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Determination of the Inside Diameter of Pressure Pipes for Drinking Water Systems Using Artificial Neural
Networks

Abstract

The fifth-degree polynomial equation determines the diameter in pressurized
drinking water systems. The input variables are Q: flow (m?/s), H: pressure drop (m);
L: pipe length (m); €: roughness (m), 9: kinematic viscosity (m?/s), and Zk: sum of
minor loss coefficients (dimensionless). After applying the energy equation for a
hydraulic system composed of two tanks connected to a pipe of constant diameter
and accepting the Colebrook-White and the Darcy-Weisbach equations, an
undetermined expression is obtained since more unknowns than equations are
established. This problem is solved by implementing a nested loop for the coefficient
of friction and the diameter. This article proposes an Atrtificial Neural Network (ANN)
implementing the Levenberg-Marquardt backpropagation method to estimate the
diameter from the log-sigmoidal transfer function under stationary flow conditions.
The training signals set consists of 5,000 random data that follow a normal
distribution, calculated in Visual Basic (RExcel). The statistics used for the network
evaluation correspond to the mean square error, the regression analysis, and the
cross-entropy function. The architecture with the best performance had a hidden
layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00
for the Pearson Correlation Coefficient. The cross-validation of the neural scheme
was carried out from 1,000 independent input signals from the training set, obtaining
an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with
a relative error equal to 0.01% concerning the values obtained with ®Epanet,
evidencing the generalizability of the optimized system.

Keywords: Artificial Neural Network; Colebrook-White; Darcy-Weisbach;

Levenberg-Marquardt; pipeline hydraulics.

Determinacion del diametro interior de tuberias a presion para sistemas de
agua potable utilizando redes neuronales artificiales
Resumen
El diametro en sistemas a presion de agua potable es posible determinarlo mediante
una ecuacion polinomica de quinto grado. Como variables de entrada se tiene: Q:

caudal (m%s), H: pérdida de carga (m); L: longitud de la tuberia (m); &: rugosidad
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(m), 9: viscosidad cinematica (m?/s) y Zk: sumatoria de coeficientes de pérdidas
menores (adimensional). Aplicado la ecuacion de la energia para un sistema
hidraulico compuesto por dos tanques conectados con una tuberia de diametro
constante y aceptando la ecuacion de Colebrook-White y la ecuacion de Darcy-
Weisbach se obtiene una expresién subdeterminada debido a que se establecen
mas incdgnitas que ecuaciones. Este problema se soluciona implementando un
bucle anidado para el coeficiente de friccion y el didmetro. Este articulo propone una
Red Neuronal Artificial (RNA) implementando el método de Retropropagacion
Levenberg-Marquardt para estimar el diametro a partir de la funcion de transferencia
log-sigmoidal, esto bajo condiciones estacionarias de flujo. El conjunto de las
sefales de entrenamiento esta conformado por 5,000 datos aleatorios que siguen
una distribucion normal, calculados en Visual Basic (®Excel). Los estadisticos
utilizados para la evaluacion de la red corresponden al error medio cuadratico, el
andlisis de regresién y la funcién de entropia cruzada. La arquitectura que demostré
un mejor redimento correspondié a una capa oculta con 25 neuronas (6-25-1)
presentando un MSE igual a 5.41E-6 y 9.98E+00 para el Coeficiente de Correlacion
de Pearson. La validacion cruzada del esquema neuronal se realiz6 a partir de 1,000
sefales de entrada independientes del conjunto de entrenamiento obteniendo MSE
igual 6.91E-6. La red neuronal propuesta calcula el diametro con un error relativo
igual a 0.01% con respecto a los valores obtenidos a partir de ®Epanet,
evidenciando la capacidad de generalizacion del sistema optimizado.

Palabras clave: Colebrook-White; Darcy-Weisbach; hidraulica de tuberias;

Levenberg-Marquardt; red neuronal artificial.

