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Abstract 

The fifth-degree polynomial equation determines the diameter in pressurized 

drinking water systems. The input variables are Q: flow (m3/s), H: pressure drop (m); 

L: pipe length (m); ε: roughness (m), ϑ: kinematic viscosity (m2/s), and Ʃk: sum of 

minor loss coefficients (dimensionless). After applying the energy equation for a 

hydraulic system composed of two tanks connected to a pipe of constant diameter 

and accepting the Colebrook-White and the Darcy-Weisbach equations, an 

undetermined expression is obtained since more unknowns than equations are 

established. This problem is solved by implementing a nested loop for the coefficient 

of friction and the diameter. This article proposes an Artificial Neural Network (ANN) 

implementing the Levenberg-Marquardt backpropagation method to estimate the 

diameter from the log-sigmoidal transfer function under stationary flow conditions. 

The training signals set consists of 5,000 random data that follow a normal 

distribution, calculated in Visual Basic (®Excel). The statistics used for the network 

evaluation correspond to the mean square error, the regression analysis, and the 

cross-entropy function. The architecture with the best performance had a hidden 

layer with 25 neurons (6-25-1) presenting an MSE equal to 5.41E-6 and 9.98E+00 

for the Pearson Correlation Coefficient. The cross-validation of the neural scheme 

was carried out from 1,000 independent input signals from the training set, obtaining 

an MSE equal to 6.91E-6. The proposed neural network calculates the diameter with 

a relative error equal to 0.01% concerning the values obtained with ®Epanet, 

evidencing the generalizability of the optimized system. 

Keywords: Artificial Neural Network; Colebrook-White; Darcy-Weisbach; 

Levenberg-Marquardt; pipeline hydraulics. 

 

Determinación del diámetro interior de tuberías a presión para sistemas de 

agua potable utilizando redes neuronales artificiales 

Resumen 

El diámetro en sistemas a presión de agua potable es posible determinarlo mediante 

una ecuación polinómica de quinto grado. Como variables de entrada se tiene: Q: 

caudal (m3/s), H: pérdida de carga (m); L: longitud de la tubería (m); ε: rugosidad 
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(m), 𝜗: viscosidad cinemática (m2/s) y Ʃk: sumatoria de coeficientes de pérdidas 

menores (adimensional). Aplicado la ecuación de la energía para un sistema 

hidráulico compuesto por dos tanques conectados con una tubería de diámetro 

constante y aceptando la ecuación de Colebrook-White y la ecuación de Darcy-

Weisbach se obtiene una expresión subdeterminada debido a que se establecen 

más incógnitas que ecuaciones. Este problema se soluciona implementando un 

bucle anidado para el coeficiente de fricción y el diámetro. Este artículo propone una 

Red Neuronal Artificial (RNA) implementando el método de Retropropagación 

Levenberg-Marquardt para estimar el diámetro a partir de la función de transferencia 

log-sigmoidal, esto bajo condiciones estacionarias de flujo. El conjunto de las 

señales de entrenamiento está conformado por 5,000 datos aleatorios que siguen 

una distribución normal, calculados en Visual Basic (®Excel). Los estadísticos 

utilizados para la evaluación de la red corresponden al error medio cuadrático, el 

análisis de regresión y la función de entropía cruzada. La arquitectura que demostró 

un mejor redimento correspondió a una capa oculta con 25 neuronas (6-25-1) 

presentando un MSE igual a 5.41E-6 y 9.98E+00 para el Coeficiente de Correlación 

de Pearson. La validación cruzada del esquema neuronal se realizó a partir de 1,000 

señales de entrada independientes del conjunto de entrenamiento obteniendo MSE 

igual 6.91E-6. La red neuronal propuesta calcula el diámetro con un error relativo 

igual a 0.01% con respecto a los valores obtenidos a partir de ®Epanet, 

evidenciando la capacidad de generalización del sistema optimizado. 

Palabras clave: Colebrook-White; Darcy-Weisbach; hidráulica de tuberías; 

Levenberg-Marquardt; red neuronal artificial. 

 

Determinação do diâmetro interno de tubulações de pressão para sistemas 

de água potável usando redes neurais artificiais 

Resumo 

O diâmetro em sistemas de água potável pressurizada pode ser determinado por 

meio de uma equação polinomial de quinto grau. Como variáveis de entrada temos: 

Q: vazão (m3/s), H: perda de carga (m); L: comprimento do tubo (m); ε: rugosidade 

