 
performance (Fig. 3, step 7). The performance 
metrics used for the validation set were 𝑅𝑀𝑆𝐸𝑒𝑥𝑡,  𝑅𝑒𝑥𝑡,  
and 𝑅2

𝑒𝑥𝑡 (𝑅2 predictive) [11]. For each experimental 
configuration, we took the group of descriptors with 
the best performance in each one, and applied the two 
methods aforementioned:

LC: The learning curve (LC) was computed from 
the entire dataset, using the SVR with the best 
combination of parameters obtained through the 
experimental setups described above (Fig. 3, step 8). 
This process was conducted 30 times by sampling 
with replacement.

PT: The permutation test (PT) was applied on different 
train/test (these sets were taken when we applied 
bootstrapping to the full dataset, which is divided into 
train/test and validation r times). This process was 
conducted 10 times (r = 10), and it randomly permuted 
the labels 100 times (k = 100) for each r. (Fig. 3, step 9). 
We used the best combination of parameters obtained 
through the experimental setups described above.

V. results

Table 2 summarizes the results obtained using the 
experimental setup described in the previous section, 
and those referenced in the literature. The results are 
shown along with the descriptor group, and GA, AE 
or SAE configuration with which they were obtained.
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taBle 2
comparaTive resulTs for differenT algoriThms used To predicT The acTiviTy of 

anTimicrobial pepTides. The besT configuraTion is represenTed when The 𝑅𝑀𝑆𝐸val score is 
closer To zero, and r2

val, rval and r2 
pred are closer To one

Method r2
val 𝑅𝑀𝑆𝐸val r2

val r2 
pred Ref

GA-SVM 0.78 1.39 - - [7]

PSO-GA-SVM 0.9 0.96 - - [7]

STR-MLR - - 0.33 - [5]

G/PLS 0.8 - 0.67 0.64 [2]

ANN - - 0.72 - [4]

Original (CMV+SVR) 0.87 1.10 0.73 0.74 This work

GA (Dqso + GA+ SVR) 0.92 0.85 0.84 0.85 This work

AE (Dctd(900)+SVR) 0.9 1.10 0.74 0.74 This work

SAE2 (Dqso(140,70)+SVR) 0.96 0.86 0.84 0.84 This work

SAE4 (Dqso(800,200)+SVR) 0.97 0.84 0.85 0.85 This work

Initially, we implemented the original setup (i.e., 
without further processing or feature learning), and 
the set with the best performance was Composition 
Moment Vector (CMV) (Table 2); however, the 
performance was poorer than GA, SAE2, and SAE4. 
Then, we applied the methodology described in the 
methods section. The GA setup was used on each 
group of descriptors, and the best performance was 
obtained with Dqso. This result is better than the one 
reported by Zhou et al. [7], and the computation time 
is also less (without a parallelism strategy, contrary to 
Zhou et al. [7]). For AE configurations, the best groups 

of original descriptors were consistently Dctd (with 
147 original descriptors) obtained with 900 hidden 
neurons, performing better than in literature reports 
only in the R2

ext metric. However, SAEs performed 
consistently better than results in the literature with 
different sets of descriptor groups, mostly Dqso and 
Dctd. The complete set of experiments took about 48 
compute hours, using a computer with 4GB RAM, 
and a processor Intel Core i3 2.4 GHz. The computing 
time for each set of descriptors, and AE or SAE 
configuration varied greatly depending on the number 
of connections of the specific configuration. 

a) b)
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c) d)

e)
FIg. 4. Learning curves with the best descriptors for each experimental setup, and the score corresponding to R2

ext 
metric. a) Composition Moment Vector. b) GA with Quasi Sequence Order. c) AE and Composition, Transition and 
Distribution descriptors. d) SAE2 with Dqso. e) SAE4 with Dqso. The train test score is the performance parameter 

calculated from the union of the train and test set (the same dataset used to optimize the free parameters in the model).

The next step was assessing the setup configurations 
shown in Table 2, using learning curves and 
permutation tests. We computed the learning curve 
with the R2

ext metric on each experimental setup 
(Original, GA, AE, SAE2, and SAE4) (Fig. 4).

Figure 4b shows the best behavior as the validation 
score progressively converges to high values, with the 
train score showing the lowest bias and overfitting. 
Therefore, we can confidently state that performance 
stabilized at 0.84 in the R2 metric. Figures 4a, 4d, 
and 4e show slightly worse performance, where data 
addition did not remove the gap between train and 
validation. This constitutes a clear case of methods 
being unable to generalize on data not seen during 
training (overfitting). This behavior is observed more 
drastically in figure 4c. Note that best performance 
(Fig. 4b) is obtained with GA. Fixing the behavior of 
the rest of the cases would probably require adding 
more data.