Determinacao do diametro interno de tubulacdes de presséo para sistemas
de dgua potavel usando redes neurais artificiais
Resumo
O diametro em sistemas de agua potavel pressurizada pode ser determinado por
meio de uma equacao polinomial de quinto grau. Como variaveis de entrada temos:
Q: vazao (m3/s), H: perda de carga (m); L: comprimento do tubo (m); €: rugosidade
(m), O: viscosidade cinematica (m2/s) e Zk: soma dos coeficientes de perdas
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menores (adimensional). Aplicando a equagdo de energia para um sistema
hidraulico composto por dois tanques conectados por uma tubulacdo de diametro
constante e aceitando a equacdo de Colebrook-White e a equacdo de Darcy-
Weisbach, obtém-se uma expressdo subdeterminada, pois se estabelecem mais
incégnitas do que equacdes. Este problema é resolvido implementando um loop
aninhado para o coeficiente de atrito e o diametro. Este artigo propde uma Rede
Neural Artificial (RNA) implementando o método Backpropagation de Levenberg-
Marquardt para estimar o diametro a partir da funcdo de transferéncia log-sigmoidal,
isto sob condi¢des de fluxo permanente. O conjunto de sinais de treinamento é
composto por 5.000 dados aleatérios que seguem uma distribuicdo normal,
calculados em Visual Basic (RExcel). As estatisticas utilizadas para a avaliacdo da
rede correspondem ao erro quadratico médio, a analise de regressao e a fungéo de
entropia cruzada. A arquitetura que apresentou melhor rendimento correspondeu a
uma camada oculta com 25 neurdnios (6-25-1) apresentando um MSE igual a
5,41E-6 e 9,98E+00 para o Coeficiente de Correlacdo de Pearson. A validacdo
cruzada do esquema neural foi realizada a partir de 1.000 sinais de entrada
independentes do conjunto de treinamento, obtendo-se MSE igual a 6,91E-6. A rede
neural proposta calcula o diametro com um erro relativo igual a 0,01% em relacao
aos valores obtidos do ®Epanet, mostrando a capacidade de generalizacdo do
sistema otimizado.

Palavras-chave: Colebrook-White; Darcy-Weisbach; Levenberg-Marquardt; rede

neural artificial; tubulac&o hidraulica.
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|. INTRODUCTION

In the design of hydraulic systems, the calculation of the diameter is fundamental.
This parameter determines the behavior of the pressure along the pipe. Likewise,
the average flow velocity will remain constant because there is no variation in the
pipe cross-section. This effect causes the system to have a single value for the
friction coefficient and Reynolds number. The design equation for single pipe
diameters (9) is obtained by accepting the governing equation for pressure-flow (2)
and setting the flow velocity in terms of the flow rate. This fifth-degree equation
presents two unknowns, the diameter and the friction coefficient. Therefore, a nested
loop must be established to solve both variables simultaneously. For the diameter,
it is suggested starting from a seed value equal to 0.254 m, and for the friction
coefficient, the recommended seed value is 0.015. These values accelerate the
convergence processes of the numerical method used. Once the corresponding
diameter is found, it should be approximated to the upper commercial diameter.
Consequently, if a single pipe is considered, which connects two reservoirs (Figure

1) and applies the Energy Equation (1) on the surface of the reservoirs, it is obtained.
Po Vi, P VE
Zl+7+£_22+y+29+H (1)
For a constant incompressible one-dimensional flow, the energy per unit weight
(Nm/N) generated by the hydraulic system (Figure 1) is defined by the Energy

2

Equation (1); where tank 1 has: z;: position head (m), %: pressure head (m), Z—lg:

velocity head (m), H: head loss (m). The head loss H is determined by the losses
caused by the friction between the pipe and the fluid; the losses generated by the

fittings. The Darcy-Weisbach equation (2) rules the head loss.

2
Where, hy: head loss (m); 1 friction coefficient; L: piping length (m); D: diameter (m);

V: average flow velocity (m/s); g: gravity (m/s?). For local or minor losses, we have,
=Xk 3)

Where, h;: minor losses (m); k: minor loss coefficient (dimensionless); V: average

flow velocity (m/s); g: gravity (m/s?). The principle of conservation of mass for a given
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control volume, where the flow has an incompressible performance and there is no
variation of the discharge as a function of time and space (steady-state), is
determined by the principle of continuity from the following expression:

Q= fA vdA = V1A, = V,A; (4)
Where, Q: Discharge (m?/s); V: Average flow velocity (m/s); A: Cross-sectional area

of the pipe (m?).

L >

Fig. 1. Simple piping scheme.