(m), ϑ: viscosidade cinemática (m2/s) e Ʃk: soma dos coeficientes de perdas 
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menores (adimensional). Aplicando a equação de energia para um sistema 

hidráulico composto por dois tanques conectados por uma tubulação de diâmetro 

constante e aceitando a equação de Colebrook-White e a equação de Darcy-

Weisbach, obtém-se uma expressão subdeterminada, pois se estabelecem mais 

incógnitas do que equações. Este problema é resolvido implementando um loop 

aninhado para o coeficiente de atrito e o diâmetro. Este artigo propõe uma Rede 

Neural Artificial (RNA) implementando o método Backpropagation de Levenberg-

Marquardt para estimar o diâmetro a partir da função de transferência log-sigmoidal, 

isto sob condições de fluxo permanente. O conjunto de sinais de treinamento é 

composto por 5.000 dados aleatórios que seguem uma distribuição normal, 

calculados em Visual Basic (®Excel). As estatísticas utilizadas para a avaliação da 

rede correspondem ao erro quadrático médio, à análise de regressão e à função de 

entropia cruzada. A arquitetura que apresentou melhor rendimento correspondeu a 

uma camada oculta com 25 neurônios (6-25-1) apresentando um MSE igual a 

5,41E-6 e 9,98E+00 para o Coeficiente de Correlação de Pearson. A validação 

cruzada do esquema neural foi realizada a partir de 1.000 sinais de entrada 

independentes do conjunto de treinamento, obtendo-se MSE igual a 6,91E-6. A rede 

neural proposta calcula o diâmetro com um erro relativo igual a 0,01% em relação 

aos valores obtidos do ®Epanet, mostrando a capacidade de generalização do 

sistema otimizado. 

Palavras-chave: Colebrook-White; Darcy-Weisbach; Levenberg-Marquardt; rede 

neural artificial; tubulação hidráulica. 
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I. INTRODUCTION 

In the design of hydraulic systems, the calculation of the diameter is fundamental. 

This parameter determines the behavior of the pressure along the pipe. Likewise, 

the average flow velocity will remain constant because there is no variation in the 

pipe cross-section. This effect causes the system to have a single value for the 

friction coefficient and Reynolds number. The design equation for single pipe 

diameters (9) is obtained by accepting the governing equation for pressure-flow (2) 

and setting the flow velocity in terms of the flow rate. This fifth-degree equation 

presents two unknowns, the diameter and the friction coefficient. Therefore, a nested 

loop must be established to solve both variables simultaneously. For the diameter, 

it is suggested starting from a seed value equal to 0.254 m, and for the friction 

coefficient, the recommended seed value is 0.015. These values accelerate the 

convergence processes of the numerical method used. Once the corresponding 

diameter is found, it should be approximated to the upper commercial diameter. 

Consequently, if a single pipe is considered, which connects two reservoirs (Figure 

1) and applies the Energy Equation (1) on the surface of the reservoirs, it is obtained. 

𝑧1 +
𝑃1

𝛾
+

𝑉1
2

2𝑔
= 𝑧2 +

𝑃2

𝛾
+

𝑉2
2

2𝑔
+ 𝐻    (1) 

For a constant incompressible one-dimensional flow, the energy per unit weight 

(Nm/N) generated by the hydraulic system (Figure 1) is defined by the Energy 

Equation (1); where tank 1 has: 𝑧1: position head (m), 
𝑃1

𝛾
: pressure head (m), 

𝑉1
2

2𝑔
: 

velocity head (m), 𝐻: head loss (m). The head loss H is determined by the losses 

caused by the friction between the pipe and the fluid; the losses generated by the 

fittings.  The Darcy-Weisbach equation (2) rules the head loss. 

ℎ𝑓 = 𝑓
𝐿

𝐷

𝑉2

2𝑔
      (2) 

Where, ℎ𝑓: head loss (m); 𝑓: friction coefficient; 𝐿: piping length (m); 𝐷: diameter (m); 

𝑉: average flow velocity (m/s); 𝑔: gravity (m/s2). For local or minor losses, we have, 

ℎ𝑙 = ∑ 𝑘
𝑉2

2𝑔
      (3) 

Where, ℎ𝑙: minor losses (m); 𝑘: minor loss coefficient (dimensionless); 𝑉: average 

flow velocity (m/s); 𝑔: gravity (m/s2). The principle of conservation of mass for a given 
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control volume, where the flow has an incompressible performance and there is no 

variation of the discharge as a function of time and space (steady-state), is 

determined by the principle of continuity from the following expression: 

𝑄 = ∫ 𝑣𝑑𝐴
𝐴

= 𝑉1𝐴1 = 𝑉2𝐴2    (4) 

Where, 𝑄: Discharge (m3/s); 𝑉: Average flow velocity (m/s); 𝐴: Cross-sectional area 

of the pipe (m2). 

 

 

Fig. 1. Simple piping scheme. 