Subsequently, we used permutation tests on the same 
selected models. Figure 5 shows the results obtained 
on each experimental setup for Original, GA, AE, 
and SAE4, respectively. The permutation test shows 
whether the performance in the models was a result 
of chance (this problem is common when there are 
high dimensionality descriptors, and small sample 
sizes [22]). Each black square represents the original 
error of each bootstrapping, and the circles show the 
average of the permutation error with one standard 
deviation (the vertical line that crosses the circle). If 
the squares fall well below the circles, we can reject the 
null hypothesis, however, if that is not the case (or the 
error is similar), we cannot reject the null hypothesis 
with significance level α=0.01. Figure 5 shows that the 
null hypothesis is indeed rejected, which means that 
the predictors found a dependency between the data 
and the labels.
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a) b)

c) d)

e)

FIg. 5. Permutation test for each iteration of bootstrapping with experimental setup. a) Original. b) GA. c) AE. 
d) SAE2. e) SAE4.

Table 3 shows the p-value obtained for each 
experimental setup, where Err (in Original Label) 
represents the error average with original labels, 
and Std the standard deviation computed with 10 
bootstraps. The Err (in Permutation Test) represents 
the error average with permuted labels, and Std the 

standard deviation computed out of 1000 permutations 
(r x k, with r=10, k=100). In each experimental 
configuration, the predictors are significant under the 
null hypothesis with a confidence level of 95 % (Table 
3).
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taBle 3
average error wiTh original label, permuTaTion TesT,  

and p-value for each experimenTal seTup

Original Label Permutation Test
Setup Err (Std) Err (Std) p-val
Original

0.61 (0.08)

1.15 (0.15) 0.009

GA 0.39 (0.12) 1.20 (0.13) 0.009
AE 0.12 (0.006) 0.57 (0.14) 0.009
SAE2 0.39 (0.09) 0.94 (0.12) 0.009
SAE4 0.19 (0.12) 0.66 (0.15) 0.009

In order to verify in which ranges the results varied when 
we randomly changed the train/test and validation, 
we conducted an additional test with 10 bootstraps 
(random splits), following the same methodology than 
in figure 3. We found that the models using GA and 
SAE2 had low variability, and that changing the data 
in the train/test would result in good performances 
(Table 4). Moreover, the validation set indicated by 

Zhou et al. [7] seems to bias the results because the 
performance reported with this set is outside of the 
ranges shown with the bootstrapping.

Additionally, we measured the frequency of parameters 
for SVR, and found that C, γ, and ε are most frequently 
equal to 10, 0.32, and 0.1, respectively.

taBle 4
booTsTrapping on differenT experimenTal seTups used in This work. spliT zhou indicaTes 

The resulTs obTained by zhou et al. [7] wiTh a specified Train/TesT and validaTion seT. 
booTsTrapping corresponds To The resulTs obTained in This work using The same spliT 

indicaTed by zhou et al. [7]
Method 𝑅𝑒𝑥𝑡 𝑅𝑀𝑆𝐸𝑒𝑥𝑡

Split Zhou Bootstrapping Split Zhou Bootstrapping

Setup Original 0.87 0.80±0.18 1.10 1.21±0.29
Setup GA 0.92 0.86±0.11 0.85 0.98±0.26
Setup AE 0.9 0.69±0.16 1.10 1.52±0.28
Setup SAE2 0.96 0.86±0.06 0.86 1.07±0.18
Setup SAE4 0.97 0.84±0.09 0.84 1.12±0.25
Zhou et al. (PSO-GA-SVM) 0.9 - 0.96 -

VI. conclusIons

In this study, we used traditional metrics for evaluating 
models to predict the antibiotic activity of peptides, 
and we used additional methods for assessing their 
statistical stability: learning curves, bootstrapping, 
and permutation tests. Furthermore, we constructed 
different experimental configurations using GA, AE 
and SAE to select or obtain additional descriptors of 

the peptides, obtaining better performance than other 
studies in the literature.

When feeding new features to a supervised 
machine learning method, we showed how learnt 
representations (by SAE) or selected features (by GA), 
consistently provided satisfactory results as compared 
with recent studies. This indicates the importance of 
the feature learning, and selection of the original set of 
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descriptors from which the learning process starts. We 
believe this approach can be explored in other areas of 
protein prediction that share data characteristics, and 
problem complexity.

According to the learning curves, AE configurations 
show overfitting, suggesting an increase in the number 
of samples in the original datasets necessary to improve 
the performance. In the case of GA, SAE2, and SAE4, 
overfitting is only very mildly observed, showing 
the generalization capability of these models. With 
permutation test we found a real dependency between 
descriptors and activity with all models, showing that 
our models are statistically stable; furthermore, this 
suggests the necessity of exploring similar descriptors 
or combinations of CMV, Dctd, and Dqso.

Using a single data split, as proposed in other works, 
clearly biases the performance, supporting our 
approach of randomly and repeatedly splitting the 
dataset, and of verifying metrics with cross-validation 
or bootstrapping. Finally, we identified descriptor 
groups that consistently behave better: Composition 
Moment Vector and Quasi Sequence Order descriptors, 
which show evidence that the order and frequency of 
amino acids in the sequence play an important role in 
the peptides activity. This could help designing better 
candidate peptides in the future.
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