Thus, from the energy equation (1) and establishing the velocity in terms of the

streamflow, we have:

Lv? &
Z1—Zz—fgg—zkg=0 (5)
L Q? Q*
Z1 — Zy =fﬁ£+ZkA22g (6)
_ LQZ QZ
z =2 =f 290.25272D5 + 2k 290.25272D* (7)
z1—2,=H (8)

Design equation:
f(D) = 12.1026HD% — 2kQ?*D — fLQ?* =0 (9)

First derivative:

f'(D) = 60.513HD* — 2kQ? (10)
Newton-Raphson method:
f(Dn
Dypy1 =Dy — ﬁ (11)
5_ 2n_ 2
D, =D, — 12.1026HD°-XkQ?D—fLQ (12)

60.513HD*4-Xk(Q?2
The nested loop development (Figure 2) determines the solution of the equation (9).
For the single pipes diameter calculation, 75% of the total head loss of the system

is proposed as a seed value for the friction losses [1]. For this study, the input signals
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correspond to Q: discharge (m%s), H: head loss (m), L: pipe length (m), & pipe
roughness (m), 9: kinematic viscosity (m?/s), and Xk: summation of minor loss
coefficients (dimensionless). The output signal is determined by the diameter (m).
The equation proposed by Colebrook-White (13) was implemented to calculate the

friction coefficient (f).

— + 2log [‘S/—D+ 2l =0 (13)

JF 37  ReJfl

Where f: coefficient of friction (dimensionless factor), €: absolute roughness (m), D:
diameter (m), Re: Reynolds number (dimensionless factor). Similarly, the Newton-
Raphson method for the calculation of the friction coefficient is given by:

L o0 [S/D , 251
j— \/ﬁ g 3.7 Rem 14
fn+1 - fn - 2[—2.51 _1_5]1 ( )
_lf —15, % 2Re fn og(e)
2m /D, _2.51
37 ReIn

If two tanks connected by a pipe section are considered (Figure 1), and the total
head loss and the discharge conveyed by the pipe are known, it is possible to
determine the value of the internal diameter from equation (9). Likewise, [2] used the
Fixed-Point iteration method to calculate the diameter in pressurized piping systems.
Figure 2 presents the flowchart for the nested loop with two unknowns and six input

signals; the process achieves convergence with an approximation equal to 1E-12.
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Fig. 2. Flow chart for diameter design [3].

Il. Neuronal Structure

A. Data Processing

Using Visual Basic (®Excel), a routine is structured to calculate the diameter (D)

from the input signals (Q, H, L, &, 9, 2k). The code is created from equations (12)

and (14). The iteration shown in Table 2 was repeated 5,000 times from random data
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fitting a normal distribution, establishing the input-output matrix for this study. These

data are available at the following link (download data). The Domain of the input

variables varies from minimum to maximum values; Table 1 shows the ranges

established.
Table 1. Input variable ranges (inputs).
Discharge | Head Loss | Length | Roughness Kinematic Coef.
viscosity accessory
Q (m3/s) H (m) L (m) £ (m) Vis (m?/s) >k
Minimum | 0.000096 10 100 0.0000015 0.000000661 0
Maximum 0.475 50 500 0.00045 0.000001519 10

The following code made in Visual Basic (RExcel) generates an iterative loop for the
diameter and the friction coefficient. The seed values directly affect the convergence
process. In this sense, 0.015 is the seed value for the friction coefficient and 0.254
m for the diameter. If the seed values are far from the solution value, there is a
probability that the algorithm will diverge. Consequently, the proposed seed values
guarantee the convergence of the iterative method. The code outputs 200 iterations
for each diameter value and friction coefficient with an approximation of 1E-12 for
the objective function. The loop stops when it does not detect a numerical value in

the following grid cell to be iterated.

Dim i As Integer
Sub MacroD_f()
Fori=1To 10
Range("h11").Select
Do Until ActiveCell =™
ActiveCell.Offset(0, 1).GoalSeek Goal:=0, ChangingCell:=ActiveCell
ActiveCell.Offset(1, 0).Range("A1").Select
Loop
Range("011").Select
Do Until ActiveCell =""
ActiveCell.Offset(0, 1).GoalSeek Goal:=0, ChangingCell:=ActiveCell
ActiveCell.Offset(1, 0).Range("A1").Select
Loop Next i
End Sub
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Table 2 shows the results generated for the diameter calculation from the
nested loop. In order to explain the velocity as a discharge function and consider the
input data for head loss, pipe length, discharge, and the seed friction coefficient, a
fifth-degree equation is established. The initial equation solution determines the
value of the cross-sectional pipe area. Consequently, it is possible to calculate the
flow velocity. Once the speed is calculated, the Reynolds number and the estimated
friction coefficient are obtained. Then, the loop is generated until convergence of the
objective function is reached, both for the diameter and the friction coefficient
simultaneously. Usually, this convergence is reached in the fourth iteration with an
approximation equal to 1E-12. The method used to obtain the training signals for this
study corresponds to the numerical approach proposed by Newton-Raphson (12),
(14).