 

Thus, from the energy equation (1) and establishing the velocity in terms of the 

streamflow, we have: 

𝑧1 − 𝑧2 − 𝑓
𝐿

𝐷

𝑉2

2𝑔
− ∑ 𝑘

𝑉2

2𝑔
= 0   (5) 

𝑧1 − 𝑧2 = 𝑓
𝐿

𝐴2𝐷

𝑄2

2𝑔
+ Ʃ𝑘

𝑄2

𝐴22𝑔
    (6) 

𝑧1 − 𝑧2 = 𝑓
𝐿𝑄2

2𝑔0.252𝜋2𝐷5 + Ʃ𝑘
𝑄2

2𝑔0.252𝜋2𝐷4  (7) 

𝑧1 − 𝑧2 = 𝐻      (8) 

Design equation: 

𝑓(𝐷) = 12.1026𝐻𝐷5 − Ʃ𝑘𝑄2𝐷 − 𝑓𝐿𝑄2 = 0 (9) 

First derivative: 

𝑓´(𝐷) = 60.513𝐻𝐷4 − Ʃ𝑘𝑄2   (10) 

Newton-Raphson method: 

𝐷𝑛+1 = 𝐷𝑛 −
𝑓(𝐷𝑛)

𝑓´(𝐷𝑛)
     (11) 

𝐷𝑛+1 = 𝐷𝑛 −
12.1026𝐻𝐷5−Ʃ𝑘𝑄2𝐷−𝑓𝐿𝑄2

60.513𝐻𝐷4−Ʃ𝑘𝑄2   (12) 

The nested loop development (Figure 2) determines the solution of the equation (9). 

For the single pipes diameter calculation, 75% of the total head loss of the system 

is proposed as a seed value for the friction losses [1]. For this study, the input signals 
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correspond to Q: discharge (m3/s), H: head loss (m), L: pipe length (m), ε: pipe 

roughness (m), 𝜗: kinematic viscosity (m2/s), and Ʃk: summation of minor loss 

coefficients (dimensionless). The output signal is determined by the diameter (m). 

The equation proposed by Colebrook-White (13) was implemented to calculate the 

friction coefficient (f). 

1

√𝑓
+ 2𝑙𝑜𝑔 [

𝜀/𝐷

3.7
+

2.51

𝑅𝑒√𝑓
] = 0    (13) 

Where f: coefficient of friction (dimensionless factor), ε: absolute roughness (m), D: 

diameter (m), Re: Reynolds number (dimensionless factor). Similarly, the Newton-

Raphson method for the calculation of the friction coefficient is given by: 

𝑓𝑛+1 = 𝑓𝑛 −

1

√𝑓𝑛
+2𝑙𝑜𝑔[

𝜀/𝐷

3.7
+

2.51

𝑅𝑒√𝑓𝑛
]

−
1

2
𝑓𝑛

−1.5+
2[

−2.51
2𝑅𝑒

𝑓𝑛
−1.5]log (𝑒)

[
𝜀/𝐷
3.7

+
2.51

𝑅𝑒√𝑓𝑛
]

 

  (14) 

If two tanks connected by a pipe section are considered (Figure 1), and the total 

head loss and the discharge conveyed by the pipe are known, it is possible to 

determine the value of the internal diameter from equation (9). Likewise, [2] used the 

Fixed-Point iteration method to calculate the diameter in pressurized piping systems. 

Figure 2 presents the flowchart for the nested loop with two unknowns and six input 

signals; the process achieves convergence with an approximation equal to 1E-12. 
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Fig. 2. Flow chart for diameter design [3]. 

 

II. Neuronal Structure 

 

A. Data Processing 

Using Visual Basic (®Excel), a routine is structured to calculate the diameter (D) 

from the input signals (Q, H, L, ε, 𝜗, Ʃk). The code is created from equations (12) 

and (14). The iteration shown in Table 2 was repeated 5,000 times from random data 
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fitting a normal distribution, establishing the input-output matrix for this study. These 

data are available at the following link (download data). The Domain of the input 

variables varies from minimum to maximum values; Table 1 shows the ranges 

established. 

 

Table 1. Input variable ranges (inputs). 
 

Discharge Head Loss  Length Roughness Kinematic 
viscosity 

Coef. 
accessory 

Q (m3/s) H (m) L (m) ε (m) Vis (m2/s) Ʃk 

Minimum 0.000096 10 100 0.0000015 0.000000661 0 

Maximum 0.475 50 500 0.00045 0.000001519 10 

 

The following code made in Visual Basic (®Excel) generates an iterative loop for the 

diameter and the friction coefficient. The seed values directly affect the convergence 

process. In this sense, 0.015 is the seed value for the friction coefficient and 0.254 

m for the diameter. If the seed values are far from the solution value, there is a 

probability that the algorithm will diverge. Consequently, the proposed seed values 

guarantee the convergence of the iterative method. The code outputs 200 iterations 

for each diameter value and friction coefficient with an approximation of 1E-12 for 

the objective function. The loop stops when it does not detect a numerical value in 

the following grid cell to be iterated. 

 

Dim i As Integer 

Sub MacroD_f() 

For i = 1 To 10 

  Range("h11").Select 

    Do Until ActiveCell = "" 

      ActiveCell.Offset(0, 1).GoalSeek Goal:=0, ChangingCell:=ActiveCell 

      ActiveCell.Offset(1, 0).Range("A1").Select 

 Loop 

    Range("o11").Select 

      Do Until ActiveCell = "" 

      ActiveCell.Offset(0, 1).GoalSeek Goal:=0, ChangingCell:=ActiveCell 

      ActiveCell.Offset(1, 0).Range("A1").Select 

 Loop Next i 

End Sub 
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Table 2 shows the results generated for the diameter calculation from the 

nested loop. In order to explain the velocity as a discharge function and consider the 

input data for head loss, pipe length, discharge, and the seed friction coefficient, a 

fifth-degree equation is established. The initial equation solution determines the 

value of the cross-sectional pipe area. Consequently, it is possible to calculate the 

flow velocity. Once the speed is calculated, the Reynolds number and the estimated 

friction coefficient are obtained. Then, the loop is generated until convergence of the 

objective function is reached, both for the diameter and the friction coefficient 

simultaneously. Usually, this convergence is reached in the fourth iteration with an 

approximation equal to 1E-12. The method used to obtain the training signals for this 

study corresponds to the numerical approach proposed by Newton-Raphson (12), 

(14). 

 

Table 2. Initial iteration of input signals. 

f Q (m3/s) H (m) L (m) Ʃk D (m) V (m/s) υ (m2/s) Re ε (m) f´ 

1.500E-02 3.190E-01 5.0008E+01 1.887E+02 8E+00 2.40E-01 7.04E+00 1.416E-06 1.194E+06 3.24E-04 2.135E-02 

2.135E-02 3.190E-01 5.0008E+01 1.887E+02 8E+00 2.52E-01 6.39E+00 1.416E-06 1.138E+06 3.24E-04 2.111E-02 

2.111E-02 3.190E-01 5.0008E+01 1.887E+02 8E+00 2.51E-01 6.41E+00 1.416E-06 1.140E+06 3.24E-04 2.112E-02 

2.112E-02 3.190E-01 5.0008E+01 1.887E+02 8E+00 2.51E-01 6.41E+00 1.416E-06 1.140E+06 3.24E-04 2.112E-02 

 

B. Data Scale  

We, as authors, chose to perform the neural model with the actual data without 

scaling. Table 3 establishes that the statistical criteria are more favorable for the 

unscaled data than the scaled data from the logarithm in base 10. 

 

Table 3. Comparison of scaled data vs. actual data. 

Scale No. of 
hidden 
layers 

No. of 
neurons per 

layer 

Architecture R2 MAE MSE SSE SAE BCE 

Logarithmic 1 25 6-25-1 9.98E+00 1.57E-03 1.79E-05 8.15E-02 7.1E+00 3.6E-01 

Without 
scale 

1 25 6-25-1 9.99E+00 9.71E-04 5.41E-6 2.71E-2 4.8E+00 1.2E+00 

 

C. Artificial Neural Network (ANN) Architecture 

Due to the nonlinearity of the functions that estimate the diameter (12) and the 

friction coefficient (14), it is feasible to estimate the output parameter through 

optimization algorithms. Artificial neural networks can approximate any continuous 
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nonlinear function independent of the function degree [4]. The implementation of 

artificial intelligence techniques contributes to finding the minimum error surface 

generated by the cost function. A neural structure created in Matlab (2021a) is 

proposed (Figure 3) corresponding to 6 input signals (Q, H, L, ε, 𝜗, Ʃk), a hidden 

layer with 25 neurons, and an output signal for diameter estimation. The logsig 

transfer function showed optimal results in terms of MSE and computational time 

required to reach convergence. The Levenberg-Marquardt (trainlm) method is suited 

to both the training data and the test data sets. The network weights are iteratively 

adjusted from the error estimate [5] [6] describes the application of the Levenberg-

Marquardt in neural network systems for training. This algorithm has demonstrated 

a higher training speed for the neural network [7]. Similarly, [8] proposes a neural 

architecture of 5 input variables, a hidden layer with 36 neurons, and 10 output 

parameters to classify the optimal commercial diameter for the hydraulic system. 

 

 

Fig. 3. Schematic diagram of neuronal architecture (6-25-1). 

 

Table 4 indicates different neural structures tested for this study to obtain the lowest 

value for the MSE; this value was achieved for the architecture (6-25-1) with an MSE 

equal to 5.41E-6. It was found that increasing the number of hidden layers does not 

guarantee a decrease in the MSE, and as a consequence, it does increase the 

computational cost of the iterative process. The computational time for the (6-25-25-

25-1) scheme was 3 hours and 25 minutes. In contrast, the time required for the (6-

25-25-1) scheme was 15 minutes. Thus, neural models with several hidden layers 

tend to overfit so that the model can predict the training data. However, for the 

prediction of independent data, the overfitted neural model has shortcomings. The 

most important property of a neural network is its ability to generalize and model new 

input data [9]. 
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Table 4. Network topology for diameter calculation [logsig, trainlm]. 