Table 2. Initial iteration of input signals.

f Q (m¥/s) H (m) L (m) >k D (m) V (m/s) u (m?s) Re € (m) f
1.500E-02 | 3.190E-01 | 5.0008E+01 | 1.887E+02 | 8E+00 | 2.40E-01 | 7.04E+00 | 1.416E-06 | 1.194E+06 | 3.24E-04 | 2.135E-02
2.135E-02 | 3.190E-01 | 5.0008E+01 | 1.887E+02 | 8E+00 | 2.52E-01 | 6.39E+00 | 1.416E-06 | 1.138E+06 | 3.24E-04 | 2.111E-02
2.111E-02 | 3.190E-01 | 5.0008E+01 | 1.887E+02 | 8E+00 | 2.51E-01 | 6.41E+00 | 1.416E-06 | 1.140E+06 | 3.24E-04 | 2.112E-02
2.112E-02 | 3.190E-01 | 5.0008E+01 | 1.887E+02 | 8E+00 | 2.51E-01 | 6.41E+00 | 1.416E-06 | 1.140E+06 | 3.24E-04 | 2.112E-02

B. Data Scale

We, as authors, chose to perform the neural model with the actual data without
scaling. Table 3 establishes that the statistical criteria are more favorable for the
unscaled data than the scaled data from the logarithm in base 10.

Table 3. Comparison of scaled data vs. actual data.

Scale No. of No. of Architecture R? MAE MSE SSE SAE BCE
hidden neurons per
layers layer
Logarithmic 1 25 6-25-1 9.98E+00 1.57E-03 1.79E-05 8.15E-02 7.1E+00 | 3.6E-01
Without 1 25 6-25-1 9.99E+00 9.71E-04 5.41E-6 2.71E-2 4.8E+00 | 1.2E+00
scale

C. Artificial Neural Network (ANN) Architecture
Due to the nonlinearity of the functions that estimate the diameter (12) and the
friction coefficient (14), it is feasible to estimate the output parameter through

optimization algorithms. Artificial neural networks can approximate any continuous
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nonlinear function independent of the function degree [4]. The implementation of
artificial intelligence techniques contributes to finding the minimum error surface
generated by the cost function. A neural structure created in Matlab (2021a) is
proposed (Figure 3) corresponding to 6 input signals (Q, H, L, & 9, k), a hidden
layer with 25 neurons, and an output signal for diameter estimation. The logsig
transfer function showed optimal results in terms of MSE and computational time
required to reach convergence. The Levenberg-Marquardt (trainlm) method is suited
to both the training data and the test data sets. The network weights are iteratively
adjusted from the error estimate [5] [6] describes the application of the Levenberg-
Marquardt in neural network systems for training. This algorithm has demonstrated
a higher training speed for the neural network [7]. Similarly, [8] proposes a neural
architecture of 5 input variables, a hidden layer with 36 neurons, and 10 output

parameters to classify the optimal commercial diameter for the hydraulic system.

Hidden Qutput
Input - | ] Bl Output
~ {Whs P—{Wihs ; )
> - ‘v(:ﬂj | o l / o— 9
6 ; o . 1
25 1

Fig. 3. Schematic diagram of neuronal architecture (6-25-1).

Table 4 indicates different neural structures tested for this study to obtain the lowest
value for the MSE; this value was achieved for the architecture (6-25-1) with an MSE
equal to 5.41E-6. It was found that increasing the number of hidden layers does not
guarantee a decrease in the MSE, and as a consequence, it does increase the
computational cost of the iterative process. The computational time for the (6-25-25-
25-1) scheme was 3 hours and 25 minutes. In contrast, the time required for the (6-
25-25-1) scheme was 15 minutes. Thus, neural models with several hidden layers
tend to overfit so that the model can predict the training data. However, for the
prediction of independent data, the overfitted neural model has shortcomings. The
most important property of a neural network is its ability to generalize and model new
input data [9].
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Table 4. Network topology for diameter calculation [logsig, trainim].

No. of No. of Architecture R? MAE MSE SSE SAE BCE

hidden neurons

layers per layer
1 2 6-2-1 9.84E+0 6.16E-03 7.64E-5 3.82E-1 | 30.3E+00 15 E+00
1 10 6-10-1 9.99E+0 1.67E-03 9.74E-6 4.87E-2 4.95E-02 4.63E-01
1 20 6-20-1 9.99E+0 | 1.28E-03 7.68E-6 | 3.84E-2 | 6.41E+00 | 4.47E-01
1 25 6-25-1 9.99E+0 9.71E-04 5.41E-6 2.71E-2 | 4.84E+00 | 1.25E+00
1 30 6-30-1 9.99E+0 | 9.96E-04 5.65E-6 | 2.82E-2 | 4.97E+00 | 8.54E-01
2 10 6-10-10-1 9.99E+0 9.11E-04 5.85E-6 2.93E-2 | 4.55E+00 | 1.48E-01
2 30 6-30-30-1 9.99E+0 | 1.08E-04 6.39E-6 | 3.19E-2 | 5.39E+00 | 2.25E-01
3 25 6-25-25-25-1 | 9.99E+0 | 1.09E-03 6.63E-6 | 3.31E-2 | 5.46E+00 | 2.17E-01

D. Neural Network Training

The Levenberg-Marquardt training function (trainlm) uses the second derivatives of
the cost function upgrading the convergence times [10]. The implementation of this
algorithm is feasible as long as the second derivative of the neural network weights
exists. Thus, the input signals are affected by the random weights and biases values
(16). Once this value is obtained, the log-sigmoid activation function (logsig) (15) is
implemented. This function implements the Jacobian matrix for the calculations. This
matrix is formed by the first-order partial derivatives of the function. The performance
for this function is measured through the MSE. The algorithm presents good
performance for escaping moderate local minima and oscillation problems. The

interval [0,1] determines the range of the corresponding function.

Fig. 4. Log sigmoid transfer function.

The following expression defines the log-sigmoid activation function (logsig):
1

a= (15)

T 14em

n=wp+> (16)
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Six neural architectures are proposed for the diameter in pressure piping systems
calculation. The lowest Pearson Correlation Coefficient was obtained for the scheme
(6-2-1) with an R equal to 0.99282; the computational time required for this scheme
was 4 minutes. Figure 5a presents the dispersion of the outputs for ANN (6-2-1).
However, for the arrangement (6-25-1), represented in Figure 5d, an R equal to
0.99939 indicates the best training and output signals fit; the computational time
required was approximately 10 minutes. The scheme (6-30-30-1) presented a similar
performance to the system (6-25-1). Nevertheless, this scheme composed of two
hidden layers considerably increased the computational time required to reach

convergence, approximately 3 hours and 25 minutes.

a) (6-2-1) b) (6-10-1) ¢) (6-15-1)

d) (6-25-1) e) (6-30-1) ) (6-30-30-1)

Fig. 5. ANN architectures.

Figure 6 shows the 3D irregular surface structured from the weights, the bias
parameter, and the sum of squared errors. The objective of the cost function is to

establish the minimum for this surface.
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6-25-1 6-25-1 6-25-1

Error Surface
——

Fig. 6. Error surface for ANN (6-25-1).

Figure 7a indicates the performance of the validation and training curve; the error
decreases as the number of epochs of the iterative process increases. If the MSE of
the validation curve starts to increase and distance itself from the training curve, the
model will overfit, which directly affects the generalization capability of the network.
Figure 7b presents the adaptation parameter mu used in the Levenberg-Marquardt
optimization process. For this study, the mu parameter corresponds to 1E-08 for

season 68.

(a) Seasons: 68, (6-25-1) (b) Seasons: 68, (6-25-1) (c) Seasons: 68, (6-25-1)

Fig. 7. Training status (6-25-1).

The data were divided into three sets using random indexes, training, validation, and
test, as represented in Figure 8. The straight line at 45° represents a perfect fit, i.e.,
the values of the estimated outputs are equal to the target values. Figure 8c indicates
the relationship between outcomes and targets for the test set. This study found a
linear relationship between the output signals and the objectives with a Pearson

Correlation Coefficient equal to 0.99946 for a neural scheme (6-25-1).
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a) (6-25-1) b) (6-25-1) c) (6-25-1)

Training: R=0.99949 Validation: R=0.99934 Test: R=0999486

&

éﬂ

+ 0.00046

* 1" Targe:

Output == 1*Targe: » 000027
%

Output ~= 1" Targe!l + -0.00025

Output
g,

Target Targot

Fig. 8. Training regression (6-25-1).