No. of 
hidden 
layers 

No. of 
neurons 
per layer 

Architecture R2 MAE MSE SSE SAE BCE 

1 2 6-2-1 9.84E+0 6.16E-03 7.64E-5 3.82E-1 30.3E+00 15 E+00 

1 10 6-10-1 9.99E+0 1.67E-03 9.74E-6 4.87E-2 4.95E-02 4.63E-01 

1 20 6-20-1 9.99E+0 1.28E-03 7.68E-6 3.84E-2 6.41E+00 4.47E-01 

1 25 6-25-1 9.99E+0 9.71E-04 5.41E-6 2.71E-2 4.84E+00 1.25E+00 

1 30 6-30-1 9.99E+0 9.96E-04 5.65E-6 2.82E-2 4.97E+00 8.54E-01 

2 10 6-10-10-1 9.99E+0 9.11E-04 5.85E-6 2.93E-2 4.55E+00 1.48E-01 

2 30 6-30-30-1 9.99E+0 1.08E-04 6.39E-6 3.19E-2 5.39E+00 2.25E-01 

3 25 6-25-25-25-1 9.99E+0 1.09E-03 6.63E-6 3.31E-2 5.46E+00 2.17E-01 

 

D. Neural Network Training 

The Levenberg-Marquardt training function (trainlm) uses the second derivatives of 

the cost function upgrading the convergence times [10]. The implementation of this 

algorithm is feasible as long as the second derivative of the neural network weights 

exists. Thus, the input signals are affected by the random weights and biases values 

(16). Once this value is obtained, the log-sigmoid activation function (logsig) (15) is 

implemented. This function implements the Jacobian matrix for the calculations. This 

matrix is formed by the first-order partial derivatives of the function. The performance 

for this function is measured through the MSE. The algorithm presents good 

performance for escaping moderate local minima and oscillation problems. The 

interval [0,1] determines the range of the corresponding function. 

 

 

Fig. 4. Log sigmoid transfer function. 

 

The following expression defines the log-sigmoid activation function (logsig): 

𝑎 =
1

1+𝑒−𝑛      (15) 

𝑛 = 𝑤𝑝 + 𝑏      (16) 
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Six neural architectures are proposed for the diameter in pressure piping systems 

calculation. The lowest Pearson Correlation Coefficient was obtained for the scheme 

(6-2-1) with an R equal to 0.99282; the computational time required for this scheme 

was 4 minutes. Figure 5a presents the dispersion of the outputs for ANN (6-2-1). 

However, for the arrangement (6-25-1), represented in Figure 5d, an R equal to 

0.99939 indicates the best training and output signals fit; the computational time 

required was approximately 10 minutes. The scheme (6-30-30-1) presented a similar 

performance to the system (6-25-1). Nevertheless, this scheme composed of two 

hidden layers considerably increased the computational time required to reach 

convergence, approximately 3 hours and 25 minutes. 

 

a) (6-2-1) b) (6-10-1) c) (6-15-1) 

   

d) (6-25-1) e) (6-30-1) f) (6-30-30-1) 

   

Fig. 5. ANN architectures. 

 

Figure 6 shows the 3D irregular surface structured from the weights, the bias 

parameter, and the sum of squared errors. The objective of the cost function is to 

establish the minimum for this surface. 
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6-25-1 6-25-1 6-25-1 

    

Fig. 6. Error surface for ANN (6-25-1). 

 

Figure 7a indicates the performance of the validation and training curve; the error 

decreases as the number of epochs of the iterative process increases. If the MSE of 

the validation curve starts to increase and distance itself from the training curve, the 

model will overfit, which directly affects the generalization capability of the network. 

Figure 7b presents the adaptation parameter mu used in the Levenberg-Marquardt 

optimization process. For this study, the mu parameter corresponds to 1E-08 for 

season 68. 

 

(a) Seasons: 68, (6-25-1) (b) Seasons: 68, (6-25-1)  (c) Seasons: 68, (6-25-1) 

   

Fig. 7. Training status (6-25-1). 

 

The data were divided into three sets using random indexes, training, validation, and 

test, as represented in Figure 8. The straight line at 45° represents a perfect fit, i.e., 

the values of the estimated outputs are equal to the target values. Figure 8c indicates 

the relationship between outcomes and targets for the test set. This study found a 

linear relationship between the output signals and the objectives with a Pearson 

Correlation Coefficient equal to 0.99946 for a neural scheme (6-25-1). 

https://doi.org/10.19053/01211129.v30.n56.2021.14037


Cesar-Augusto García-Ubaque; Edgar-Orlando Ladino-Moreno; María-Camila García-Vaca 

 

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (59), e14037, January-March 2022. Tunja-Boyacá, 
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.  

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.14037    

 

 

a) (6-25-1) b) (6-25-1) c) (6-25-1) 

   

Fig. 8. Training regression (6-25-1). 

 

E. Validation 

For the analysis of the network output signal and to validate the independent data 

set, six statistics were considered: R (Pearson correlation coefficient), MAE (Mean 

Absolute Error), MSE (Mean Squared Errors), SSE (Sum of Squared Errors), SAE 

(Sum of Absolute Errors), BCE (Binary Cross Entropy). In order to establish a 

representative spectrum associated with the independent data set, a set of 1,000 

random data was structured for the test signals. Cross-validation allows comparing 

the estimated signals with the target values from the independent data of the training 

set. The error histogram presented in Figure 7c indicates a minimum standard 

deviation with a mean tending to zero for the individual data; the histogram tends to 

be symmetric around the average. The percentage difference of the MSE between 

the training data and the independent data corresponds to 0.00015%, indicating the 

generalization capability of the neural model. 

 

Table 5. Cross-validation  

Data No. of 
data 

Architecture R2 MAE MSE SSE SAE BCE 

Training 5,000 6-25-1 9.99E+00 9.71E-04 5.41E-6 2.71E-2 4.84E+00 1.25E+00 

Independent 1,000 6-25-1 9.98E+00 1.27E-03 6.91E-06 6.91E-03 1.27E+00 0.52E-01 

 

The U.S. Environmental Protection Agency developed ®Epanet for the calculation 

of pressurized piping systems. This system works with hydraulic simulation periods 

from the drinking water distribution systems. It also models water quality within a 
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pressurized network and can be used for any non-compressible fluid flowing under 

pressure analysis. ®Epanet determines the flow rates through the pipes and the 

values of the pressures at the nodes based on the principle of conservation of mass 

and energy by implementing the gradient method proposed by Todini and Pilati 

(1987). For the calculation of friction losses, three models are presented: Darcy-

Weisbach (D-W), Hazen-Williams (H-W), Chézy-Manning (C-M). 

Similarly, the neural network was evaluated from the data shown in Table 6. The 

results obtained were compared with the values calculated in ®Epanet, ®Excel, and 

the application for the calculation of pressure pipes of the hydraulics online website, 

accepting the Darcy Weisbach equation (2). For the first data in Table 6, the 

modeling was performed in ®MatLab software. Two tanks were established (Figure 

1), the first tank with a height above the water surface equal to 36.712 m, a fitting at 

the inlet with a coefficient of 1, the main pipe with a diameter of 0.2428 m, a length 

equal to 104.31 m, a loss coefficient per fitting equal to 1 at the outlet, a tank at the 

end with zero height, the kinematic viscosity corresponds to 0.000001404 m2/s, and 

the roughness of the pipe equals to 0.0002574 m. The model in ®Epanet obtained 

a flow rate equal to 0.38109 m3/s, with a velocity of 8.23 m/s. The results obtained 

in ®Epanet, ®Excel, and the website validate the values calculated by ANN (6-25-

1). According to the hydraulic calculation performed in ®Epanet, the velocity remains 

constant because the system does not present a variation of the pipe cross-section. 

This performance causes the Reynolds number and the friction coefficient to remain 

constant along the length of the pipe. 

 

Table 6. ANN validation, Epanet, Excel, and web page. 

Input Output 

# Q (m3/s) H (m) L (m) e (m) υ (m2/s) Ʃk Diameter (m) 

RNA (6-25-2) ®Epanet ®Excel Página Web  
(www.edgarladino.com) 

1 3.81E-01 3.67E+01 1.04E+02 2.57E-04 1.40E-06 2E+00 2.42E-01 2.42E-01 2.42E-01 2.42E-01 

2 4.6588E-01 3.19E+01 1.05E+02 1.46E-04 1.39E-06 3E+00 2.72E-01 2.71E-01 2.71E-01 2.71E-01 

3 1.618E-01 1.31E+01 1.33E+02 4.74E-05 1.24E-06 4E+00 2.17E-01 2.16E-01 2.16E-01 2.16E-01 

4 2.392E-01 1.10E+01 1.01E+02 1.83E-04 1.13E-06 2E+00 2.52E-01 2.52E-01 2.52E-01 2.52E-01 

5 3.535E-01 3.03E+01 1.55E+02 2.35E-04 7.76E-07 9E+00 2.85E-01 2.84E-01 2.84E-01 2.84E-01 

 

In addition, the generalization capability of the neural model is evidenced by the 

estimation of 50 independent data. These data show no dependence on the training, 
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test, and validation data set. Figure 10 shows the actual data (circles) obtained from 

equations (12), (14), and the ANN estimated data (crosses). The Pearson 

Correlation Coefficient obtained was equal to 9.9742E-1 showing a linear 

relationship between the input signals and the estimated signals. The root average 

squared error for the 50 data corresponded to 3.65E-05. The cross-entropy obtained 

was equal to 5.504E-1, which establishes a lower uncertainty for the probability 

distribution. 