E. Validation

For the analysis of the network output signal and to validate the independent data
set, six statistics were considered: R (Pearson correlation coefficient), MAE (Mean
Absolute Error), MSE (Mean Squared Errors), SSE (Sum of Squared Errors), SAE
(Sum of Absolute Errors), BCE (Binary Cross Entropy). In order to establish a
representative spectrum associated with the independent data set, a set of 1,000
random data was structured for the test signals. Cross-validation allows comparing
the estimated signals with the target values from the independent data of the training
set. The error histogram presented in Figure 7c indicates a minimum standard
deviation with a mean tending to zero for the individual data; the histogram tends to
be symmetric around the average. The percentage difference of the MSE between
the training data and the independent data corresponds to 0.00015%, indicating the
generalization capability of the neural model.

Table 5. Cross-validation

Data No. of Architecture R? MAE MSE SSE SAE BCE
data
Training 5,000 6-25-1 9.99E+00 | 9.71E-04 5.41E-6 2.71E-2 4.84E+00 | 1.25E+00
Independent 1,000 6-25-1 9.98E+00 | 1.27E-03 6.91E-06 6.91E-03 1.27E+00 | 0.52E-01

The U.S. Environmental Protection Agency developed ®Epanet for the calculation
of pressurized piping systems. This system works with hydraulic simulation periods

from the drinking water distribution systems. It also models water quality within a
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pressurized network and can be used for any non-compressible fluid flowing under
pressure analysis. ®Epanet determines the flow rates through the pipes and the
values of the pressures at the nodes based on the principle of conservation of mass
and energy by implementing the gradient method proposed by Todini and Pilati
(1987). For the calculation of friction losses, three models are presented: Darcy-
Weisbach (D-W), Hazen-Williams (H-W), Chézy-Manning (C-M).

Similarly, the neural network was evaluated from the data shown in Table 6. The
results obtained were compared with the values calculated in ®Epanet, ®Excel, and
the application for the calculation of pressure pipes of the hydraulics online website,
accepting the Darcy Weisbach equation (2). For the first data in Table 6, the
modeling was performed in ®MatLab software. Two tanks were established (Figure
1), the first tank with a height above the water surface equal to 36.712 m, a fitting at
the inlet with a coefficient of 1, the main pipe with a diameter of 0.2428 m, a length
equal to 104.31 m, a loss coefficient per fitting equal to 1 at the outlet, a tank at the
end with zero height, the kinematic viscosity corresponds to 0.000001404 m2/s, and
the roughness of the pipe equals to 0.0002574 m. The model in ®Epanet obtained
a flow rate equal to 0.38109 m3/s, with a velocity of 8.23 m/s. The results obtained
in ®Epanet, ®Excel, and the website validate the values calculated by ANN (6-25-
1). According to the hydraulic calculation performed in ®Epanet, the velocity remains
constant because the system does not present a variation of the pipe cross-section.
This performance causes the Reynolds number and the friction coefficient to remain

constant along the length of the pipe.

Table 6. ANN validation, Epanet, Excel, and web page.

Input Output
# Q (m¥/s) H (m) L (m) e (m) u (m?/s) Tk Diameter (m)
RNA (6-25-2) | ®Epanet | ®Excel Péagina Web
(www.edgarladino.com)

1 3.81E-01 3.67E+01 | 1.04E+02 | 2.57E-04 | 1.40E-06 | 2E+00 2.42E-01 2.42E-01 | 2.42E-01 2.42E-01
2 | 4.6588E-01 | 3.19E+01 | 1.05E+02 | 1.46E-04 | 1.39E-06 | 3E+00 2.72E-01 2.71E-01 | 2.71E-01 2.71E-01
3 | 1.618E-01 | 1.31E+01 | 1.33E+02 | 4.74E-05 | 1.24E-06 | 4E+00 2.17E-01 2.16E-01 | 2.16E-01 2.16E-01
4| 2.392E-01 | 1.10E+01 | 1.01E+02 | 1.83E-04 | 1.13E-06 | 2E+00 2.52E-01 2.52E-01 | 2.52E-01 2.52E-01
5 | 3.535E-01 | 3.03E+01 | 1.55E+02 | 2.35E-04 | 7.76E-07 | 9E+00 2.85E-01 2.84E-01 | 2.84E-01 2.84E-01

In addition, the generalization capability of the neural model is evidenced by the

estimation of 50 independent data. These data show no dependence on the training,
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test, and validation data set. Figure 10 shows the actual data (circles) obtained from
equations (12), (14), and the ANN estimated data (crosses). The Pearson
Correlation Coefficient obtained was equal to 9.9742E-1 showing a linear
relationship between the input signals and the estimated signals. The root average
squared error for the 50 data corresponded to 3.65E-05. The cross-entropy obtained
was equal to 5.504E-1, which establishes a lower uncertainty for the probability

distribution.

Q=3.3E-01 H=3.67E+01 L=1.04E+02 e=2.57E-04 u=1.40E-06 Zk=2E+00 D=242E-01

: (m'/s)
1 22=0¢
3 L=104.3t1m 4 10 oy
| e , - - -
381.09 381.09
[ L
Velecity
201 (m/s)
o1¢ z1=36.711m

L=104.311m A k2
2. 8.23 B.23 8.23

L I
L ]

Fig. 9. Discharge — speed.

Finally, Figure 10 shows the generalization capability of the neural network (6-25-1)
to estimate the theoretical diameter in pressurized pipes. This study demonstrated

the potential of artificial neural networks to solve nonlinear systems.

Scatter plot Patterns vs. Estimated ANNs Regression Patterns vs. Estimated ANNs

0.3¢ : R=0.99742

Qutput ~=1*Target + -0,009

Target
Fig. 10. Diameter — Head Loss. Patterns — Estimated ANNs.
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[Il. CONCLUSIONS

The best performing architecture corresponded to a hidden layer with 25 neurons (6-
25-1), presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson
Correlation Coefficient. The cross-validation of the neural scheme was performed
from 1,000 independent input signals of the training set, obtaining an MSE equal to
6.91E-6. This validation demonstrated the generalization capability of the proposed
neural arrangement for the theoretical diameter in pressurized piping systems
estimation.

It was found that increasing the number of hidden layers does not guarantee a
decrease in the MSE and increases the computational cost of the iterative process.
Similarly, increasing the number of hidden layers and neurons can generate
overfitting of the input signals, limiting the model’s capacity in the generalization
process. Finally, this study demonstrated the potential of artificial neural networks to

solve nonlinear systems.
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Nomenclature
Symbol Unit Parameter
D m Diameter
€ m Roughness
f Dimensionless factor Coefficient of friction
g m/s? Gravity
H m Total head loss
i m Friction loss
hi m Accessory pressure drop
J m/m Unit loss
Kk Dimensionless factor Loss coefficient per fitting
L m Length
LGH m Hydraulic gradient line
LE Nm/N Energy line
m.c.a m Water column meter
P m Pressure
Po m Atmospheric pressure
Re Dimensionless factor Reynolds number
\ m/s Velocity
ya m Height
y N/m3 Specific gravity
v m?/s Kinematic viscosity
Abbreviations
BCE Binary Cross-Entropy
MAE Mean Absolute Error
MSE Mean Square Error
EL Energy Line
HGL Hydraulic Gradient Line
R Pearson correlation coefficient
ANN  Artificial Neural Network
ASE  Absolute Sum of Errors
SSE  Sum of Squared Errors

Logsig Log-sigmoid activation function
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Appendix A. Coding of the ANN model for Matlab (Version 2021a).

close all; clear all; clc; format long

% Optimizacidén | MatLab| Edgar O. Ladino M.| César A. Garcia U. | Ingenieria Civil
% Universidad Distrital Francisco José de Caldas

% Facultad Tecnolbgica

% Bogota | Colombia

%

% ====== C4&lculo de didmetro en tuberias a presidn =======
% Artificial neural networks

% 1. Importar dataset 2,000 datos

Q.
I

csvread('DataSet D 5000 RNA.csv'); %Archivo plano (csv)

o

o°
\S)

Definicién matriz p (Inputs); Vector t (Outputs)

d(:,1:6)'; $Matriz p: Transpuesta de la columna 1, 2, 3, 4, 5y 6 de la matriz d

(g e}
Il

d(:,7)"'; $Matriz t: Transpuesta de la columna 7 de la matriz d

o

o

3. Importar dataset matriz de prueba (Test) 1,000 datos
test = csvread('DataSet D RNA Test H35.csv'); %Archivo plano (csv)

% 4. Definicién matriz test p (Inputs) 5,000 datos

test p = test(:,1:6)"'; %Matriz p: Transpuesta de la columna 1 y 2 de la matriz test
test pD = test(:,7)'; %Matriz p: Transpuesta de la columna 7 de la matriz test
test pH = test(:,2)'; %Matriz p: Transpuesta de la columna 2 de la matriz test
test pf = test(:,7)'; %Matriz p: Transpuesta de la columna 7 de la matriz test