 

 

Fig. 9. Discharge – speed. 

 

Finally, Figure 10 shows the generalization capability of the neural network (6-25-1) 

to estimate the theoretical diameter in pressurized pipes. This study demonstrated 

the potential of artificial neural networks to solve nonlinear systems. 

 

Scatter plot Patterns vs. Estimated ANNs Regression Patterns vs. Estimated ANNs 

  

Fig. 10. Diameter – Head Loss. Patterns – Estimated ANNs. 
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III. CONCLUSIONS 

The best performing architecture corresponded to a hidden layer with 25 neurons (6-

25-1), presenting an MSE equal to 5.41E-6 and 9.98E+00 for the Pearson 

Correlation Coefficient. The cross-validation of the neural scheme was performed 

from 1,000 independent input signals of the training set, obtaining an MSE equal to 

6.91E-6. This validation demonstrated the generalization capability of the proposed 

neural arrangement for the theoretical diameter in pressurized piping systems 

estimation.  

It was found that increasing the number of hidden layers does not guarantee a 

decrease in the MSE and increases the computational cost of the iterative process. 

Similarly, increasing the number of hidden layers and neurons can generate 

overfitting of the input signals, limiting the model’s capacity in the generalization 

process. Finally, this study demonstrated the potential of artificial neural networks to 

solve nonlinear systems. 
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Nomenclature 

Symbol Unit Parameter 

D m Diameter  

ε m Roughness 

f Dimensionless factor Coefficient of friction  

g m/s2 Gravity 

H m Total head loss 

hf m Friction loss 

hl m Accessory pressure drop 

J m/m Unit loss 

k Dimensionless factor Loss coefficient per fitting 

L m Length 

LGH  m Hydraulic gradient line 

LE Nm/N Energy line 

m.c.a m Water column meter 

P m Pressure 

P0 m Atmospheric pressure 

Re Dimensionless factor Reynolds number 

V m/s Velocity 

z m Height 

γ N/m3 Specific gravity 

 

m2/s Kinematic viscosity 

 

Abbreviations 

BCE Binary Cross-Entropy 

MAE Mean Absolute Error 

MSE Mean Square Error 

EL Energy Line 

HGL Hydraulic Gradient Line 

R Pearson correlation coefficient 

ANN Artificial Neural Network 

ASE Absolute Sum of Errors 

SSE Sum of Squared Errors 

Logsig Log-sigmoid activation function 

 

  

https://doi.org/10.19053/01211129.v30.n56.2021.14037


Cesar-Augusto García-Ubaque; Edgar-Orlando Ladino-Moreno; María-Camila García-Vaca 

 

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 31 (59), e14037, January-March 2022. Tunja-Boyacá, 
Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.  

DOI: https://doi.org/10.19053/01211129.v30.n56.2021.14037    

 

Appendix A. Coding of the ANN model for Matlab (Version 2021a). 

close all; clear all; clc; format long 

%=========================================================== 

% Optimización | MatLab| Edgar O. Ladino M.| César A. García U. | Ingeniería Civil 

% Universidad Distrital Francisco José de Caldas 

% Facultad Tecnológica 

% Bogotá | Colombia 

%=========================================================== 

  

% ====== Cálculo de diámetro en tuberías a presión ======= 

%================== Artificial neural networks ================== 

%___________________________________________________________ 

% 1. Importar dataset 2,000 datos 

d = csvread('DataSet_D_5000_RNA.csv'); %Archivo plano (csv) 

  

%___________________________________________________________ 

% 2. Definición matriz p (Inputs); Vector t (Outputs) 

p = d(:,1:6)'; %Matriz p: Transpuesta de la columna 1, 2, 3, 4, 5 y 6 de la matriz d 

t = d(:,7)'; %Matriz t: Transpuesta de la columna 7 de la matriz d 

  

%___________________________________________________________ 

% 3. Importar dataset matriz de prueba (Test) 1,000 datos 

test = csvread('DataSet_D_RNA_Test_H35.csv'); %Archivo plano (csv) 

  

%___________________________________________________________ 

% 4. Definición matriz test_p (Inputs) 5,000 datos 

test_p = test(:,1:6)'; %Matriz p: Transpuesta de la columna 1 y 2 de la matriz test 

test_pD = test(:,7)'; %Matriz p: Transpuesta de la columna 7 de la matriz test 

test_pH = test(:,2)'; %Matriz p: Transpuesta de la columna 2 de la matriz test 

test_pf = test(:,7)'; %Matriz p: Transpuesta de la columna 7 de la matriz test 

  