<

% 5. Arquitectura de la red neuronal

net = fitnet(25); %feedforwardnet; patternnet; network; # neuronas
net.layers{l}.transferFcn = 'logsig'; %logsig; hardlim, tansig, purelin

net.performFcn= 'mse'; S%mse; crossentropy; mae; msereg

net.trainFcn = 'trainlm'; $Entrenamiento: trainlm backpropagation; trainbr; traingd;
trainrp...

net.divideFcn = 'dividerand'; %$Divisién: dividerand; divideblock; divideint; divideind
net.trainParam.epochs = 6000; %Controla el numero de epocas

[net, tr] = train(net,p,t); %Entrenamiento de la red

view (net) %Grafica esquema de la red

y = net(p); %$Funcidén de la red

y test = net(test p); $Funcién de la red test 2,100 datos
mse_test=1/1000* (test_pf-y test)."2;

classes = vec2ind(y);
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5

6. Graficas rendimiento de la red
figure;

plottrainstate (tr)

figure;

plotperform(tr)

figure;

plotregression(t,y)

figure;

plotregression(test pf,y test)

% 7. Estimacidén del error

e = t-y; %y (entrenamiento) - y (Estimado)
figure;

ploterrhist (e, 'bins',30) $Histograma de errores
R = corrcoef (t,y) %$Coeficientes de correlacidn

MAE = mae (e) %mae: Error absoluto medio

MSE = immse(t,y) $Error medio cuadratico

SSE = sse(net,t,y,1l) $%$sse: Error de suma cuadrada

SAE = sae(net,t,y) %Suma absoluta de errores

BCE = crossentropy(net,t,y, {1}, 'regularization',0.1)%Entropia cruzada

o
S

% 8. Estimacién del error datos de prueba (Test 2000)

e _test = test pf-y test; %y (entrenamiento) - y (Estimado)
figure;

ploterrhist (e _test, 'bins',30) %Histograma de errores

R_test = corrcoef (test pf,y test); %Coeficientes de correlacidn
MAE test = mae(e_test) %mae: Error absoluto medio

MSE test = immse (test pf,y test) %Error medio cuadratico

SSE_test = sse(net,test pf,y test,1l) %sse: Error de suma cuadrada
SAE test = sae(net,test pf,y test) %Suma absoluta de errores

BCE test = crossentropy(net,test pf,y test, {1}, 'regularization',0.1)%Entropia cruzada

% 9. Pesos y bias

wl = net.IW{l}; %Pesos de la capa de entrada a oculta
w2 = net.LW{2}; %Pesos de la capa oculta a salida

bl = net.b{l}; %Sesgo de entrada a la capa oculta

b2 = net.b{2}; %Sesgo de la capa oculta a la salida

% 10. Validacién

input = [0.353547;30.337191;155.845532;0.0002357;0.000000776;9]% Datos de prueba
output Diametro = sim(net, input)*Dato estimado

D Real=0.2849252

D Error Absoluto=D Real-output Diametro
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D Error Relativo=abs((D Real-output Diametro)./D Real)*100

o
S

% 11. Grafica 3D: Superficie de error

figure;

wv = -4:0.4:4; $Limites de la grilla; Tamafio del cuadrante

bv = wv;

ES = errsurf(y,t,wv,bv, 'tansig'); %y(Datos predecidos); t(Datos objetivos)

plotes (wv,bv,ES, [60 301)

% 12. Grafica 3D: Superficie de error MSE

b
I

= test pD;

y = test_pH;

z = mse_test;

figure;

scatter3(x',y',z"', '"MarkerEdgeColor', 'k', '"MarkerFaceColor', [0 .75 .75])
view (-30,10)

xlabel ('Perdida de carga (m)")

ylabel ('Longitud tuberia (m)"'")

zlabel ('Error medio cuadréatico')

% 13. Grafica puntos de disprsién H= 35 m
figure;

H50= test(:,2);

D50=test (:,7);

sz = 90;

scatter (H50,D50,sz, '0o")

xlabel ('Carga hidraulica (m)')
ylabel ('Diametro (m) ")

hold on

H50 test= test(:,2);

D50 test=(y test)';

sz = 70;

scatter (H50_ test, D50 test,sz,'+")
hold on
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