%___________________________________________________________ 

% 5. Arquitectura de la red neuronal 

net = fitnet(25); %feedforwardnet; patternnet; network; # neuronas 

net.layers{1}.transferFcn = 'logsig'; %logsig; hardlim, tansig, purelin 

net.performFcn= 'mse'; %mse; crossentropy; mae; msereg 

net.trainFcn = 'trainlm'; %Entrenamiento: trainlm backpropagation; trainbr; traingd; 

trainrp... 

net.divideFcn = 'dividerand'; %División: dividerand; divideblock; divideint; divideind 

net.trainParam.epochs = 6000; %Controla el número de epocas 

[net, tr] = train(net,p,t); %Entrenamiento de la red 

view(net) %Grafica esquema de la red 

y = net(p); %Función de la red 

y_test = net(test_p); %Función de la red test 2,100 datos 

mse_test=1/1000*(test_pf-y_test).^2; 

classes = vec2ind(y); 
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%___________________________________________________________ 

% 6. Gráficas rendimiento de la red 

figure; 

plottrainstate(tr) 

figure; 

plotperform(tr) 

figure; 

plotregression(t,y) 

figure; 

plotregression(test_pf,y_test) 

  

%___________________________________________________________ 

% 7. Estimación del error 

e = t-y; %y (entrenamiento) - y (Estimado) 

figure; 

ploterrhist(e,'bins',30) %Histograma de errores 

R = corrcoef(t,y) %Coeficientes de correlación 

MAE = mae(e) %mae: Error absoluto medio 

MSE = immse(t,y) %Error medio cuadrático 

SSE = sse(net,t,y,1) %sse: Error de suma cuadrada 

SAE = sae(net,t,y) %Suma absoluta de errores 

BCE = crossentropy(net,t,y,{1},'regularization',0.1)%Entropía cruzada 

  

%___________________________________________________________ 

% 8. Estimación del error datos de prueba (Test 2000) 

e_test = test_pf-y_test; %y (entrenamiento) - y (Estimado) 

figure; 

ploterrhist(e_test,'bins',30) %Histograma de errores 

R_test = corrcoef(test_pf,y_test); %Coeficientes de correlación 

MAE_test = mae(e_test) %mae: Error absoluto medio 

MSE_test = immse(test_pf,y_test) %Error medio cuadrático 

SSE_test = sse(net,test_pf,y_test,1) %sse: Error de suma cuadrada 

SAE_test = sae(net,test_pf,y_test) %Suma absoluta de errores 

BCE_test = crossentropy(net,test_pf,y_test,{1},'regularization',0.1)%Entropía cruzada 

  

%___________________________________________________________ 

% 9. Pesos y bias 

w1 = net.IW{1}; %Pesos de la capa de entrada a oculta 

w2 = net.LW{2}; %Pesos de la capa oculta a salida 

b1 = net.b{1}; %Sesgo de entrada a la capa oculta 

b2 = net.b{2}; %Sesgo de la capa oculta a la salida 

  

%___________________________________________________________ 

% 10. Validación 

input = [0.353547;30.337191;155.845532;0.0002357;0.000000776;9]% Datos de prueba 

output_Diametro = sim(net, input)%Dato estimado 

D_Real=0.2849252 

D_Error_Absoluto=D_Real-output_Diametro 
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D_Error_Relativo=abs((D_Real-output_Diametro)./D_Real)*100 

  

%___________________________________________________________ 

% 11. Grafica 3D: Superficie de error 

figure; 

wv = -4:0.4:4; %Límites de la grilla; Tamaño del cuadrante 

bv = wv; 

ES = errsurf(y,t,wv,bv,'tansig'); %y(Datos predecidos); t(Datos objetivos) 

plotes(wv,bv,ES,[60 30]) 

  

%___________________________________________________________ 

% 12. Grafica 3D: Superficie de error MSE 

x = test_pD; 

y = test_pH; 

z = mse_test; 

figure; 

scatter3(x',y',z','MarkerEdgeColor','k','MarkerFaceColor',[0 .75 .75]) 

view(-30,10) 

xlabel('Perdida de carga (m)') 

ylabel('Longitud tubería (m)') 

zlabel('Error medio cuadrático') 

  

%___________________________________________________________ 

% 13. Grafica puntos de disprsión H= 35 m 

figure; 

H50= test(:,2); 

D50=test(:,7); 

sz = 90; 

scatter(H50,D50,sz,'o') 

xlabel('Carga hidráulica (m)') 

ylabel('Diámetro (m)') 

hold on 

H50_test= test(:,2); 

D50_test=(y_test)'; 

sz = 70; 

scatter(H50_test,D50_test,sz,'+') 

hold on 
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